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ABSTRACT

The rapid generation of time series data across a wide array of domains—such as finance,
healthcare, and industrial systems—has made anomaly detection a critical task for identi-
fying irregular patterns that could signal significant events like fraud, system failures, or
health crises. Traditional approaches to time series anomaly detection, including statistical
models like ARIMA and deep learning methods, have proven effective but often require an
extensive training phase, which can be both data and time-consuming.

In recent years, the emergence of foundational models, including large language models
(LLMs) and specialized time series models, has opened up new possibilities for anomaly
detection. These models, pre-trained on vast and diverse datasets, offer the potential to
perform tasks with minimal task-specific training. This thesis investigates the feasibility
of leveraging these foundational models for time series anomaly detection, with the aim
of determining their effectiveness in detecting anomalies without the traditional training
requirements. We also aim to investigate whether foundational models pretrained specifically
on time series data yield better results compared to large language models (LLMs) that were
not pretrained for time series tasks.

Thesis supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist
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Chapter 1

Introduction

In the era of vast data generation across various domains, the ability to discern anomalies

within time series data has become paramount. Time series anomaly detection (AD) serves

as a critical tool for detecting irregular patterns, outliers, and deviations from expected

behaviors, enabling proactive intervention and maintenance in numerous real-world scenarios.

Whether it’s monitoring sensor data in industrial settings, detecting fraudulent activities in

financial transactions, or identifying anomalies in health monitoring systems, the significance

of robust anomaly detection methodologies cannot be overstated.

The domain of anomaly detection has been extensively researched for decades [2]. A

broad spectrum of Anomaly Detection (AD) methodologies has been explored, encompassing

traditional statistical techniques such as distance-based [3], density-based [4], and isolation-

based methods [5], as well as contemporary approaches rooted in machine learning and deep

learning paradigms [6]–[9]. Statistical models such as ARIMA excel at modeling linear depen-

dencies and seasonality in time series data, while deep learning methods, including recurrent

neural networks (RNNs) and transformers, offer powerful tools for detecting complex, non-

linear patterns. However, these methods typically require extensive training, which can be

time-consuming and computationally expensive.

Recently, the rise of foundational models–large pre-trained models such as large language

15



models (LLMs) and time series-specific models (such as TimesFM[10], Lag-Llama [11], etc.)–

has opened new possibilities in the field of machine learning. These models, trained on vast

amounts of data across a variety of domains, have demonstrated an impressive ability to

generalize and perform tasks with little to no task-specific training. The potential of such

models in time series anomaly detection is an area of growing interest, as they promise

to bypass the need for extensive task-specific training while potentially offering superior

performance across diverse datasets.

This thesis aims to explore the feasibility of leveraging these foundational models for

time series anomaly detection. Specifically, it investigates whether these models can detect

anomalies in time series data effectively, without requiring traditional training workflows or

fine-tuning.

1.1 Contribution

This thesis aims to investigate the utilization of foundational models to directly detect

anomalies in time-series sequences without the need for a resource-intensive training phase.

This thesis aims to investigate the potential of two classes of foundational models in anomaly

detection:

1. Time-series Foundational Models: We explore how foundational models for time

series, pretrained on extensive datasets, can effectively identify anomalies in previously

unseen data by capturing the underlying time series patterns and detecting deviations

from these established norms. We experimented with two time series foundational

models UniTS and TimesFM.

2. Large Language Models (LLMs): We investigate how LLMs can be directly utilized

to detect anomalies in time series data by learning normal patterns and identifying

deviations from them. This includes exploring different LLM architectures, prompting,

and post processing strategies to improve anomaly detection performance. The two

16



LLMs we experimented with are GPT and Mistral.

At the end of this thesis, we also aim to answer the question: do foundational models

developed using time series provide better results than the LLMs which were not trained for

the time series tasks.

1.2 Thesis Organization

The thesis is structured as follows. Chapter 2 provides a comprehensive review of relevant

literature on time series and anomalies, various anomaly detection methods, and an in-depth

examination of transformers and foundational models.

Subsequent chapters build upon this foundation, starting with Chapter 3, which focuses

on detecting anomalies in signals using time series foundational models. This includes the

detailed implemention of Orion pretrained pipeline. Chapter 4 extends this discourse to

the use of Large Language Models (LLMs) for anomaly detection, detailing methodologies

that include anomaly detection through prompting and forecasting. Chapter 5 presents the

evaluation of the proposed methods, encompassing dataset descriptions, baseline models,

metrics employed for assessment, and a detailed discussion of results. The thesis concludes

in Chapter 6 by synthesizing findings, reflecting on implications, and suggesting areas for

future research.
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Chapter 2

Background and Related Work

2.1 Timeseries and Anomalies

2.1.1 Timeseries Format

In this thesis, a univariate/multivariate time series is represented by a set of integers denoting

timestamps, and a/multiple sets of real values observed at each respective timestamps. These

values can be of varying numerical magnitudes, which may include both positive and negative

values. Below are examples of univariate and multivariate time series.

Table 2.1: Univariate Timeseries where
value represents the value of time series.

timestamp value
1222819200 210
1222840800 125
...

...
1334905600 400

Table 2.2: Multivariate Timeseries where
v1, . . . , vk are k time series and these
columns have values for those.

timestamp v1 . . . vk
1222819200 210 130
1222840800 125 50
...

... . . .
...

1334905600 400 80

18



2.1.2 Anomalies

In the context of time series data, an anomaly refers to an observation that deviates sig-

nificantly from the expected pattern or behavior of the data. Even though there are many

types of anomalies depending on the sources and domains of the time series data, they can

be classified into two broad categories [12]:

• Point anomalies (outliers) are abrupt spikes or drops within the time series, iden-

tifiable by a single timestamp. When a sequence of consecutive point anomalies oc-

curs, they are termed collective anomalies, and represented by a timestamp interval.

Statistical-based outlier detection methods are commonly used to detect these anoma-

lies [13].

• Contextual anomalies refer to values that deviate from the expected context within

a time series, often appearing as irregular patterns. These anomalies are identified by

an interval, defined by both start and end timestamps.

2.2 Anomaly Detection Methods

Over the years, numerous successful anomaly detection methods have emerged, each devel-

oped to address the growing need for identifying unusual patterns in various types of data.

These methods have evolved significantly, from statistics-based to more advanced machine

learning methods.

2.2.1 Statistical Methods

For a long time, researchers have developed methods to systematically detect anomalous

sequences in time series data. One of the simplest techniques is static thresholding, which

triggers an alert when a data point surpasses the predefined range. Nonetheless, this method

often struggles to identify contextual anomalies. To enhance thresholding, various statistical
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techniques have been introduced, including Statistical Process Control (SPC)[14], where

data points are flagged as anomalies if they do not meet the criteria of statistical hypothesis

testing. However, this approach still relies on human expertise to establish prior assumptions.

Another prevalent technique involves utilizing regression models to break down a time

series into its underlying components: trend, seasonality, and residuals, with the aim of iden-

tifying anomalies within the residuals. This methodology was exemplified in the Autoregres-

sive Moving Average (ARMA) approach [15]. Building on this concept, the Autoregressive

Integrated Moving Average (ARIMA) model [16] endeavors to estimate these residuals while

effectively addressing the issue of non-stationarity in the data. By incorporating differencing

to stabilize the mean of the time series, ARIMA enhances the model’s ability to capture

underlying patterns and improve anomaly detection performance.

2.2.2 Machine Learning Methods

The recent rise of machine learning techniques has led to the development of additional ap-

proaches for anomaly detection that use deep-learning models. Deep-learning anomaly detec-

tion methods can be broadly categorized into two kinds: prediction-based and reconstruction-

based.

Prediction-based methods generally involve training a model to forecast future values

within the time series using sliding window segments and detect anomalies based on defined

deviations from the observed values [17]. A widely recognized architecture for prediction-

based anomaly detection is the Long Short-Term Memory Network with Dynamic Thresh-

olding (LSTM-DT) [18]. In addition to LSTM-DT, other prominent methods include Hier-

archical Temporal Memory and Bayesian Networks [19]

On the other hand, in reconstruction-based methods, a deep learning model, such

as recurrent neural networks (RNNs) is trained to recognize a pattern sequence and use

an estimator to forecast the expected values. Then, we can detect the anomalies based

on the discrepancies between the forecasted signal and the real one [20]. Several promi-
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nent reconstrunction-based anomaly detection methods include: LSTM Auto-Encoders

(LSTM-AE) [21], LSTM Variational Auto-Encoders (LSTM-VAE) [22], and time-series anomaly

detection Generative Adversarial Networks (Tad-GAN) [23].

Overall, the core idea behind deep learning models—whether prediction-based or reconstruction-

based—is to produce an “expected” signal that reflects the original signal’s pattern without

anomalies. This process is illustrated in Figure 2.1. Ultimately, this approach generates

a sequence of “errors” for each time point, indicating the likelihood of that point being an

anomaly.

ML Model

1Training

Inference

Pre-processing Modeling

...
...

1

0

2 3

ML Model
generated

signal

original
signal

anomaly
error

Post-processing 4

Figure 2.1: General principle of how machine learning models find anomalies in an unsu-
pervised setting. Step 1: Apply a sequence of preprocessing operations and train a machine
learning model to learn the pattern of the data. This is the most time-consuming step; Step
2: Use the trained model to generate another time series; Step 3: Quantify the error between
what the model expects and the original time series value; Step 4: Use this discrepancy to
extract anomalies.

Alnegheimish [12] detailed Orion - a framework for constructing anomaly detection

pipeline. A previous thesis Song [24] have provided an overview of this framework. For

readers’ convenience, we included an adapted section from Song [24] on Orion overview in

Section A.1
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2.3 Transformer and Foundational Models.

In the recent years, the emergence of foundational models has significantly transformed

the landscape of artificial intelligence (AI) and machine learning (ML). These models are

designed to be pre-trained on large datasets and subsequently used for inference on new data

across different domains, not limited to natural language processing (NLP) but including

computer vision, audio processing, and time series analysis. Among these foundational

models, the transformer architecture represents a pivotal advancement, especially in handling

sequential data.

2.3.1 The Transformer Architecture

Introduced by Vaswani et al. [25], the transformer model uses a unique self-attention mecha-

nism that enables it to process input data in parallel, overcoming the limitations of recurrent

neural networks (RNNs). Key features of the transformer include:

• Self-Attention: This mechanism allows the model to focus on relevant parts of the

input sequence when making predictions, capturing complex dependencies and contex-

tual relationships with greater accuracy.

• Positional Encoding: Transformers incorporate positional encoding to retain the

order of sequences, a crucial aspect for tasks where the arrangement of inputs matters.

• Multi-Head Attention: By having multiple attention heads, transformers can learn

diverse representations and capture various features from the input simultaneously.

• Feed-Forward Networks and Layers: These contribute to the model’s depth and

capacity, processing attention outputs for further non-linear transformations.

• Residual Connections: Enhancing training stability, these connections help transfer

gradients effectively, addressing the challenges of deep network training.
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2.3.2 Foundational Models

Foundational models refer to a broad category of models that are generally large, pre-trained,

and versatile. They can be adapted for different tasks, such as language processing, audio

processing, time series analysis, etc.

Foundational models are typically trained on a large collection of sequences, U = U1, U2, ...Ui, ..., UN ,

where Ui = (u1, u2, ..., uj, ..., uni) and each token, ui, belongs to vocabulary set V . Founda-

tional models encode an autoregressive distribution, in which the probability of each token

is only dependent on the previous tokens in the sequence, pθ(Ui) =
∏

ni
pθ(uj|u0:j1). The

parameters, θ, are learned by maximizing the probability of the entire dataset set sequences

pθ(U) =
∏N

i=1 pθ(Ui). Thus, in the inference phase, the next token is directly sampled from

the learned conditional probability distribution.

The most important class of foundational models is Large Language Model (LLM). It has

been observed that LLMs, such as GPT [26] or Llama-2 [27], exhibit “emergent abilities,“

which stem from the intricate interplay among the model’s components and are not directly

programmed or designed [28]. The most intriguing among “emergent abilities“ is in-context

learning [29], in which a model (through example demonstration, few-shot learning, or no

example, zero-shot learning [30]) can perform a text-formatted task without training the

model parameters on any task-specific data. Zero-shot and few-shot learning abilities en-

hance the versatility and adaptability of LLMs, making them valuable for a wide range of

applications and domains where rapid adaptation and generalization are necessary.

2.4 Related work

2.4.1 Transformers for timeseries

The transformer’s self-attention mechanism and ability to capture long-range dependencies

make it appealing to time series modeling tasks. These capabilities enable the model to focus
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on relevant historical data points and identify essential trends, making it especially effective

for complex time-dependent data. For instance, the Temporal Fusion Transformer (TFT)

combines attention mechanisms with recurrent structures to enhance multivariate time series

forecasting while maintaining interpretability [31].

Additionally, the ability of transformers to analyze long sequences makes them adept at

representation learning of multivariate time series, which can then be leveraged for down-

stream tasks such as reconstructing, forecasting and classification [32], [33].

The advantages of using transformers in time series tasks include scalability, flexibility,

and state-of-the-art performances. Comprehensive studies such as Wen, Zhou, Zhang, et

al. [34] illustrate the potentials and limitations of these models. As the field advances, the

potential for transformers to address increasingly complex time series challenges continues

to grow, highlighting the need for ongoing research and exploration in this direction.

Recently, there have been a significant number of foundational time series models being

released. Like the LLMs, foundational time-series models are also pretrained using the

transformer architecture, but instead of being trained on the language data, they were trained

on a large corpus of time-series data. ForecastPFN [35] pre-trains a basic encoder-decoder

transformer with one multi-head attention layer and two feedforward layers on a synthetically

generated time series dataset. Similarly, TimeGPT was pretrained on a large collection

of publicly available time series datasets. Lag-Llama [11] is a decoder-only Llama-2

model pretrained on a large corpus of real time series data from diverse domains. Moreover,

Chronos [36] adopts a T5 architecture, and parses time series data into text to pretrain

their model. Most of these models were developed with the objective of creating a time series

foundation model for time series forecasting.

In this research, we study the two foundational time-series models UniTS [37] and TimesFM [10].

We especially focus on their ability to detect anomaly on new data that wasn’t included in

their training corpus.
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2.4.2 LLM for timeseries

Recently, there has been significant interest in leveraging LLMs within the realm of time

series analysis. Due to the similarity between predicting the next word in a sentence and

predicting the next value in a time series, much attention has been directed towards time

series forecasting. Among the noteworthy initiatives is LMMTime [38], which utilizes GPT

[26], and Llama-2 [27] models to forecast time series data in a zero-shot manner. Another

notable contribution is PromptCast [39], which introduces a prompt-based approach to

forecasting, reframing the task as a question-answering problem.

In this research, we work strictly with two LLMs that have been pre-trained on text:

GPT-3.5 [26] and an open source model using Mistral [40].

25



Chapter 3

Anomaly Detection using Time Series

Foundational Models

We introduce a new class of anomaly detection pipeline in Orion: the pretrained pipeline.

This pipeline leverages the capabilities of foundational time series models for forecasting, en-

abling us to avoid the traditional training phase, which is often time-consuming and resource-

intensive. For instance, the deep learning model TadGAN typically takes an average of 180

seconds to both train and perform inference on each of the 80 NASA signals. More im-

portantly, using pretrained model is more scalable since no training is required for specific

signals. In other words, we do not have to train a model for different signals from different

applications.

In this chapter, we will provide implementation details and practical usage examples of

the pretrained pipeline.

3.1 Models

The two open-access foundational time series models we explored are UniTS[37] and TimesFm[10].

The datasets that were used to pretrained these models is detailed in section A.2 of Appendix.
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3.1.1 UniTS

UniTS, introduced by Gao, Koker, Queen, et al. [37], offers a single framework that uni-

fies predictive and generative time series tasks using task tokenization. The author pro-

vided the code and datasets for pretraining on the Github repository https://github.com/

mims-harvard/UniTS?tab=readme-ov-file. We used the provided code and datasets to pre-

train the model, then saved the model checkpoint for later inference.

3.1.2 TimesFM

TimesFM is a decoder-only foundation model for time-series forecasting that achieves near

state-of-the-art zero-shot accuracy across diverse datasets, introduced by Das, Kong, Sen, et

al. [10]. We did not need to pretrain TimesFM model since the model checkpoint is available at

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2. We downloaded the checkpoint

file, then used it for inference. The authors also provided the code and datasets on the

Github repository https://github.com/google-research/timesfm for pretraining the model.

3.2 Orion pretrained pipeline

3.2.1 High-level overview

As depicted in Figure 2.1, the first step in a typical machine learning (ML) pipeline involves

training an ML model on a collection of time series data. However, since we utilize a

pretrained time series model that is capable of forecasting without a formal training phase,

we can transition directly to the inference phase.

Given a univariate time series X = (x1, x2, . . . , xT ), we first segment each time series into

rolling windows characterized by predetermined lengths w and step size of 1; i.e., the time

series X is segmented and turned into a set {(xi
1...w)}Ni=1, where w is the window size and N

is the number of windows (N = T − w). Here, we assume that anomalies do not happens
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early in the time series, so we can ignore the first window.

For each given window (xi
1...w), we query the Time Series pretrained model to predict

the next value x̂i
w+1. The reconstructed timeseries X̂ = (x̂w+1, x̂w+2, . . . , x̂T ) have length of

T − w.

We next compute the discrepancy between X and X̂. A large discrepancy indicates the

presence of an anomaly. We denote this discrepancy as an error signal e by computing

point-wise residuals, given their simplicity and ease of interpretation. We explore the usage

of absolute difference suggested by Hundman et al. [18] et = |xt − x̂t|. Moreover, we explore

how other functions, such as squared difference et = (xt− x̂t)
2 will help reveal the location of

anomalies. More complex functions that capture the difference between two signals, such as

dynamic time warping [41] can be used. However, Geiger, Liu, Alnegheimish, et al. [23] shows

that discrepancies found with absolute difference function are sufficient for this purpose.

Moreover, we apply an exponentially weighted moving average to reduce the sensitivity

of the detection algorithm [18]. Error values that surpass the threshold are considered

anomalous. We use a sliding window approach to compute the threshold to help reveal

contextual anomalies that are abnormal compared to the local neighborhood. As such,

we assign the window size and step size to T/3 and T/10 respectively. We set a static

threshold for each sliding window as four standard deviations away from the mean. These

hyperparameters were chosen based on preliminary empirical results that agree with previous

settings in other approaches [18], [23], [42].

3.2.2 Primitives and pipelines

The Orion pretrained pipeline consists of eight primitives:

time_segments_aggregate

This primitive creates an equi-spaced time series by aggregating values over fixed specified

interval.
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• Input: x which is an 1-dimensional sequence of values.

• Output:

■ x sequence of aggregated values, one column for each aggregation method.

■ index sequence of index values.

SimpleImputer

This sklearn primitive is an imputation transformer for filling missing values. It replaces

missing values using a chosen statistic (mean, median, or most frequent), or using a constant.

• Input: x which is an 1-dimensional sequence of values.

• Output: x which is a transformed version of Input.

StandardScaler

This sklearn standardize features by removing the mean and scaling to unit variance.

• Input: x which is an 1-dimensional sequence of values.

• Output: x which is a transformed version of Input.

rolling_window_sequences

This primitive generates many sub-sequences of the original sequence. It uses a rolling

window approach to create the sub-sequences out of time series data.

• Input:

■ x sequence to iterate over.

■ index array containing the index values of x.

• Output:
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■ x array of rolling windows from the inputted sequence.

■ y target sequences.

■ index first index value of each rolling window.

■ target_index first index value of each target sequence.

TimesFM or UniTS

This primitive is used to forecast using Time Series pretrained model (TimesFM or UniTS).

• Input: x n-dimensional array containing the input sequences in rolling windows.

• Output: ŷ predicted series.

regression_errors

This primitive computes an array of errors comparing the prediction and expected output.

• Input:

■ y ground truth.

■ ŷ predicted values.

• Output: errors array of errors.

find_anomalies

This primitive finds anomalous intervals and its score from sequence of errors

• Input:

■ errors array of errors

■ target_index indices of the sequence

• Output: anomalies array containing start-timestamp, end-timestamp, and score for

each anomalous sequence.
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The Orion pretrained pipeline is shown in Figure 3.2. Here is a breakdown of how the

input and output dimensions change through each step of the pipeline:

1. Input: x a time series of length T.

2. time_segments_aggregate will transform x to be of length T’. In the case where x is

already regularly sampled T = T’. For easier notation, we assume that x is regularly

sampled.

3. SimpleImputer will produce an imputed version of x and is of length T.

4. StandardScaler will produce a scaled version of x and is of length T.

5. rolling_window_sequences will create x windows of dimension (N, w, 1), where N =

T-w. Here we always assume step_size = 1. however we can also work with various

step sizes. In addition, the primitive will construct y of dimension (N, 1).

6. TimesFM or UniTS will predict next value ŷ which is of dimension (N, 1) because we

only forecast for one single value.

7. regression_errors will also produce errors of dimension N.

8. find_anomalies will generate anomalies of form (ts, te)
n where ts and te are start and

end timestamp of each anomalous interval respectively, and now we have n detected

anomalous intervals.
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Users can either use the default hyperparameter values or customize them according to

their needs. Here is an example of how to use the TimesFM pipeline, the usage for UniTS

pipeline is similar:

1 from orion.data import load_signal
2 from mlblocks import MLPipeline
3 #load signal and pipeline
4 data = load_signal("exchange-2_cpm_results")
5 pipeline = MLPipeline("timesfm")
6 #set hyperparameters
7 hyperparameters = {
8 "mlstars.custom.timeseries_preprocessing.time_segments_aggregate#1": {
9 "interval": 3600

10 }
11 }
12 pipeline.set_hyperparameters(hyperparameters)
13 #detect anomalies
14 context = pipeline.fit(data)
15 context["anomalies"] #the detected anomalies
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Figure 3.1: Graphic representation of an Orion pipeline with a pretrained TimeSeries model.
Output format and structure for each data processing block here are explained in text before.
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Chapter 4

Anomaly Detection using Large

Language Models

This chapter, except section 4.4, is from joint work with Alnegheimish, Nguyen, Berti-Equille,

et al. [1].

As mentioned in Chapter 2, there has been a growing interest in exploring the potential

of Large Language Models (LLMs) for time series analysis. Their autoregressive capabilities

have been demonstrated to be suitable for time series forecasting [38]. This leads to the

question: can LLMs tackle more complex tasks such as anomaly detection?

4.1 Problem Statement

In this chapter, we work strictly with LLMs that have been pre-trained on text, particularly

a proprietary model using GPT-3.5 [26] and an open source model using Mistral [40]. Our

main objective is to determine whether LLMs have the ability to directly uncover anomalies in

time series data. Referring back to Figure 2.1, our methodology focuses on Step 2 onwards

– primarily the inference phase. To our knowledge at the time of working Alnegheimish,

Nguyen, Berti-Equille, et al. [1], there is no other work that utilizes large language models as

zero-shot anomaly detectors for time series data. We explore two avenues for accomplishing
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this task: (a) Through the paradigm of prompt engineering; (b) By leveraging LLMs’ ability

to forecast time series in zero-shot without any additional data or fine-tuning.

Given that LLMs process strings rather than numerical values, we opted not to use

Orion. Instead, we developed a new framework called SigLLM, which extends the principles

of Orion to work effectively with LLMs. This framework incorporates both pre-processing

and post-processing primitives that facilitate the conversion between numbers and strings.

SigLLM consists of end-to-end pipelines that leverage LLMs for time series anomaly de-

tection. In the following sections, we will discuss both the high-level overview and the

algorithmic implementation details of the SigLLM framework.

4.2 Time Series representation

Time series data can take many different forms. In this thesis, we define a univariate time

series as X = (x1, x2, . . . , xT ), where xt ∈ Z≥0 is the value at time step t, and T is the

length of the series. To make a time series LLM-ready, we transform the univariate time

series X into a sequence of values that is tokenized. We follow a sequence of reversible steps,

beginning with scaling, quantization, and processing the time series into segments using

rolling windows, and ending with tokenizing each window. We detail these steps below.

Scaling. Time series data includes values of varying numerical magnitudes, and may

include both positive and negative values. To standardize the representation and opti-

mize computational efficiency, we subtract the minimum value from the time series xst =

xt − min(x1, x2, . . . , xT ), resulting in a new time series Xs = (xs1 , xs2 , . . . , xsT ), where

xst ∈ R≥0. In other words, we introduced a mapping function: E : R → R≥0. This eliminates

the need to handle negative values separately.

Other scaling methods, such as min-max scaling, can be utilized to achieve the same goal.

However, reducing the set of possible values to a smaller range (e.g. [0, 1]), may cause a loss

of information in the quantization step. On the other hand, increasing the range will mean
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Ground Truth

Variation GPT MISTRAL

Rescale + Space

Rescale + No space

No rescale + Space

Figure 4.1: Visualizing the output of large language models (GPT and Mistral)
under different variations of the transformation process. Each row depicts the
exchange-2_cpm_results signal from the AdEx dataset, where the x-axis shows the times-
tamp and the y-axis is the signal value. The first row indicates the ground truth anomalies
present in the time series (highlighted in green). The remaining rows indicate whether scal-
ing and inserting space between digits has occurred during the conversion from signal to
text. The gray intervals highlight the anomalies detected under these conditions; thus, we
would like to maximize the overlap between the green and gray intervals. Overall we find
that “scaling + space” is the configuration that yields a better output for GPT; and “scaling
+ no space” is better for Mistral.
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there are more digits to tokenize. With our approach, we simply shift the range of the signal

values, which allows us to reduce the number of individual digits that need to be tokenized

while maintaining the original gaps between pairs of entries. Moreover, by projecting the

values into a non-negative range, we eliminate the need for sign indicator “-/+” and save an

additional token.

Quantization. Unlike the finite set of vocabulary words used to train LLMs (32k vocab

tokens for Mistral) 1, the set of scaled time series values xst is infinite, and cannot be

processed by language models. Therefore, time series that are to be used with LLMs are

generally quantized [36], [38]. We use the rounding method, as proposed in in [38]. Because

in some cases the number of decimal digits are redundant given a fixed precision, we round

each value up to a predetermined number of decimals, and subsequently scale to an integer

format to avoid wasting tokens on the decimal point. Hence, the input time series becomes

Xq = (xq1 , xq2 , . . . , xqT ), where xqt ∈ Z≥0. Below is an example of this operation :

0.2437, 0.3087, 0.002, 0.462 → “244,309,2,462”

Overall, we use 2 mapping functions: the scaling function noted E : R → R≥0 and the

quantization function noted Q : R≥0 → Z≥0. Because both mapping functions are reversible

up to a certain number of precision digits, we can always reconstruct the input time series:

E−1 (Q−1 (xqt)) ≈ xt

Rolling windows. Because there is an upper limit on the context length input to LLMs

(e.g., Mistral has an upper limit of 32k tokens and GPT-3.5-turbo has a limit of 16k

tokens), and there are constraints on GPU memory, a rolling windows technique is employed

to manage input data that exceeds these thresholds. This method involves segmenting each

time series into rolling windows characterized by predetermined lengths and step sizes; i.e.,

a processed time series Xq is segmented and turned into a set {
(
xi
q1...w

)
}Ni=1, where w is the

window size and N is the number of windows. For a cleaner notation, we refer to the set as
1The exact vocabulary size for GPT-3.5-turbo has not been released by OpenAI.

37



{(xi
1...w)}Ni=1. We drop q in the notation from this point on, as all the input is now quantized.

Tokenization. Different tokenization schemes vary in how they treat numerical values. Sev-

eral open-source LLMs, such as Llama-2 [27] and Mistral [40], utilize the SentencePiece

Byte-Pair Encoding tokenizer [27], which segments numbers into individual digits. However,

the GPT tokenizer tends to segment numbers into chunks that may not correspond directly

with the individual digits [43]. For instance, the number 234595678 is segmented into chunks

[234, 595, 678] and assigned token IDs [11727, 22754, 17458]. Empirical evidence suggests

that this segmentation impedes the LLM’s ability to learn patterns in time series data [38].

To make sure GPT tokenizes each digit separately, we adopt the approach introduced by

[38], which inserts spaces between the digits in a number.

Continuing with the running example:

“244,309,2,462” → “2 4 4 , 3 0 9 , 2 , 4 6 2”

Where each digit is now encoded separately.

Figure 4.1 shows how different preprocessing steps affect the output of the model. Overall,

we find that scaling reduces the number of tokenized digits, and yields better results than not

scaling. Moreover, GPT performs better with added space between digits, while Mistral

does not. These results accord with the forecasting representation presented in Gruver,

Finzi, Qiu, et al. [38].

4.3 Methods

Given a univariate time series X = (x1, x2, . . . , xT ), and assuming there exists a set of

anomalies of varied length A = {(ts, te)i | 1 ≤ ts < te ≤ T}mi=1 that is unknown a priori,

our goal is to find a set of m anomalous time segments, where ts and te represent the start

and end time points of an anomalous interval. We introduce two fundamentally different

methods that can be used for anomaly detection with LLMs: SigLLM-Prompter and

38



LLM

LLM

“... , 245, 244,
309, 2, 462,
728, ...”

“245, 244, 309,   ”

...
...

“309, 2, 462,   ”
“462, 728, 627,   ”

Can you find anomalies
in the following time series?

“245, 244, 309, 30”

“ 2 ”

...
...

“309, 2, 462, 5”
“462, 728, 627, 390”

a

b

Figure 4.2: Anomaly detection methods in the SigLLM framework. (a) SigLLM-
Prompter: a prompt engineering approach to elicit large language models to identify parts
of the input which are anomalies. (b) SigLLM-Detector: a forecasting approach to use
large language models as forecasting methods. SigLLM-Detector then finds discrepencies
between the original and forecasted signal, which indicate the presence of anomalies.

SigLLM-Detector, as visualized in Figure 4.2.

4.3.1 Finding Anomalies through Prompting

As depicted in Figure 4.2, this pipeline involves querying the LLMs directly for time series

anomalies through a text prompt (as shown below) concatenated with the processed time

series window ui
1...k := prompt⊕ (xi

1...w), where k is the total length of the input after concate-

nation. LLMs will output the next token uk+1 sampled from an autoregressive distribution

conditioned on the previous tokens pθ(uk+1|u1...k).

Following a series of experiments, as shown in Table 4.1, we iterated over trials #5 and

arrived at the following prompt for our study:

“You are an exceptionally intelligent assistant that detects anomalies in time series data

by listing all the anomalies. Below is a sequence, please return the anomalies in that sequence.

Do not say anything like ‘the anomalous indices in the sequence are’, just return the numbers.

Sequence: {the input sequence (x1...w)}.”

Under this prompt, the LLM generates a list of values it delineates as point-wise anoma-

lies. It is noteworthy that the GPT-3.5-turbo model is capable of directly outputting anoma-
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Table 4.1: Examples of prompts used in SigLLM-Prompter with their respective observed
output. {x1..w} is a placeholder of the actual signal values in the given window.

Trial Prompt Observed Output

1 {x1..w}. Find the anomalies of the time series above. (1) generating code with generic stack overflow code for anomaly detection
in python with numpy’s convolve 2 or sklearn’s IsolationForest 3.
(2) could not find anomalies
(3) produced a vague answer about common approaches to finding anomalies

2 Find the range of indices that are anomalous in this series {x1..w} or (1) producing a list of indices
Given this series {x1..w}. Find the range of indices that are anomalous (2) generating code similar to trial #1

(3) could not find anomalies
(4) produced a vague answer about common approaches to finding anomalies
(5) asked ‘do you have any criteria or specific method in mind’
(6) confirmed that anomalies are values deviating significantly from the mean.
After confirming, the model digressed from the topic

3 Find the anomalous indices in this series {xts−100..te+100}. (1) producing a list of indices
where ts and te is the index of where the anomalies starts and ends, respectively. (2) could not find anomalies

4 The anomaly indices in timeseries_1 = {x1..w}1 is: {t1..k}1 (1) producing a list of indices
The anomaly indices in timeseries_2 = {x1..w}2 is: {t1..k}2 (2) claimed anomalies of timeseries_3 had been given
The anomaly indices in timeseries_3 = {x1..w}3 is: (3) could not find anomalies

(4) outputted ‘Whoa, that’s quite a lengthy time series!
What can I help you with regarding this data’

5 You are a helpful assitant that performs time series anomaly detection. GPT-3.5-turbo:
(1) producing a list of indices

The user will provide a sequence and you will give a list of indices that are (2) occasionally, words like ‘Index:’ were included
anomalous in the sequence. The sequence is represented by decimal strings (3) sometimes, the output indices exceeded sequence length
separated by commas. Please give a list of indices that are anomalous in the Mistral:
following sequence without producing any additional text. Do not say anything (1) produced a list of values.
like ‘the anomalous indices in the sequence are’, just return the numbers.
Sequence: {x1..w}

lous indices using the prompt presented in Table 4.1, while Mistral lacks this ability, as

shown in trial #5. To maintain consistency across our experiments, we conducted experi-

ments on both models using the same prompt mentioned above.

As explained in Section III.A, we adopt the rolling windows method, segmenting the

time series into rolling windows before inputting it into the LLMs. For each window, we

generate 10 samples from the output probability distribution. For each sample containing

values deemed anomalous by LLMs, we collect all indices of the window corresponding to

those values. Then, the 10 lists of indices are merged together: if an index appears in at

least α percent of the total number of samples, it is considered an anomaly. Finally, the

lists of detected anomalies from each window are combined to get the final prediction using

a similar criterion: an index is considered an anomaly if it appears in at least β percent

of the total number of overlapping windows, which are estimated by dividing the window

size by the step size. Here, α and β are hyperparameters, which can be tuned to improve

performance.
2https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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4.3.2 Finding Anomalies through Forecasting

As depicted in Figure 2.1, the first step in a typical ML pipeline involves training an ML

model on a collection of time series. From [38], pretrained LLMs are capable of fore-

casting time series, allowing us to jump straight to the inference phase. Details of pre-

processing, forecasting, and post-processing phases of SigLLM-Detector can be found in

Alnegheimish, Nguyen, Berti-Equille, et al. [1]

4.4 SigLLM primitives and pipelines

In addition to the primitives developed in Orion, we introduce several new primitives in

Sigllm that facilitate the pre-processing and post-processing of data, ensuring compatibility

with LLMs. The new pre-processing primitives include:

Float2Scalar

This primitive converts float values into scalar upto certain decimal points.

• Input: x which is an n-dimensional sequence of values in float type.

• Output: x which a transformed version in scalar.

RollingWindow

This primitive is a simplified version of Orion’s rolling_window_sequences. This primitive

is used in SigLLM-Prompter to create sub-sequences out of the original sequence using a

rolling window approach.

• Input: x which is an 1-dimensional sequence to iterate over

• Output:

■ x array of rolling windows from the inputted sequence.
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■ first_index first index value of each rolling window.

Format_as_string

This primitive converts each sequence of scalar values into strings.

• Input: x which is an n-dimensional sequence of values

• Output: x.str which is a string representation version of X

In the modeling phase we create 2 primitives: one for detecting anomalies used in

SigLLM-Prompter and forecasting timeseries used in SigLLM-Detector using LLM:

LLM.detect

This primitive prompts an LLM to detect the anomalies.

• Input: x.str input sequence

• Output: y detected anomalous value

LLM.forecast

This primitive prompts an LLM to forecast the next steps.

• Input: X input sequence

• Output: y_hat predicted sequence

The post-processing primitives include:

format_as_integer

This primitive converts each sequence of string values into integers.

• Input: y which is sequence of string values
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• Output: y_int which is an integer representation version

For post-processing phase in SigLLM-Prompter pipeline, we design the below primi-

tives:

Val2Idx

This primitive converts integer values into the indices they appear in the sequence.

• Input:

■ y_int sequences of anomalous values

■ x the input sequences outputted by RollingWindow 4.4

• Output: y_idx sequences of anomalous indices

find_anomalies_in_windows

This primitive merges all the samples output by the LLM into a list of anomalous indices for

each window: an index is deemed anomalous if it appears in at least α percent of the total

number of samples.

• Input: y_idx n-dimensional array of multiple anomalous indices sequences

• Output: y_win array of each window’s anomalous indices sequences

merge_anomalous_sequences

This primitive combines all windows to get the final anomalous indices prediction: an index

is deemed anomalous if it appears in at least β percent of the total number of overlapping

windows.

• Input:

■ y_win array of anomalous indices sequences in each window
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■ first_index first indices of each input sequence outputted by RollingWindow

4.4

• Output: y_ano anomalous indices of the input timeseries.

format_anomalies

This primitive uses padding to convert a list of anomalous indices into an array containing

the start-timestamp, end-timestamp, and score (which is always 0 in SigLLM-Prompter)

for each anomalous sequence that was found.

• Input:

■ y_ano sequence os anomalous indices

■ timestamp sequence of timestamps of the input series

• Output: anomalies array containing start-timestamp, end-timestamp, and score for

each anomalous sequence.

In the post-processing phase of the SigLLM-Detector pipeline, we have developed the

following primitives:

Scalar2Float

After transforming the raw time series entries into integers during the pre-processing phase

4.4, we now employ this primitive to convert the integer values predicted by the LLM back

to float type.

• Input: y_hat sequence of integer values.

• Output: y_hat sequences in float form.
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aggregate_rolling_window

This primitive aggregates multiple prediction samples into one prediction.

• Input:

■ y_hat n-dimensional sequence of forecasted values

■ agg aggregation method, "median" by default

• Output: y_hat one-dimensional output sequence depicting the aggregated value of

forecasts.

The end-to-end pipelines for SigLLM-Prompter and SigLLM-Detector, which in-

corporate both Orion primitives and our custom primitives, are illustrated in Figure 4.3.

Here is a breakdown of how the input and output dimensions change through each step of

theSigLLM-Prompter pipeline:

1. Input: x a time series of length T.

2. time_segments_aggregate will transform x to be of length T’. In the case where x is

already regularly sampled T = T’. For easier notation, we assume that x is regularly

sampled.

3. SimpleImputer will produce an imputed version of x and is of length T.

4. Float2Scalar will transform x from float to integer values while keeping the dimension

as T.

5. RollingWindow will generate prompting samples which can be x windows and the

dimension would be (N, w, 1) where N= (T-w) // s with w as window size and s as step

size.

6. Format_as_string will convert x into its string representation x.str for each window

which retains the dimension (N, w, 1).
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7. LLM will generate y which are predicted anomalous values, y has dimension (N, n, k),

where n is number of sample (n=10 in this case), and 1 ≤ k ≤ T is the number of

anomalous values the LLM produces, which can be different from sample to sample.

8. format_as_integer produces y_int which has the same dimesion as y.

9. Val2idx produces y_idx also has the same dimesion as y.

10. find_anomalies_in_windows produces y_win with dimension (N, q) with q is the

number of anomalous indices in each window, and its value can vary from window to

window.

11. merge_anomalous_sequences produces y_ano with dimension K, which is the number

of anomalous indices in the entire sequence.

12. find_anomalies will generate anomalies of form (ts, te)
n where ts and te are start and

end timestamp of each anomalous interval respectively, and now we have n detected

anomalous intervals.

46



Both pipelines take a raw signal, which includes timestamps and their corresponding

values, as input. We have set some default hyperparameters values; however, users and

easily change those values. This is an example of how to utilize the SigLLM-Prompter

pipeline to identify anomalies in a signal; the usage for SigLLM-Detector is similar.

1 from orion.data import load_signal
2 from mlblocks import MLPipeline
3 #load signal and pipeline
4 data = load_signal("exchange-2_cpm_results")
5 pipeline = MLPipeline("gpt_prompter")
6 #set hyperparameters
7 hyperparameters = {
8 "mlstars.custom.timeseries_preprocessing.time_segments_aggregate#1": {
9 "interval": 3600

10 },
11 "sigllm.primitives.prompting.anomalies.find_anomalies_in_windows#1": {
12 "alpha": 0.5
13 },
14 "sigllm.primitives.prompting.anomalies.merge_anomalous_sequences#1": {
15 "beta": 0.5
16 }
17 }
18 pipeline.set_hyperparameters(hyperparameters)
19 #detect anomalies
20 context = pipeline.fit(data)
21 context["anomalies"] #the detected anomalies
22
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Chapter 5

Evaluation

Sections 5.1 and 5.2, together with subsection 5.3.2, 5.4,2 are from joint work with Al-

negheimish, Nguyen, Berti-Equille, et al. [1].

In this chapter, we assess our two frameworks and seek to answer the following research

questions:

• RQ1 How do time series foundational models compare to baseline methods? What

are their failure cases and why?

• RQ2 How does SigLLM compare to baseline methods? What are their failure cases

and why?

• RQ3 How do foundational models that were pretrained on time series, UniTS and

TimesFM, compare to LLMs?

5.1 Datasets

We examined SigLLM and TimesFM & UniTS on 11 datasets with known ground truth

anomalies. These datasets were gathered from a wide range of sources, including a satellite

telemetry signal corpus from NASA 1 that includes two sub-datasets: SMAP and MSL;
1https://github.com/khundman/telemanom
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Yahoo S5 2, which contains four sub-datasets: A1, which is based on real production

traffic to Yahoo systems, and three others (A2, A3, and A4) which have been synthetically

generated; and NAB 3, which includes multiple types of time series data from various

application domains. We consider five sub-datasets: Art, AWS, AdEx, Traf, and Tweets. In

total, these datasets contain 492 univariate time series and 2,349 anomalies. The properties

of each dataset, including the number of signals and anomalies, the average signal length,

and the average length of anomalies, are presented in Table 5.1. The table makes clear

how properties differ between datasets; for instance, the NASA and NAB datasets contain

anomalies that are longer than those in Yahoo S5

Table 5.1: Dataset Summary: 492 signals and 2349 anomalies.

Dataset # Sub-datasets # Signals # Anomalies Avg. Length

NASA 2 80 103 8686 ± 5376
Yahoo S5 4 367 2152 1561 ± 140
NAB 5 45 94 6088 ± 3150

Total 11 492 2349

Table 5.2 provides an overview of the anomalies type in each of the 11 benchmark datasets.

The majority of anomalies in Yahoo S5’s A3 & A4 datasets are point anomalies, whereas,

NASA and NAB datasets mostly contain contextual anomalies.

Table 5.2: Overview of anomalies in 11 benchmark datasets.

NASA Yahoo S5 NAB

No. of MSL SMAP A1 A2 A3 A4 Art AWS AdEx Traf Tweets

Point Anomalies (len = 1 ) 0 0 68 33 935 833 0 0 0 0 0
Contextual Anomalies (len>1 ) 36 67 110 167 4 2 6 11 30 14 33

Anomalous Points 7766 54696 1669 466 943 837 2418 795 6312 1560 15651
Total Points 132046 562800 94866 142100 168000 168000 24192 7695 67644 15662 158511

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
3https://github.com/numenta/NAB
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5.2 Baseline Models and Metrics

5.2.1 Models

We compared SigLLM and TimesFM & UniTS to state-of-the-art models in unsupervised time

series anomaly detection. This includes a variety of models similar to the ones considered

in [42], [44]:

• Classic statistical methods including ARIMA, Matrix Profiling (MP), and a simple

Moving Average (MAvg).

• Deep learning models currently considered state-of-the-art, including LSTM DT which is

a forecasting-based model, LSTM AE, VAE, and TadGAN which are reconstruction-based

models, and AER which is a hybrid between forecasting and reconstruction.

• AnomalyTransformer (AT), a transformer architecture model for anomaly detection.

• MS Azure, an anomaly detection service.

These models use a wide range of underlying detection methods, which increases our anomaly

detection coverage overall.

5.2.2 Metrics

We utilized anomaly detection-specific metrics for time series data [44], [45]. Namely, we

looked at the F1 score under overlapping segement A.1.2, under which both partial and full

anomaly detection are considered correct identification.
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5.3 Hyperparamters and Computation

5.3.1 Orion pretrained pipelines

Hyperparameters. We set the rolling window size to 250 for UniTS, and 256 for TimesFM

(that was because the input context length of TimesFM model has to be a multiple of 32).

Since we did one-step forecasting, we set both the step size value and the prediction horizon

to be 1.

Computation. For the TimesFM pipeline, we use the timesfm-1.0-200m model hosted by

Huggingface4. While the Das, Kong, Sen, et al. [10] paper expertimented with models of

17M, 70M, and 200M parameters, only the 200M model is publicly available.

The Github repository5 of the UniTS model provided accesss to two model checkpoints

units_x128_pretrain_checkpoint and units_x32_pretrain_checkpoint that have 3.5M

and 370K parameters respectively. They also provided the dataset as detailed in Table A.2

and code to pretrain a zero-shot forecasting specific model of size 1M parameters. We

tested the performance of those three models on 10 selected signals6, and found that the

zero-shot forecasting model has the best performance7 despite not being the largest model.

Therefore, we chose the zero-shot forecasting model for benchmarking. The model checkpoint

is available for download at https://sintel-orion.s3.amazonaws.com/pretrained/units.pth

5.3.2 SigLLM

Hyperparameters. For SigLLM-Prompter, GPU capacity means that the maximum

input window length of SMAP and MSL is 500 values (for other datasets, it is 200 values).

We chose a step size such that, on average, a value was contained in 5 overlapping windows
4https://huggingface.co/google/timesfm-1.0-200m
5https://github.com/mims-harvard/UniTS?tab=readme-ov-file
6We chose ten NASA timeseries: S-1, M-1, P-1, E-1, A-1, B-1, C-1, D-1, M-6, M-7.
7The F-1 scores of the zero-shot forecasting model, units_x128_pretrain_checkpoint, and

units_x32_pretrain_checkpoint are 0.45, 0.35, and 0.34 respectively.
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(i.e, 100 steps for SMAP and MSL, and 40 for others). The SigLLM-Prompter approach

originally produced an extremely high number of anomalies. We introduced the α and β

hyperparameters to filter the end result. We performed an ablation study to test multiple

combinations of α and β values on the F1 score. For some windows, the LLMs consistently

outputted more than half of the window values as anomalous; thus, we discarded the pre-

dicted results of all windows containing all 10 samples, which was more than 50% of the

windows. Fig 5.1 shows detection F1 scores from different combinations of α and β values.

We observed that on all datasets, for Mistral, α = 0.4 and β = 0.9 yielded the best F1

score; for GPT, α = 0.2 and β = 0.9 yielded the best F1 score as shown in Fig 5.1.
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Figure 5.1: Optimizing the choice α and β values based on the average F1 scores on all
datasets.

For SigLLM-Detector, we set the window size to 140 and the step size to 1. With a

rolling window strategy of step size 1, we set the horizon to 5. For aggregation function, we

chose the 5th-percentile, and 95th-percentile values of the predicted distribution to recreate

a one-dimensional signal. These hyperparameter values were informed by ablation study in

Alnegheimish, Nguyen, Berti-Equille, et al. [1]

Computation. For GPT, we used GPT-3.5-turbo due to its superior performance on

time series data (demonstrated by Gruver, Finzi, Qiu, et al. [38]) and its affordability. For

53



Table 5.3: Benchmark Summary Results depicting F1 Score.

NASA Yahoo S5 NAB

Pipeline MSL SMAP A1 A2 A3 A4 Art AWS AdEx Traf Tweets µ± σ Avg elapsed(s)

AER 0.587 0.819 0.799 0.987 0.892 0.709 0.714 0.741 0.690 0.703 0.638 0.753 ± 0.109 25.0
LSTM DT 0.471 0.726 0.728 0.985 0.744 0.646 0.400 0.468 0.786 0.585 0.603 0.649 ± 0.161 17.1
ARIMA 0.525 0.411 0.728 0.856 0.797 0.686 0.308 0.382 0.727 0.467 0.514 0.582 ± 0.176 193.9
MP 0.474 0.423 0.507 0.897 0.793 0.825 0.571 0.440 0.692 0.305 0.343 0.570 ± 0.193 33.9
TadGAN 0.560 0.605 0.578 0.817 0.416 0.340 0.500 0.623 0.818 0.452 0.554 0.569 ± 0.142 171.6
LSTM AE 0.545 0.662 0.595 0.867 0.466 0.239 0.667 0.741 0.500 0.500 0.475 0.569 ± 0.158 13.5
VAE 0.494 0.613 0.592 0.803 0.438 0.230 0.667 0.689 0.583 0.483 0.533 0.557 ± 0.143 27.7
AT 0.400 0.266 0.571 0.565 0.760 0.576 0.414 0.430 0.500 0.371 0.287 0.467 ± 0.138 11.1
MAvg 0.171 0.092 0.713 0.356 0.647 0.615 0.222 0.408 0.880 0.157 0.776 0.458 ± 0.266 N/A
MS Azure 0.051 0.019 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176 0.243 ± 0.225 1.9

UniTS 0.533 0.554 0.644 0.706 0.015 0.076 0.364 0.458 0.667 0.686 0.551 0.478 ± 0.237 21.2
TimesFM 0.533 0.644 0.628 0.551 0.029 0.052 0.4 0.475 0.783 0.537 0.563 0.472 ± 0.235 13.1

SigLLM-Prompter Mistral 0.160 0.154 0.194 0.235 0.338 0.336 0.370 0.268 0.000 0.135 0.257 0.223 ± 0.104 __
SigLLM-Prompter GPT 0.049 0.110 0.143 0.078 0.157 0.195 0.154 0.194 0.133 0.133 0.197 0.133 ± 0.076 __
SigLLM-Detector 0.429 0.431 0.615 0.828 0.376 0.363 0.400 0.362 0.727 0.480 0.762 0.525 ± 0.167 __

Mistral, we used the publicly available model hosted by HuggingFace 8

UniTS, TimesFM, and Mistral were used on an Intel i9-7920X 24 CPU core processor and

128GB RAM machine with 2 dedicated NVIDIA Titan RTX 24GB GPUs. On the other

hand, GPT was queried through an API key hosted by OpenAI. For benchmarking, we use

Intel Xeon processor of 10 CPU cores (9 GB RAM per core) and one NVIDIA Volta V100

GPU with 32 GB memory.

5.4 Qualitative and Quantitative Performance

The total F1 scores of Orion pretrained and SigLLM pipelines in comparison with other

pipelines are shown in Table 5.3. In this section, we will go into more detail about how the

newly introduced pipelines perform compared to existing unsupervised anomaly detection

pipelines, and their limitations.

5.4.1 Orion pretrained pipelines

The average F1 scores for the UniTS and TimesFM pipelines are closely aligned, falling

within one standard deviation of each other. Additionally, the performance across differ-

ent datasets is fairly comparable. Figure 5.2 shows examples of anomalies identified by
8https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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UniTS and TimesFM.
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Figure 5.2: Examples of anomalies successfully identified by Orion pretrained pipelines.
(Left) Despite only being able to capture the trend but not the periodicity of the signal,
the UniTS pipeline can still detect one true anomaly. (Right) TimesFM model is better at
forecasting the signal, both in terms of trends and periodicity. However, it still could not
detect any more anomaly.

How do time series foundation models compare to baseline approaches?

Table 5.3 indicates that the mean F1 score of the Orion pretrained pipeline is comparable to

that of the Moving Average method, suggesting that UniTS and TimesFM perform similarly to

the baseline on average. However, when examining performance at the dataset level, UniTS

and TimesFM either exceed or match the baseline in most cases, with the exceptions being

Yahoo A3 and A4. This observation points to opportunities for enhancing the performance

at these specific datasets.

What are the failure cases and why?

UniTS’ poor performance on Yahoo’s A3 and A4 datasets suggests that the UniTS pipeline

is not able to detect point anomalies. As we have shown in Table 5.1, Yahoo’s A3 and A4

have mostly point anomalies. When we take a closer look at how UniTS model forecasts the

next values, we notice that it could capture the trend of the signal, but struggles to forecast
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its periodicity. Therefore, the reconstruction errors are large even when at non-anomalous

intervals. When applying an exponentially weighted function, as mentioned in section 3.2,

the errors got smoothed out, thus masking the point anomalies. In Figure 5.3, we show

that after removing the error smoothing step, the pipeline could capture one more point

anomaly in signal A3Benchmark-TS45. A similar behavior is also observed in TimesFM.

We recommend exploring more hyperparameters tuning to improve point anomaly detection

ability for these models.
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Figure 5.3: The performance of UniTS pipeline on an Yahoo A3 data (A3Benchmark-TS45).
(Left) The pipeline could not identify any point anomaly if the errors were “smoothed” out
using an exponential weighted moving average. (Right) When using the raw point-wise
residuals, the pipeline could detect one point anomaly.

5.4.2 SigLLM

A comparison of the SigLLM-Prompter and SigLLM-Detector with GPT and Mis-

tral models is shown in Table 5.4.

Overall, Mistral achieved better results than GPT for the SigLLM-Prompter method,

with a 2× improvement in F1 score. In addition, SigLLM-Detector performed better

overall than SigLLM-Prompter. We investigate each approach below.
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Table 5.4: Summary of Precision, Recall, and F1 Score

Precision Recall F1 Score

SigLLM-Prompter Mistral 0.219 ± 0.108 0.311 ± 0.213 0.223 ± 0.104
SigLLM-Prompter GPT 0.162 ± 0.133 0.245 ± 0.191 0.133 ± 0.076
SigLLM-Detector 0.613 ± 0.184 0.514 ± 0.211 0.525 ± 0.167

Original signal Forecast signal True anomaly Detected anomaly
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Figure 5.4: Examples of anomalies
identified through SigLLM-Prompter.
While the model was able to find anoma-
lies, the number of false positives was
high, and there were false negatives.

200 400 600 800 1000 1200 1400
timestamp

0

1

2

va
lu

e

×104 synthetic_58 from YAHOOA2

1.425 1.426 1.427 1.428 1.429
timestamp ×109

0.0

0.5

1.0

1.5

va
lu

e

×103 Twitter_volume_AMZN from realTweets

Figure 5.5: Examples of anomalies
successfully identified by SigLLM-
Detector. Even though the model
did not capture the trend present in
synthetic_58, it still managed to find
the anomalous intervals.

How does the SigLLM compare to baseline approaches?

Table 5.3 highlights the F1 score obtained for each of the 11 datasets.

LLM-based methods can perform surprisingly well. Compared to the baseline model MAvg,

our methods achieved an F1 score 14.6% higher. Moreover, the SigLLM-Detector pipeline

alone surpasses MAvg performance in 6 out of 11 datasets. We can best see the potential of

SigLLM-Detector in the Tweets dataset, where the gap between the LLM’s result and

the highest result (from MAvg) is minimal, at only 1.8%.
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What are the failure cases and why?

Figures 5.4 and 5.5 illustrate example outputs for both the SigLLM-Prompter and SigLLM-

Detector methods, respectively. We focus on Mistral since it yielded better overall

results than GPT, as depicted in Table 5.4.

Even though SigLLM-Detector correctly identified all anomalies in the example shown

in Figure 5.5, the forecast itself struggled to capture the non-stationary aspects of the signal,

particularly its trend. This is due to the sensitivity of LLMs to context length. A window

size larger than 140 is needed to capture this property. While it did not impact the detection

in this case, this may explain failure cases in other signals.

SigLLM-Prompter raised a large number of false alarms, with an average precision

of 0.219. Using the filtering method described in Section 4.3.1 does not eliminate false

positives. An alternative strategy could be to use log probabilities as a measure of confidence

for filtering. We recommend exploring this avenue in future work.

5.4.3 How do UniTS & TimesFM compare to SigLLM?

When comparing the performance of SigLLM-Detector and the Orion pretrained pipelines,

we could see that on average, SigLLM-Detector performs better. Especially, SigLLM-

Detector could detect the point anomalies in Yahoo A3 and A4. However, SigLLM-

Detector does not perform as well at the NASA datasets, which could be attributed to

LLMs’s inability to capture the trend in long sequences. On the other hand, Orion pretrained

pipelines consistently perform better than SigLLM-Prompter in all datasets, except Ya-

hoo A3 and A4. Orion pretrained pipelines also perform better than SigLLM-Prompter

on average.

Overally, it is noteworthy that despite being pretrained specifically on time series data,

time series foundational models like UniTS & TimesFM still do not perform as well

as LLMs that were not trained on time series task. We speculate that this fact could be
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attributed to the model size: LLMs’ number of parameters is of 102 order of magnitude

bigger than that of UniTS & TimesFM). However, more studies need to be done to verify this.

5.5 Computational performance

5.5.1 Runtime
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Figure 5.6: Recorded time for SigLLM-Prompter and SigLLM-Detector. (left) On
average, SigLLM-Detector takes the longest to infer, almost double the time of SigLLM-
Prompter. (right) Distribution of signal length and execution time.

The attractiveness of utilizing foundational models for this task lies in their ability for

zero-shot learning, eliminating the need for time-consuming and resource-intensive fine-

tuning. However, does this approach genuinely save time and resources when employing

foundational models?

The primary constraint in employing foundational models within a pipeline is the infer-

ence time. As illustrated in Table 5.3, the inference durations on average for UniTS and

TimesFM are 21.2s and 13.1s, respectively. In contrast, traditional deep learning methods

such as AER and LSTM DT require model training for each individual signal, yet Time

Series pretrained models exhibit comparable inference times.

When examining Large Language Models (LLMs), the inference times are even more

pronounced. Figure 5.6 depicts the average duration required for LLMs to generate responses
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across various approaches. Waiting between half an hour to two hours for a model output is

impractical, particularly since conventional deep learning models require a much less amount

of time for training and inference.

5.5.2 Cost

Regarding resource usage, all foundational models (UniTS, TimesFM, and Mistral) were

executed in an offline manner, so there is no cost to run them. GPT was operated via

an API. The cumulative expense for running SigLLM-Prompter experiments using the

gpt-3.5-turbo-instruct version totaled approximately $834.11, averaging $1.69 per signal.

In a smaller-scale study of SigLLM-Detector, sampling 22 signals (about 5% of the

dataset) incurred a total cost of $95.08, averaging $4.30 per signal, indicating that SigLLM-

Detector is a more costly approach compared to SigLLM-Prompter.

5.6 Discussion

5.6.1 Deployment of UniTS Model.

A notable challenge faced in this research is the current status of the UniTS model, which

is not yet in the deployment phase. Despite the availability of the model architecture and

training data, we still need to pretrain the zero-shot forecasting model. Additionally, during

the inference phase, we encountered the necessity to modify the original code. The existing

code is highly tailored to the model’s original dataset, which required us to generalize it to

ensure compatibility with a generic data format in pandas. This process underscores the

complexities involved in adapting established models for diverse applications and highlights

the importance of flexibility in code design to facilitate broader usability.
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5.6.2 Prompting Challenges.

Over a three-month experimental period, various prompts were employed, as laid out in

Table 4.1. It is evident that both GPT and Mistral fail to produce the desired responses

unless a chat template is applied that attributes roles to the user and the system. Further-

more, to ensure the exclusivity of numerical values in the generated responses, in addition to

specifying in the prompt to “just return numbers,” we reduced the likelihood of non-numerical

tokens appearing in the output generated by the LLMs.

Under the ‘find indices’ prompt, GPT may generate lists of indices; however, these indices

frequently surpass the sequence length. Conversely, Mistral yields values instead of indices

when utilizing the same prompt. Therefore, for our experiment, we altered the prompt to

include "find values" rather than "find indices."

Unlike Mistral, GPT outputs a “repetitive prompt” error when presented with a series

of identical values within a window. This happened particularly for NASA datasets (there

are 23 signals in SMAP and 13 in MSL with this error, affecting up to 85% of the windows).

In this experiment, we deemed such windows as having no detectable anomalies, obtaining

a true positive of zero.

5.6.3 Addressing Memorization.

Large language models are trained on a vast amount of data. The training data for most

models – for instance, those provided by OpenAI – is completely unknown to the general

public, which makes evaluating these models a nuanced problem. Given that large language

models, especially GPT models [46], are notorious for memorizing training data [47], how

do we ensure that there was no data and label leakage for the benchmark datasets used?

We posit that our transformation of the time series data into its string representation is

unique, essentially making the input time series different from its original form and reducing

the chances of blatant memorization. Moreover, unlike with the forecasting task, the task
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of anomaly detection is not inherent to the training convention used, which is next token

prediction.

As for the TimesFM and UniTS models, we have shown in Chapter A.2 that their training

datasets do not include our testing data.
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Chapter 6

Conclusion

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Distance from Baseline

DL

Classic

LLM

Pretrained

Transformer

Commercial

Difference in F1 Score

Figure 6.1: F1 Score performances of different model types, compared to a moving average
baseline. Each category represents a collection of models that fall under that group. For
classic models, we consider ARIMA and Matrix Profiling; for Deep Learning (DL), we uti-
lize AER and LSTM DT; for transformer anomaly detection models, we look at Anomaly
Transformer; lastly, for the commercial category, we compare to MS Azure.

63



6.1 Conclusion

In conclusion, this thesis investigates the use of foundational models for anomaly detection

with no prior learning. We introduce a new pipeline class in Orion: the pretrained pipeline,

which leverages a Time Series Foundational model for signal forecasting, followed by anomaly

detection without requiring a formal training phase. Additionally, we present SigLLM,

an innovative framework that transforms signals into text, allowing large language models

(LLMs) to process time series data.

Both the Orion pretrained pipelines and SigLLM surpass the baseline model, with

SigLLM demonstrating superior performance that closely rivals classical methods when

evaluated on 492 signals, falling short of deep learning models by a factor of just ×1.2, as

illustrated in Figure 6.1. Surprisingly, even though time series foundational models such as

UniTS and TimesFM are specifically pretrained on time series data, they do not outperform

large language models (LLMs) that were not explicitly trained for time series tasks. Nev-

ertheless, a significant drawback of LLMs is their restricted context window size and long

inference time. In SigLLM, we employ rolling windows to segment the time series into

smaller parts, which proves to be both inefficient and costly.

6.2 Future Directions

6.2.1 Multivariate time series

The Orion pretrained pipelines are capable of supporting multivariate time series anomaly

detection. In contrast, the SigLLM framework is limited to handling univariate time series.

At this stage, we do not possess a module for converting multivariate signals into text suitable

for input into LLMs.
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6.2.2 Post modeling

In anomaly detection, post-processing strategies play a crucial role in identifying the loca-

tions of anomalies. Moving forward, additional post-processing functionalities can be tested

to assist SigLLM-Prompter in filtering out false alarms. Likewise, a comprehensive in-

vestigation into error functions can enhance the detection of anomalies in both SigLLM-

Detector and the Orion pretrained pipelines.

6.2.3 Experiment with new model

As large language models (LLMs) continue to progress, an increasing number of them will

be able to accommodate larger context sizes. Our SigLLM framework is versatile and

can be adapted to various models. Consequently, in the future, advancements in model

capabilities may address the context size issue, potentially resulting in more efficient runtime

and improved accuracy in results.
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Appendix A

Appendix

A.1 Orion for Time Series Anomaly Detection

This section is adapted from Song [24].

In most anomaly detection approaches, the data in its raw form cannot be effectively

modeled and must undergo several preprocessing steps to become suitable for modeling

and scoring. Thus, there arises a need to conceptualize anomaly detection as a sequential

workflow that consists of distinct modules for preprocessing, modeling, and post-processing,

rather than as a single transformation process [48]. This concept underpins the design of the

library Orion1, which builds comprehensive end-to-end pipelines for anomaly detection. In

the following sections, we will provide an overview of the Orion framework [12].

A.1.1 Primitives and pipelines

At the core of the Orion framework is the concept of primitives and pipelines. This

idea emerges from the Machine Learning Blocks (MLBlocks) framework introduced by Xue

[49], Santiago [50], and Smith, Sala, Kanter, et al. [51], with the goal to reconcile multiple

data science software tools that are often scattered across multiple libraries, depending on
1https://github.com/sintel-dev/Orion
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the type of data and the stage of the workflow. For instance, the pandas2 library supports

prepossessing and visualization, but it does not have modeling capacities. On the other

hand, libraries such as scikit-learn3 and XGBoost4 provide extensive modeling options

but fall short in offering a comprehensive suite of preprocessing functions. This dichotomy

highlights the need for an integrated approach, where users can seamlessly transition between

preprocessing, modeling, and other necessary steps within the data science process, thereby

enhancing efficiency and coherence in their workflows.

Primitives

An acceptable MLBlocks primitive is a Python object that can be imported and must meet

the following criteria:

• It can be either a function or a class.

• If it is a class, it may include a fitting stage where the primitive receives training

data to learn from, which can be executed with a single method invocation. Function

primitives do not include a fitting stage.

• It must include a producing stage, wherein the primitive takes in data and returns

either a transformation of the input data or a new dataset derived from it, such as

a prediction set. This producing stage should be executed with a single function or

method call.

• It may include hyperparameters, which are additional arguments that can be supplied

to modify or control the behavior of the fitting and producing stages, either through

the function call or the class constructor.

Below are several examples of MLBlocks primitives5 from some popular libraries:
2https://pandas.pydata.org/docs/index.html
3https://scikit-learn.org/stable/
4https://xgboost.readthedocs.io/en/stable/
5https://mlbazaar.github.io/MLBlocks/advanced_usage/primitives.html
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Table A.1: Examples of primitives

Primitive Type Fit Produce

sklearn.preprocessing.StandardScaler class fit transform
sklearn.ensemble.RandomForestClassifier class fit predict
keras.applications.resnet50.preprocess_input function - -

Pipelines

Pipelines are comprehensive, end-to-end programs that consist of primitives collaborating

to learn from training data and subsequently make predictions on new data. In the case

of anomaly detection, a pipeline is fitted on the training dataset and is then prompted to

detect anomalies in the new signal. Users can either use the pre-written anomaly detection

pipelines in Orion or write their own pipelines following the procedure of MLBlocks. A typ-

ical pipeline usually includes a pre-processing, modeling, and post-processing phase. Some

available pipelines in Orion are: Long-Short-Term-Memory models (LSTMs) [18], AutoEn-

coders (AE) [21], Variational AutoEncoders (VAE) [22], Generative Adversarial Networks

(GANs) [23], and Transformers [33], [52].

A.1.2 Benchmark and metrics

Orion also supports benchmarking the pipelines’s performance on a collection of different

time series datasets from reputable data sources - NASA6, Yahoo7, and NAB8.

The metrics that are traditionally used in classification tasks like precision, recall, and

F1-score cannot account for the case when data is not regularly sampled [45]. Therefore,

instead of simply counting the number of true positives, false positives, false negatives, and

true negatives, Orion introduces two methods to enable the fair computation of metrics

without restrictions on the data: weighted segment and overlapping segment[12].
6https://github.com/khundman/telemanom
7https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
8https://github.com/numenta/NAB
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Weighted segment

In this evaluation approach, we compute numbers of true positives, false positives, false neg-

atives, and true negatives not based on flagged anomalous and true anomalous timestamps,

but based on the segment, then weigh each segment by its time range.

Overlapping segment

This is a more lenient approach, which is inspired by Hundman, Constantinou, Laporte, et

al. [20], which rewards the model even if it only detects a subset of anomaly. In chapter 5,

we will use this metric for benchmarking.

A.2 Time Series Foundational Models’ pretrained data

A.2.1 TimesFm

TimesFM model was trained on a large-scale time-series corpus consisting of real-world and

synthetic data. The real-world data included:

• Google Trends 9: Search interest data for approximately 22,000 queries over 15 years

(2007-2021), at various granularities (hourly, daily, weekly, monthly).

• Wiki Pageviews 10: Hourly page view data for all Wikimedia pages from January 2012

to November 2023, aggregated to different granularities.

• Other real-world public datasets: The M4 dataset [53], Electricity dataset, Traffic

dataset [54], and Weather dataset [54] were also included.

In terms of synthetic data, the authors generated signals using ARIMA processes that include

seasonal patterns, trends, and step functions.
9https://trends.google.com/

10https://en.wikipedia.org/wiki/Wikipedia:Pageview_statistics
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A.2.2 UniTS

The zero-shot forecasting model was trained using the forecast and classification datasets

shown in Table A.2.

Table A.2: Summary of UniTS training data

Name # Variables Task

NN5 [55] 111 Forecast
ECL [56] 321 Forecast
ETTh1 [54] 7 Forecast
Exchange [57] 8 Forecast
Traffic [58] 862 Forecast
Weather [59] 21 Forecast
Heartbeat [60] 61 Classification
JapaneseVowels [61] 12 Classification
PEMS-SF [62] 963 Classification
SelfRegulationSCP2 [63] 7 Classification
SpokenArabicDigits [64] 13 Classification
UWaveGestureLibrary [65] 3 Classification
ECG5000 [66] 1 Classification
NonInvasiveFetalECGThorax1 [67] 1 Classification
Blink [68] 4 Classification
FaceDetection [69] 144 Classification
ElectricDevices [70] 1 Classification
Trace [71] 1 Classification
FordB [72] 1 Classification
MotionSenseHAR [73] 12 Classification
EMOPain [74] 30 Classification
Chinatown [72] 1 Classification
MelbournePedestrian [72] 1 Classification
SharePriceIncrease [75] 1 Classification

A.3 SigLLM’s extra results
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Figure A.1: SigLLM-Prompter Mistral F1 score versus α and β for each dataset.
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Figure A.2: SigLLM-Prompter GPT F1 score versus α and β for each dataset.
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Figure A.3: Digits distribution of signal values, true anomalies, and correctly detect anoma-
lies.

73



1 0 1
0

20

40

60

80

0 100 200
0

20

40

60

0.0 2.5 5.0 7.5
1e6

0

5

10

15

0 50000 100000
0

0

0

0

1

1

5000 0 5000
0

0

0

0

1

1

5000 0 5000
0

0

0

0

0

1

0 100
0

1

2

3

4

0.0 2.5 5.0 7.5
1e8

0

10

20

30

0 5 10 15
0

1

2

3

4

5

0 2000 4000
0

1

2

3

4

0 5000 10000
0

20

40

60

80

0

1

2

3

4

5
SMAP

0.00

0.05

0.10

0.15

0.20

MSL

0

1

2

3

1e 6YAHOOA1

0.00000

0.00005

0.00010

0.00015
YAHOOA2

0.0000

0.0001

0.0002

0.0003

0.0004
YAHOOA3

0.0000

0.0001

0.0002

0.0003

0.0004

YAHOOA4

0.00

0.01

0.02

0.03

0.04

0.05

artificialWithAnomaly

0

1

2

3

1e 8
realAWSCloudwatch

0.0

0.5

1.0

1.5

realAdExchange

0.000

0.001

0.002

0.003

0.004

realTraffic

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
realTweets

Distribution of normal signal values, true anomalies, and correctly detected anomalies

True anomalies (Count ×102) Correctly detected anomalies (Count ×102) Normal signal values (Density)

Figure A.4: Distribution of normal signal values, true anomalies, and correctly detected
anomalies.

74



References

[1] S. Alnegheimish, L. Nguyen, L. Berti-Equille, and K. Veeramachaneni, Large

language models can be zero-shot anomaly detectors for time series? 2024. arXiv:

2405.14755 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2405.14755.

[2] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for temporal data:

A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 9,

pp. 2250–2267, 2014. doi: 10.1109/TKDE.2013.184.

[3] W. A. Chaovalitwongse, Y.-J. Fan, and R. C. Sachdeo, “On the time series K-nearest

neighbor classification of abnormal brain activity,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, vol. 37, no. 6, pp. 1005–1016,

2007. doi: 10.1109/TSMCA.2007.897589.

[4] R. Zhang, S. Zhang, S. Muthuraman, and J. Jiang, “One class support vector

machine for anomaly detection in the communication network performance data,” in

Proceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical

Communications, ser. ELECTROSCIENCE’07, Tenerife, Canary Islands, Spain:

World Scientific, Engineering Academy, and Society (WSEAS), 2007, pp. 31–37,

isbn: 9789606766251.

[5] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE

International Conference on Data Mining, 2008, pp. 413–422. doi:

10.1109/ICDM.2008.17.

75

https://arxiv.org/abs/2405.14755
https://arxiv.org/abs/2405.14755
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1109/TSMCA.2007.897589
https://doi.org/10.1109/ICDM.2008.17


[6] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong,

H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly

detection and diagnosis in multivariate time series data,” in Proceedings of the

Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative

Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, ser. AAAI’19/IAAI’19/EAAI’19,

Honolulu, Hawaii, USA: AAAI Press, 2019, isbn: 978-1-57735-809-1. doi:

10.1609/aaai.v33i01.33011409. [Online]. Available:

https://doi.org/10.1609/aaai.v33i01.33011409.

[7] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for

multivariate time series through stochastic recurrent neural network,” in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, ser. KDD ’19, Anchorage, AK, USA: Association for Computing Machinery,

2019, pp. 2828–2837, isbn: 9781450362016. doi: 10.1145/3292500.3330672. [Online].

Available: https://doi.org/10.1145/3292500.3330672.

[8] Y. Yuan, G. Xun, F. Ma, Y. Wang, N. Du, K. Jia, L. Su, and A. Zhang, “Muvan: A

multi-view attention network for multivariate temporal data,” in 2018 IEEE

International Conference on Data Mining (ICDM), 2018, pp. 717–726. doi:

10.1109/ICDM.2018.00087.

[9] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and N. Tatbul, Exathlon: A

benchmark for explainable anomaly detection over time series, 2021. arXiv:

2010.05073 [cs.LG].

[10] A. Das, W. Kong, R. Sen, and Y. Zhou, A decoder-only foundation model for

time-series forecasting, 2024. arXiv: 2310.10688 [cs.CL]. [Online]. Available:

https://arxiv.org/abs/2310.10688.

76

https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1109/ICDM.2018.00087
https://arxiv.org/abs/2010.05073
https://arxiv.org/abs/2310.10688
https://arxiv.org/abs/2310.10688


[11] K. Rasul et al., “Lag-Llama: Towards foundation models for time series forecasting,”

arXiv preprint arXiv:2310.08278, 2023.

[12] S. Alnegheimish, “Orion–a machine learning framework for unsupervised time series

anomaly detection,” Ph.D. dissertation, Massachusetts Institute of Technology, 2022.

[13] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial

Intelligence Review, vol. 22, pp. 85–126, Oct. 2004. doi:

10.1023/B:AIRE.0000045502.10941.a9.

[14] D. Zheng, F. Li, and T. Zhao, “Self-adaptive statistical process control for anomaly

detection in time series,” Expert Syst. Appl., vol. 57, no. C, pp. 324–336, Sep. 2016,

issn: 0957-4174. doi: 10.1016/j.eswa.2016.03.029. [Online]. Available:

https://doi.org/10.1016/j.eswa.2016.03.029.

[15] E. Hannan, Multiple Time Series (Wiley Series in Probability and Statistics). Wiley,

2009, isbn: 9780470317136. [Online]. Available:

https://books.google.com.vn/books?id=R5IB1Vja3j4C.

[16] E. H. Pena et al., “Anomaly detection using forecasting methods ARIMA and

HWDS,” in 2013 32nd International Conference of the Chilean Computer Science

Society (sccc), IEEE, 2013, pp. 63–66.

[17] N. P. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework for

automated time-series anomaly detection,” Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2015. [Online].

Available: https://api.semanticscholar.org/CorpusID:207227428.

[18] K. Hundman et al., “Detecting spacecraft anomalies using LSTMs and nonparametric

dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2018, pp. 387–395.

77

https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1016/j.eswa.2016.03.029
https://doi.org/10.1016/j.eswa.2016.03.029
https://books.google.com.vn/books?id=R5IB1Vja3j4C
https://api.semanticscholar.org/CorpusID:207227428


[19] N. Ding, H. Gao, H. Bu, H. Ma, and H. Si, “Multivariate-time-series-driven real-time

anomaly detection based on bayesian network,” Sensors, vol. 18, no. 10, 2018, issn:

1424-8220. doi: 10.3390/s18103367. [Online]. Available:

https://www.mdpi.com/1424-8220/18/10/3367.

[20] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom,

“Detecting spacecraft anomalies using lstms and nonparametric dynamic

thresholding,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery amp; Data Mining, ser. KDD ’18, ACM, Jul. 2018. doi:

10.1145/3219819.3219845. [Online]. Available:

http://dx.doi.org/10.1145/3219819.3219845.

[21] P. Malhotra et al., “LSTM-based encoder-decoder for multi-sensor anomaly

detection,” arXiv preprint arXiv:1607.00148, 2016.

[22] D. Park et al., “A multimodal anomaly detector for robot-assisted feeding using an

LSTM-based variational autoencoder,” IEEE Robotics and Automation Letters,

vol. 3, no. 3, pp. 1544–1551, 2018.

[23] A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, and K. Veeramachaneni,

“Tadgan: Time series anomaly detection using generative adversarial networks,” in

2020 IEEE International Conference on Big Data (IEEE BigData), IEEE, 2020,

pp. 33–43. doi: 10.1109/BigData50022.2020.9378139.

[24] G. Song, Modeling control signals for reconstruction-based time series anomaly

detection, 2024.

[25] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

[26] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” in

Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,

78

https://doi.org/10.3390/s18103367
https://www.mdpi.com/1424-8220/18/10/3367
https://doi.org/10.1145/3219819.3219845
http://dx.doi.org/10.1145/3219819.3219845
https://doi.org/10.1109/BigData50022.2020.9378139


R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020,

pp. 1877–1901.

[27] H. Touvron, L. Martin, K. Stone, et al., Llama 2: Open foundation and fine-tuned

chat models, 2023. arXiv: 2307.09288 [cs.CL].

[28] J. Wei, Y. Tay, R. Bommasani, et al., Emergent abilities of large language models,

2022. arXiv: 2206.07682 [cs.CL].

[29] M. Hahn and N. Goyal, A theory of emergent in-context learning as implicit structure

induction, 2023. arXiv: 2303.07971 [cs.CL].

[30] T. B. Brown, B. Mann, N. Ryder, et al., Language models are few-shot learners, 2020.

arXiv: 2005.14165 [cs.CL].

[31] B. Lim, S. O. Arik, N. Loeff, and T. Pfister, Temporal fusion transformers for

interpretable multi-horizon time series forecasting, 2020. arXiv: 1912.09363

[stat.ML]. [Online]. Available: https://arxiv.org/abs/1912.09363.

[32] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, A

transformer-based framework for multivariate time series representation learning,

2020. arXiv: 2010.02803 [cs.LG]. [Online]. Available:

https://arxiv.org/abs/2010.02803.

[33] S. Tuli et al., “Tranad: Deep transformer networks for anomaly detection in

multivariate time series data,” Proc. VLDB Endow., vol. 15, no. 6, pp. 1201–1214,

Feb. 2022, issn: 2150-8097. doi: 10.14778/3514061.3514067.

[34] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, Transformers in

time series: A survey, 2023. arXiv: 2202.07125 [cs.LG]. [Online]. Available:

https://arxiv.org/abs/2202.07125.

[35] S. Dooley et al., “Forecastpfn: Synthetically-trained zero-shot forecasting,” in

Advances in Neural Information Processing Systems, vol. 36, Curran Associates, Inc.,

2023, pp. 2403–2426.

79

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/2010.02803
https://arxiv.org/abs/2010.02803
https://doi.org/10.14778/3514061.3514067
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125


[36] A. F. Ansari et al., “Chronos: Learning the language of time series,” arXiv preprint

arXiv:2403.07815, 2024.

[37] S. Gao, T. Koker, O. Queen, T. Hartvigsen, T. Tsiligkaridis, and M. Zitnik, Units: A

unified multi-task time series model, 2024. arXiv: 2403.00131 [cs.LG]. [Online].

Available: https://arxiv.org/abs/2403.00131.

[38] N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson, “Large language models are zero-shot

time series forecasters,” Advances in Neural Information Processing Systems, vol. 36,

2023.

[39] H. Xue and F. D. Salim, Promptcast: A new prompt-based learning paradigm for time

series forecasting, 2023. arXiv: 2210.08964 [stat.ME].

[40] A. Q. Jiang et al., Mistral 7b, 2023. arXiv: 2310.06825 [cs.CL].

[41] M. Müller, “Dynamic time warping,” Information retrieval for music and motion,

pp. 69–84, 2007.

[42] L. Wong, D. Liu, L. Berti-Equille, S. Alnegheimish, and K. Veeramachaneni, “Aer:

Auto-encoder with regression for time series anomaly detection,” in 2022 IEEE

International Conference on Big Data (IEEE BigData), IEEE, 2022, pp. 1152–1161.

doi: 10.1109/BigData55660.2022.10020857.

[43] T. Liu and B. K. H. Low, Goat: Fine-tuned llama outperforms gpt-4 on arithmetic

tasks, 2023. arXiv: 2305.14201 [cs.LG].

[44] S. Alnegheimish, D. Liu, C. Sala, L. Berti-Equille, and K. Veeramachaneni, “Sintel: A

machine learning framework to extract insights from signals,” in Proceedings of the

2022 International Conference on Management of Data, ser. SIGMOD ’22,

Philadelphia, PA, USA: Association for Computing Machinery, 2022, pp. 1855–1865,

isbn: 9781450392495. doi: 10.1145/3514221.3517910. [Online]. Available:

https://doi.org/10.1145/3514221.3517910.

80

https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2210.08964
https://arxiv.org/abs/2310.06825
https://doi.org/10.1109/BigData55660.2022.10020857
https://arxiv.org/abs/2305.14201
https://doi.org/10.1145/3514221.3517910
https://doi.org/10.1145/3514221.3517910


[45] N. Tatbul et al., “Precision and recall for time series,” in Advances in Neural

Information Processing Systems, vol. 31, Curran Associates, Inc., 2018.

[46] K. Chang et al., “Speak, memory: An archaeology of books known to

ChatGPT/GPT-4,” in EMNLP 2023. doi: 10.18653/v1/2023.emnlp-main.453.

[47] S. Biderman et al., “Emergent and predictable memorization in large language

models,” Advances in Neural Information Processing Systems, vol. 36, 2023.

[48] M. J. Smith, C. Sala, J. M. Kanter, and K. Veeramachaneni, “The machine learning

bazaar: Harnessing the ml ecosystem for effective system development,” in

Proceedings of the 2020 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’20, Portland, OR, USA: Association for Computing Machinery,

2020, pp. 785–800, isbn: 9781450367356. doi: 10.1145/3318464.3386146. [Online].

Available: https://doi.org/10.1145/3318464.3386146.

[49] Xue, “A flexible framework for composing end to end machine learning pipelines,”

Ph.D. dissertation, Jan. 2018.

[50] Santiago, Machine Learning Blocks. Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science, 2015. [Online].

Available: https://books.google.com.vn/books?id=18qdjwEACAAJ.

[51] M. J. Smith, C. Sala, J. M. Kanter, and K. Veeramachaneni, “The machine learning

bazaar: Harnessing the ml ecosystem for effective system development,” in

Proceedings of the 2020 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD/PODS ’20, ACM, May 2020, pp. 785–800. doi:

10.1145/3318464.3386146. [Online]. Available:

http://dx.doi.org/10.1145/3318464.3386146.

[52] J. Xu et al., “Anomaly Transformer: Time series anomaly detection with association

discrepancy,” in International Conference on Learning Representations, 2022.

81

https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.1145/3318464.3386146
https://doi.org/10.1145/3318464.3386146
https://books.google.com.vn/books?id=18qdjwEACAAJ
https://doi.org/10.1145/3318464.3386146
http://dx.doi.org/10.1145/3318464.3386146


[53] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “M5 accuracy competition:

Results, findings, and conclusions,” International Journal of Forecasting, vol. 38,

no. 4, pp. 1346–1364, 2022, Special Issue: M5 competition, issn: 0169-2070. doi:

https://doi.org/10.1016/j.ijforecast.2021.11.013. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0169207021001874.

[54] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, Informer:

Beyond efficient transformer for long sequence time-series forecasting, 2021. arXiv:

2012.07436 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2012.07436.

[55] S. B. Taieb, G. Bontempi, A. Atiya, and A. Sorjamaa, A review and comparison of

strategies for multi-step ahead time series forecasting based on the nn5 forecasting

competition, 2011. arXiv: 1108.3259 [stat.ML]. [Online]. Available:

https://arxiv.org/abs/1108.3259.

[56] A. Trindade, ElectricityLoadDiagrams20112014, UCI Machine Learning Repository,

DOI: https://doi.org/10.24432/C58C86, 2015.

[57] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, Modeling long- and short-term temporal

patterns with deep neural networks, 2018. arXiv: 1703.07015 [cs.LG]. [Online].

Available: https://arxiv.org/abs/1703.07015.

[58] Caltrans, Pems.traffic.

[59] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, Etsformer: Exponential smoothing

transformers for time-series forecasting, 2022. arXiv: 2202.01381 [cs.LG]. [Online].

Available: https://arxiv.org/abs/2202.01381.

[60] C. Liu, D. B. Springer, Q. Li, et al., “An open access database for the evaluation of

heart sound algorithms,” Physiological Measurement, vol. 37, pp. 2181–2213, 2016.

[Online]. Available: https://api.semanticscholar.org/CorpusID:22101272.

82

https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.11.013
https://www.sciencedirect.com/science/article/pii/S0169207021001874
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/1108.3259
https://arxiv.org/abs/1108.3259
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/2202.01381
https://arxiv.org/abs/2202.01381
https://api.semanticscholar.org/CorpusID:22101272


[61] M. Kudo, J. Toyama, and M. Shimbo, “Multidimensional curve classification using

passing-through regions,” Pattern Recognition Letters, vol. 20, no. 11, pp. 1103–1111,

1999, issn: 0167-8655. doi: https://doi.org/10.1016/S0167-8655(99)00077-X.

[Online]. Available:

https://www.sciencedirect.com/science/article/pii/S016786559900077X.

[62] M. Cuturi, “Fast global alignment kernels,” in Proceedings of the 28th International

Conference on International Conference on Machine Learning, ser. ICML’11,

Bellevue, Washington, USA: Omnipress, 2011, pp. 929–936, isbn: 9781450306195.

[63] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. H. Iversen, B. Kotchoubey,

A. Kübler, J. Perelmouter, E. Taub, and H. Flor, “A spelling device for the

paralysed,” Nature, vol. 398, pp. 297–298, 1999. [Online]. Available:

https://api.semanticscholar.org/CorpusID:204991968.

[64] M. Bedda and N. Hammami, Spoken Arabic Digit, UCI Machine Learning

Repository, DOI: https://doi.org/10.24432/C52C9Q, 2008.

[65] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “Uwave:

Accelerometer-based personalized gesture recognition and its applications,” in 2009

IEEE International Conference on Pervasive Computing and Communications, 2009,

pp. 1–9. doi: 10.1109/PERCOM.2009.4912759.

[66] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,

R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,

“Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, e215–e220,

2000. doi: 10.1161/01.CIR.101.23.e215. eprint:

https://www.ahajournals.org/doi/pdf/10.1161/01.CIR.101.23.e215. [Online].

Available: https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215.

83

https://doi.org/https://doi.org/10.1016/S0167-8655(99)00077-X
https://www.sciencedirect.com/science/article/pii/S016786559900077X
https://api.semanticscholar.org/CorpusID:204991968
https://doi.org/10.1109/PERCOM.2009.4912759
https://doi.org/10.1161/01.CIR.101.23.e215
https://www.ahajournals.org/doi/pdf/10.1161/01.CIR.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215


[67] I. Silva, J. Behar, R. Sameni, T. Zhu, J. Oster, G. D. Clifford, and G. B. Moody,

“Noninvasive fetal ecg: The physionet/computing in cardiology challenge 2013,” in

Computing in Cardiology 2013, 2013, pp. 149–152.

[68] K. O. Chicaiza and M. E. Benalcázar, “A brain-computer interface for controlling iot

devices using eeg signals,” in 2021 IEEE Fifth Ecuador Technical Chapters Meeting

(ETCM), 2021, pp. 1–6. doi: 10.1109/ETCM53643.2021.9590711.

[69] R. N. A. Henson, D. G. Wakeman, V. Litvak, and K. J. Friston, “A parametric

empirical bayesian framework for the eeg/meg inverse problem: Generative models

for multi-subject and multi-modal integration,” Frontiers in Human Neuroscience,

vol. 5, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:7560846.

[70] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson, “Classification of household

devices by electricity usage profiles,” in Proceedings of the 12th International

Conference on Intelligent Data Engineering and Automated Learning, ser. IDEAL’11,

Norwich, UK: Springer-Verlag, 2011, pp. 403–412, isbn: 9783642238772.

[71] D. Roverso, “Plant diagnostics by transient classification: The aladdin approach,”

International Journal of Intelligent Systems, vol. 17, 2002. [Online]. Available:

https://api.semanticscholar.org/CorpusID:10733207.

[72] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,

C. A. Ratanamahatana, and E. Keogh, The ucr time series archive, 2019. arXiv:

1810.07758 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1810.07758.

[73] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mobile sensor data

anonymization,” in Proceedings of the International Conference on Internet of Things

Design and Implementation, ser. IoTDI ’19, ACM, Apr. 2019. doi:

10.1145/3302505.3310068. [Online]. Available:

http://dx.doi.org/10.1145/3302505.3310068.

84

https://doi.org/10.1109/ETCM53643.2021.9590711
https://api.semanticscholar.org/CorpusID:7560846
https://api.semanticscholar.org/CorpusID:10733207
https://arxiv.org/abs/1810.07758
https://arxiv.org/abs/1810.07758
https://doi.org/10.1145/3302505.3310068
http://dx.doi.org/10.1145/3302505.3310068


[74] J. O. Egede, S. Song, T. A. Olugbade, C. Wang, A. Williams, H. Meng, M. Aung,

N. D. Lane, M. Valstar, and N. Bianchi-Berthouze, Emopain challenge 2020:

Multimodal pain evaluation from facial and bodily expressions, 2020. arXiv:

2001.07739 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2001.07739.

[75] M. Middlehurst, P. Schäfer, and A. Bagnall, “Bake off redux: A review and

experimental evaluation of recent time series classification algorithms,” Data Mining

and Knowledge Discovery, vol. 38, no. 4, pp. 1958–2031, Apr. 2024, issn: 1573-756X.

doi: 10.1007/s10618-024-01022-1. [Online]. Available:

http://dx.doi.org/10.1007/s10618-024-01022-1.

85

https://arxiv.org/abs/2001.07739
https://arxiv.org/abs/2001.07739
https://doi.org/10.1007/s10618-024-01022-1
http://dx.doi.org/10.1007/s10618-024-01022-1

	Title page
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contribution
	1.2 Thesis Organization

	2 Background and Related Work
	2.1 Timeseries and Anomalies
	2.1.1 Timeseries Format
	2.1.2 Anomalies

	2.2 Anomaly Detection Methods
	2.2.1 Statistical Methods
	2.2.2 Machine Learning Methods

	2.3 Transformer and Foundational Models.
	2.3.1 The Transformer Architecture
	2.3.2 Foundational Models

	2.4 Related work
	2.4.1 Transformers for timeseries
	2.4.2 LLM for timeseries


	3 Anomaly Detection using Time Series Foundational Models
	3.1 Models
	3.1.1 UniTS
	3.1.2 TimesFM

	3.2 Orion pretrained pipeline
	3.2.1 High-level overview
	3.2.2 Primitives and pipelines


	4 Anomaly Detection using Large Language Models
	4.1 Problem Statement
	4.2 Time Series representation
	4.3 Methods
	4.3.1 Finding Anomalies through Prompting
	4.3.2 Finding Anomalies through Forecasting

	4.4 SigLLM primitives and pipelines

	5 Evaluation
	5.1 Datasets
	5.2 Baseline Models and Metrics
	5.2.1 Models
	5.2.2 Metrics

	5.3 Hyperparamters and Computation
	5.3.1 Orion pretrained pipelines
	5.3.2 SigLLM

	5.4 Qualitative and Quantitative Performance
	5.4.1 Orion pretrained pipelines
	5.4.2 SigLLM
	5.4.3 How do UniTS & TimesFM compare to SigLLM?

	5.5 Computational performance
	5.5.1 Runtime
	5.5.2 Cost

	5.6 Discussion
	5.6.1 Deployment of UniTS Model.
	5.6.2 Prompting Challenges.
	5.6.3 Addressing Memorization.


	6 Conclusion
	6.1 Conclusion
	6.2 Future Directions
	6.2.1 Multivariate time series
	6.2.2 Post modeling
	6.2.3 Experiment with new model


	A Appendix
	A.1 Orion for Time Series Anomaly Detection
	A.1.1 Primitives and pipelines
	A.1.2 Benchmark and metrics

	A.2 Time Series Foundational Models' pretrained data
	A.2.1 TimesFm
	A.2.2 UniTS

	A.3 SigLLM's extra results

	References

