
Why did the prediction change?
Explaining changes in predictions as time progresses

by

Wei-En Warren Wang
S.B. Electrical Engineering and Computer Science, Physics

Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© Wei-En Warren Wang, MMXXIV. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide,
irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Wei-En Warren Wang
Department of Electrical Engineering and Computer Science
January 30, 2024
Certified by: Kalyan Veeramachaneni
 Principal Research Scientist
 Thesis Supervisor

Accepted by: Katrina LaCurts
 Chair, Master of Engineering Thesis Committee

2

Why did the prediction change?

Explaining changes in predictions as time progresses

by

Wei-En Warren Wang

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Few works on machine learning (ML) explanations design explanations from the per-
spective of model deployment in the real-world. This work addresses the challenges
of understanding ML models applied to event-based time-series data, concretizes two
explanation scenarios, and proposes explanations based on changes in feature values,
model predictions, and feature contributions for each deployment scenario. We study
the prediction problem of turbine brake pad failures, where predictive time-series ML
models were deployed in production. Our solution to help decision makers understand
how the predictions are made include the development of a usable ML interface and
explanations that are aware of the scenarios and contexts where the models are being
used. We discuss the usage of ML explanations and the importance of the context
under which the model is deployed. We showed our usable ML interface and the ex-
planations with their corresponding scenarios built on top of the usable ML system,
which consists of Pyreal, Sibyl-API, and Sibylapp.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

The exposition of usable ML systems and the description wind turbine brake pad

prediction problem are from joint works with Alexandra Zytek et al. [23, 24].

First and foremost, I would like to thank my thesis advisor, Kalyan Veeramacha-

neni, for guiding me and offering valuable feedback throughout the entire research

process. His expertise and ideas were crucial in shaping the direction of my work. I

have learned many lessons and ways of thinking about research from him, and I am

very grateful to have him as an advisor.

I’m also incredibly thankful to my research mentor, Alexandra Zytek, for her

support and contributions to this project. She is an exceptional mentor professionally

and one of the most friendly person I have met. Her encouragement and guidance

was an essential part of my research development.

I would like to express my gratitude to the Iberdrola team, especially Sofia Kouk-

oura, for her feedback on the system and explanations we developed. This project

would not have been possible without their guidance. My thanks also go to my won-

derful labmates in the Data to AI Lab. Everyone is extremely welcoming and I am

blessed to become a part of this family.

Lastly, I want to express my deepest thanks to my family and friends. Their

unwavering love and encouragement sustains me throughout my academic journey.

The realization of this thesis wouldn’t have been possible without the collective

support and contributions of these amazing people. Thank you all for being an

essential part of this adventure.

5

6

Contents

1 Introduction 17

1.1 Predictive AI in Practice . 18

1.2 Usable ML for Event-Based Time-Series 18

1.3 Explanation through Temporal Variations 19

1.4 Contributions . 20

1.5 Thesis Organization . 21

2 Background and Related Work 23

2.1 Time-Series Data . 23

2.1.1 Event-Based Time-Series . 24

2.2 Importance of ML Explainability . 24

2.3 Types of ML Explanations . 25

2.3.1 Local Explanations . 26

2.3.2 Feature Attribution methods 26

2.4 Related Work . 27

3 Problem: Explaining Changing Predictions 29

3.1 Example Prediction Problem: Wind Turbine Brake Pad Failure Pre-

diction . 30

3.1.1 Decision making workflow and roles people play 31

3.2 Terminology we use in this thesis . 32

3.3 Problem Scenarios . 34

3.3.1 Scenario 1: Prediction at a Specific Time Point 34

7

3.3.2 Scenario 2: Predictions at Different Times in the Future . . . 34

4 Training the Machine Models to Support the two Scenarios 37

4.1 Modeling Context for Problem Scenarios 37

4.1.1 Context A: Explanation of a Single Model’s Behavior for Data

at Different Time Points (𝑡𝑐) 38

4.1.2 Context B: Explanation of Predictions over Different Lead Times

with the Same Cut-off Time 39

4.1.3 Context C: Explanation of Predictions for a Specific Time Point

in the Future . 40

4.2 Training ML models using Zephyr . 41

4.2.1 Raw Data . 41

4.2.2 Generate Labels . 43

4.2.3 Feature engineering . 43

4.2.4 Model Training . 44

4.2.5 Model Performance Summaries 45

5 Designing explanations for changes in predictions 47

5.1 Explaining Differences in Predictions 48

6 System Design 53

6.1 Application Setup . 53

6.1.1 Explanation Back End - Pyreal 54

6.1.2 Data Communication - Sibyl-API 54

6.1.3 Dataset Preparation . 57

6.1.4 Application Front End - Sibylapp 57

6.2 Components of Sibylapp . 58

6.2.1 Application 1: Compare Predictions at Different Time Points . 58

6.2.2 Application 2: Compare Predictions for Different Time into the

Future . 61

6.2.3 Application 3: Compare Predictions for a Specific Time 64

8

7 Conclusion 69

7.1 Conclusion . 69

7.2 Future Directions . 70

7.2.1 Custom Explanation scenarios 70

7.2.2 Evaluation of Explanations . 70

A Supplemental plots 71

A.1 Prediction metric plots for models used in usable ML system 71

9

10

List of Figures

1-1 Key roles in usable ML deployment. ML developers and users define

the ML system and problem. Bridges enable smoother collaborations

throughout the multiple iterations of development required for a usable

ML interface. 19

2-1 Illustration of signal-based and event-based time-series data. 24

3-1 Illustration of the two deployment scenarios for our prediction task

our users are interested in. The first scenario concerns the predictions

made at different target times (𝑡𝑡𝑎𝑟𝑔𝑒𝑡). The second scenario concerns

the predictions made for different lead times but with the same cut-off

time (𝑡𝑐). 35

4-1 This figure shows the relevant time parameters for each of the three

modeling contexts. In context a, the lead time is constant. In context

b, the cut-off time point is constant. In context c, the prediction time

we are interested in is constant. 38

4-2 Content of the Entityset. Zephyr processes this data to generate a

featurized data set (the input to the machine learning model) and

labels based on the selection of the labeling function and specified

time parameters. 42

11

5-1 An example of an explanation generated by local feature contributions.

The left side of the figure shows the features and feature values for an

explained instance (with feature values in parentheses). The color blue

indicates a positive contribution to the predicted median price, while

the color red indicates a negative contribution. The length of the bar

is equal to the absolute value of the contribution for the corresponding

feature and feature value. Figure taken from Pyreal [24]. 48

5-2 Figure illustrating the generation of data from event-based time-series

data. Figure taken from Fig. 3. of Label, Segment, Featurize [11]. . . 50

6-1 Diagram of our explanation system. The back end library Pyreal han-

dles the calculation of explanations; e.g. feature contributions. Sibyl-

API provides functions that accesses RealApp objects that contains

information of data, models, and explanations. Sibylapp is the inter-

face where the user interacts with the explanations. 53

6-2 Code snippet for building a RealApp project and generating ML ex-

planations. Here we show the demo with using the Titanic dataset

[3]. 55

6-3 Configuration of Sibyl-API for the brake pad failure prediction case

study. 58

6-4 Explanation application selection box. Each option refers to a different

type of explanation and scenario. 59

6-5 Selection of data and model for the Compare Cases application. The

shown example selects model 0d (lead=0 days), Turbine WK001 as the

explained entity, and two cut-off times at 2020-01-10 11:28:00 and 2020-

01-30 11:28:00. The predictions for these two instances are 82.7% of

normal and 88.2% of normal respectively. 60

6-6 Difference in model predictions. The model predicts that the proba-

bility that the brake pad will experience failure at 2020-01-30 11:28:00

is 5.5% lower than that at 2020-01-10 11:28:00. 60

12

6-7 List of features sorted by absolute difference in feature contributions.

The feature values of the two instances are shown side-by-side for clear

comparison if the contribution variation coincides with feature value

variation. The first column shows the feature names. The second

column shows the feature values for the first selected data instance.

The third column shows the feature values for the second selected data

instance. The last column shows how much the feature contribution

has changed. 61

6-8 The feature contribution values for the three features that have the

largest difference. All three features have their contribution changed

signs. The first column shows the feature names. The second column

shows the feature contribution for the first selected data instance. The

third column shows the feature value for the first selected data instance.

The fourth column shows the feature contribution for the second se-

lected data instance. The fifth column shows the feature value for the

second selected data instance. 62

6-9 Selection of data for the Change over Time application. The shown

example selects Turbine WK001 as the explained entity, and a single

cut-off time at 2020-01-10 11:28:00. 62

6-10 Scatter plot of predictions (in terms of failure probability) over different

lead time for entity Turbine WK001 and cut-off time 2020-01-10 11:28:00. 63

6-11 Line plot of feature contributions over predictions of different lead time.

The features listed in this plot are the 10 features with the largest

absolute value of feature contribution for the model with lead = 0

days, for entity Turbine WK001 and cut-off time 2020-01-10 11:28:00. 64

6-12 Scatter plot of predictions (in terms of failure probability) made at

different cut-off time for entity Turbine WK002 and target time 2020-

02-22 15:33:00. The time of the day for the cut-off time is 15:33:00 for

every data point and is not displayed in the Figure. 66

13

6-13 Line plot of feature contributions over predictions made at different

cut-off times. The features listed in this plot are the 10 features with

the largest absolute value of feature contribution for the model with

the earliest cut-off time at 2020-01-23 15:33:00. 67

A-1 Model performance metrics for model with lead = 0 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 72

A-2 Model performance metrics for model with lead = 5 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 73

A-3 Model performance metrics for model with lead = 10 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 74

A-4 Model performance metrics for model with lead = 15 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 75

A-5 Model performance metrics for model with lead = 20 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 76

A-6 Model performance metrics for model with lead = 25 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 77

A-7 Model performance metrics for model with lead = 30 days. SME stands

for subject matter experts who enabled feature generation to give high

predictive accuracy for the models. 78

14

List of Tables

3.1 Different teams involved in the usable ML system designed for wind

turbine brake pad failure prediction and their roles. 29

3.2 Notations and definitions for the problem statement. 33

4.1 Configuration of adopted contexts. 37

4.2 Hyperparameter settings for the XGBoost models. 44

4.3 Performance scores for models trained for different lead times. We

capture precision, recall, f1, fbeta, AUROC, and average precision. 45

6.1 API functions available in Sibyl-API. 56

15

16

Chapter 1

Introduction

Applications of predictive artificial intelligence (predictive AI) are everywhere in our

lives. Engineers, data scientists, decision-makers, and many other people use machine

learning (ML) predictions to help their work in all kinds of domains. As the popularity

of complex ML models increases, ML researchers started the development of ML

Explainability methods in hope of understanding the increasing number of ML models

in both academia and industry. Most researchers focus on developing the “best”

explanation algorithms and argue their performance through metrics that follow some

formulae, but these metrics were typically designed for computer scientists to compare

between different algorithms and benchmark purposes. Such evaluation does not

concern how to help non-ML experts to be more comfortable using their ML models.

In most real-world predictive AI application scenarios, people care about how to

make better use of predictive AI. A good ML explanation must be able to present

information that is easy to understand and actionable for humans [10, 13, 22]. To this

end, we see the term usable ML more fitting than the commonly used explainable AI

(XAI) because understanding ML models requires much more than just explanations

[23]. It also requires understanding the context of the prediction problem and the

scenario where the model is being used, which is nearly impossible to achieve without

collaboration between computer scientists and subject matter experts.

17

1.1 Predictive AI in Practice

In this thesis, we craft explanations considering the application scenarios of predictive

AI models developed by wind turbine data engineers. Their modeling uses event-

based time-series data. This type of data is pervasive in many domains, such as the

viewership behavior of a streaming platform over a week or the data collected daily

from various sensors in the wind turbine. Event-based time-series data often contain

multiple data types and can span over different time scales.

To make use of such diverse data, people have developed systems that applied

feature engineering techniques to formulate prediction problems from event-based

time-series [8]. Our collaborators – data engineers – have successfully built models

with their expertise and tools provided by Zephyr [8]. These models perform well in

terms of common accuracy scores, but the engineers did not know much about the

models beyond that. When using these models in production, the decision makers

may have various questions about the predictions made by a model, such as why does

this model change its prediction drastically over the weekend. These models have high

performance, but the turbine engineers using them may have a hard time deciphering

their logic. They may have a hard time answering questions like “why did the model’s

prediction change so drastically over the weekend”. To answer such questions, we need

input from data engineers to help frame the explanation in a scenario that makes sense

to the data engineers who relay the explanation to the decision makers. Clearly, we

need people with different expertise to help deploy predictive AI into production.

This realization has brought us to usable ML [24].

1.2 Usable ML for Event-Based Time-Series

Through our work in usable ML deployment, we have identified three key roles [23]:

developers, bridges, and users. As shown in Figure 1-1, the developers are in

charge of establishing the ML models, workflow, and tools used in the workflow that

satisfies the needs of the users. The users have domain expertise and know what

18

Developers Bridges Users

How do we develop usable
ML models and explanations?

What information do our
users need?

What decision should I make?

Engineer Features
and Train ML Models

Prepare ML
Explanations

Process Explanations
and Make Decisions

Select and Tune ML
Model and Explanations

Figure 1-1: Key roles in usable ML deployment. ML developers and users define
the ML system and problem. Bridges enable smoother collaborations throughout the
multiple iterations of development required for a usable ML interface.

problems are worth solving in their respective fields, and most importantly, they also

make decisions to address these problems. A useful ML system requires a meaningful

problem and a suitable ML workflow; therefore, it requires the strengths of both

developers and users. The bridges serve as a connection between the developers and

users. We as developers, specifically usable ML system developers, need to establish a

usable interface through close collaboration with data engineers (bridges) to provide

explanations that inform decision makers (users). It is also through this collaboration

that we learned the important problems in turbine engineering.

1.3 Explanation through Temporal Variations

Our conversations with bridges have informed us about the challenges in understand-

ing event-based time-series models. Working with such data requires sophisticated

processing due to their complexity. With so much complexity already present in the

data itself, it is even more difficult to understand models built with such data if we

attempt to explain these models holistically. Ultimately, what users care about is to

know what specifically causes the predictions of a ML system to change over time.

Developers and bridges answer this question from a problem-solving perspective.

Our goal is to make understandable explanations for ML models that do not

overwhelm the bridges and users. We propose an algorithm that explains event-

based time-series ML models by focusing on the changes between data and models’

predictions at different time points. The hypothesis behind our design is similar to the

19

premise of counterfactual explanations [16, 21]. From a problem solving perspective,

telling people “how to change the model to make it better” is much more useful

than telling people “why your model is failing”. Highlighting the contrasts between

instances can tell people “this is what the prediction will be if you change the data

like this”. In addition, focusing on the variations between instances allows us to be

aware of the decisive variables without understanding every variable in the problem.

When designing explanation algorithms, the objective of the explanations must

be clear. It can be finding out what are the most significant features. It can also

be discovering a pattern in the data that causes certain types of outcome to occur.

These objectives vary widely depending on the users’ interests, so there is not a single

explanation algorithm that can solve all ML explainability problems. Thus, it is

important to identify the most suitable algorithm that helps people solve the specific

problem at hand. We carried this philosophy as we applied our ML explanations

to the domain of wind turbine monitoring. During this case study, we develop our

explanations hand-in-hand with improving the task of predicting the failure of wind

turbine brake pads. We realized there were several questions turbine engineers and

data analysts want answered by their ML prediction models, which we contextualized

into three explanation scenarios. These scenarios define the different ways that

ML models are used in deployment. Identifying the explanation scenarios is essential

to find the most suitable algorithm to generate the explanations.

1.4 Contributions

This thesis presents the first step to realizing usable ML practices for event-based

time-series data. The work includes understanding the context where models are

deployed in production, explanations that explain the changes at different time points,

and a usable system that is developed for the wind turbine brake pad prediction

model but can also be an extensible framework for all predictive AI workflows. To

summarize, the contributions of this thesis are:

• ML deployment scenarios and explanation algorithms designed for predictive

20

AI using event-based time-series data.

• An explanation algorithm that explains event-based time-series models through

the changes in feature values, model predictions, and feature contributions.

• A usable interface that focus on the seamless deployment of models for pre-

dictive AI tasks: from visualizing model predictions to learning from feature

contributions.

1.5 Thesis Organization

This thesis is organized as the following. Chapter 2 lays down the foundations, rel-

ative concepts, and related works that inspired this project. Chapter 3 presents the

explanation problem and our proposed explanation scenarios in an abstract context

with depictions through the brake pad failure prediction problem. Chapter 4 de-

scribes the entire process of and data engineering and developing model workflows

that corresponds to the scenarios in Chapter 3. Chapter 5 introduces our explanation

algorithm that captures the changes in these models. Chapter 6 describes the details

of the application where we implemented the explanation scenarios and algorithms

proposed in previous chapters. Finally, chapter 7 summarizes the conclusions and

details future directions of this project.

21

22

Chapter 2

Background and Related Work

This chapter introduces the concepts that are helpful to understand the context of

the problem and our contributions of this thesis. We first talk about time-series data

and relevant terminology. Next, we introduce ML explanations and central concepts

largely taken from [16]. Finally, we discusses related works that apply explanations

to time-series modeling.

2.1 Time-Series Data

There are several typical formulations of time-series ML problems. The first type of

time-series data is signal-based. Examples include stock prices, daily temperature,

and ECG signals. Signal-based time-series data refers to a single signal (univariate)

or multiple signals (multivariate) that take values at time steps. We can denote time-

series signal as 𝑆[1 : 𝑇], where the signal 𝑆 consists of 𝑇 time steps, or 𝑆𝑖[1 : 𝑇] for

𝑖 = 1, 2, ..., 𝑛 if the dataset contains 𝑛 signals. Signal-based data are mainly used

in signal processing techniques and sequence models such as Fourier transform and

LSTM. As a result, analysis of signal-based data usually focuses on the sequential

nature of the signals and overlooks the semantics of time. Deep learning models such

as LSTM and transformer-based models are examples of technique that ignores the

information about the time steps themselves.

23

(a) Example of signal-based data. (b) Example of event-based data.

Figure 2-1: Illustration of signal-based and event-based time-series data.

2.1.1 Event-Based Time-Series

Another formulation of time-series problems is event-based. A common format for

this formulation is the object notation with properties of timestamp information.

Each entry of the object includes the timestamp of the event and values of each

variable for that event. The timestamps are recorded as-is and are not necessarily

evenly-spaced. In the case where all timestamps are evenly-spaced, data then could

be represented in the signal-based form. The event-based formulation is more rich in

terms of information and would be our main choice of formulation for the rest of this

work. Figure 2-1 shows examples of the two time-series data format.

2.2 Importance of ML Explainability

It is important to understand when we need Explainable ML. The necessity of ex-

planations depends on the people using the model to make decisions. In low-stakes

decision environments, the predictions of a model might not require explanation if it

performs well on the testing dataset or in production. However, when more risk is

involved, it becomes important to understand why a model makes a prediction, es-

pecially a wrong prediction, and how can we fix the problem [16]. In addition, while

complex algorithms might achieve remarkable accuracy, understanding their decision-

making processes is crucial for broader acceptance and deployment [5, 19]. For in-

24

stance, the inability to explain the reasoning behind an AI system’s medical diagnosis

could hinder its adoption. Moreover, the lack of transparency and interpretability in

ML models can lead to biases and unfair outcomes, especially in high-stakes domains

such as finance and healthcare.

2.3 Types of ML Explanations

To address the demand for ML explainability, researchers have developed various

explanation methods. These methods can be classified into two broad categories: in-

trinsic and post hoc explanation methods [16]. Intrinsic ML explainability is achieved

through ML models with simple or intuitive structures, such as decision trees or lin-

ear models. Users of these models can easily understand the decision-making process

of the models by examining the rules or coefficients used in the models. However,

many impactful, real-world problems require more complex models to achieve higher

predictive accuracy, which often sacrifices intrinsic explainability.

On the other hand, post hoc explainability refers to explanation algorithms that

provide explanations post-training by inspecting model predictions. Post hoc expla-

nations can be generated while treating the ML model as a black box, which means

that we have no information on the internal equations of the model. Such post hoc

explanation methods are called model-agnostic methods. Some other post hoc

methods are model-specific, meaning they could only be applied to certain types of

models. An example of a model-specific explanations is Saliency Map [20], which can

be only used for model architectures that support differentiation.

We are more interested in model-agnostic methods for their broad applicability

since the users of our explanations often do not care much about what model struc-

ture is used under the hood. Another benefit of using model-agnostic methods is that

the explanation framework stays the same even when the developers choose to use

a different type of models to solve the predictive AI task.

25

2.3.1 Local Explanations

Regarding the scope of the explanations, ML explanations can be either global or lo-

cal [16]. Global explanations describe models holistically, which means understanding

the dynamics between model predictions and all of the features under all conditions.

With global explanations, user can point to any prediction made by the model and

say what components of the model and what features in the data instance that causes

the prediction. However, it will be very difficult for humans to perceive such com-

prehensive information when there were a myriad of features, not to mention the

high-dimensional interactions between them. This is also why an explanation al-

gorithm that can perfectly explain any model is likely nonexistent simply because

humans cannot process a perfectly detailed explanation [4].

While not perfect, local explanations are easier to develop and often much more

useful than global explanations. Local explanations look at the model prediction

for a single instance and analyze the behavior of the model when the input goes

under perturbation [13]. Since local explanations narrow the attention down to a

single prediction, it is often more feasible to describe the interaction between features

and the prediction with a simple rule regardless of the model’s behavior for other

instances. The resulting explanation can be understandable to humans and faithful

to the model and data at the same time, but only for a small subset of data. This

explanation cannot represent the model’s general behavior.

2.3.2 Feature Attribution methods

Feature attribution is a common type of explanation, implementations of this include

algorithms such as SHAP[14] and LIME[18]. They explain machine learning models

by analyzing the given model’s behavior when the input data goes under perturba-

tion. The explanation generated by SHAP and LIME assigns a value to each feature,

which represents the “contribution” of that feature to the prediction task. Most such

explanation methods focus on tabular data.

26

2.4 Related Work

There exist some works that try to tackle the problem of time-series classification

explanation, but most of them focus on signal-based data [2, 6, 7]. These methods

explain signal-based time-series data To our knowledge, few work has been done to

systematically explain the usage of models in different temporal contexts, which is

very relevant in the actual deployment of ML models. Some works have attempted to

understand ML models similar through the use of changes [9, 17]. The work of [15]

proposed to attribute evolution of the feature contributions to risk of hypoxaemia.

27

28

Chapter 3

Problem: Explaining Changing

Predictions

ML explanations are necessary because of ML model users, who are trying to solve

real-world problems. Hence, an explanation is most effective when it is tailored to the

specific context and requirements of the problem at hand. This chapter introduces

turbine brake pad failure prediction as a predictive AI task, and discusses the kind of

context and explanations that will answer users’ questions when a model is deployed.

It then introduces and formulates abstract problem scenarios of explanation of changes

in predictions over time.

Table 3.1: Different teams involved in the usable ML system designed for wind turbine
brake pad failure prediction and their roles.

Roles Developers Bridges Users

Teams Our team M&A team O&M team

29

3.1 Example Prediction Problem: Wind Turbine Brake

Pad Failure Prediction

One major failure mode of wind turbines is caused by the premature breakdown of

brake pads that help control the operation of the turbines. Usually, this type of

failure is prevented by sending technicians to investigate and repair the brake pads if

necessary. This is a risky and costly task; however, if the brake pads do break down

causing the wind turbine to fail, the repair would be an even more expensive and

time-consuming operation even without considering the energy loss incurred by the

failure. Ideally, users want to ensure that each visit to the wind turbines is necessary

to maintain smooth operation, but how do users determine when to send people up

to the turbines? Is there a better strategy than performing routine monthly checks

on these turbines?

To minimize cost and ensure the smooth operation of turbines, this problem can be

formulated an ML problem that predicts when the brake pads will fail. The data used

for prediction is comprised of signals from sensors such as temperature and pressure

sensors in the wind turbines, which come in the format of time-series signals. The

ML model uses the data to generate the probability of brake pad failure at a given

prediction time: for example, predicting if the brake pad will fail a day or a week

from now.

So far, our team has built models that make reliable predictions, but this is not

enough (see Chapter 4 and Appendix A for our models’ performances) 1. The deci-

sion makers (users) must trust these models, understand their outputs in order for

them to use their output in decision making. It is important to note that many of

these problems where machine learning model output/prediction is being considered,

classical approaches to data analysis already exist and/or decision makers already

have rule based solutions that they use.

1Our team here includes a broader machine learning model development team at Data to AI Lab
at MIT

30

3.1.1 Decision making workflow and roles people play

Before designing explanation interface, it is important to consider the decision making

workflow and what roles people play in it. The type of explanations that are designed

(or selected from existing techniques) depends on who is seeking it. To further con-

cretize these for our brake pad prediction case study, Table 3.1 defines the roles of

the different teams involved in our usable ML system.

In prior work summarizing lessons from our collaborations with wind turbine

monitors, we have detailed the roles of the teams involved in the development of our

usable ML system [23]. In the wind turbine domain, the Monitoring and Analysis

(M&A) team fills the bridge role, specializing in ML/data science applied to wind

turbine monitoring2. This team kicks off the decision-making process at hand by

identifying a problem in the live data with help from the ML model. They then

compile a summary of relevant information and visualizations about the issue (for

example, “turbine 50’s brakepad is predicted to fail because of an increase in the

brake caliper temperature”).

The M&A team communicates their findings with the Operations and Mainte-

nance (O&M) team, providing them with the compiled summary and explanations.

The O&M team, the main users of the interface, look through this information and

make a decision about how to proceed. If the issue poses a significant risk, the O&M

team informs the site teams at the wind farm(s) in question about the issue and the

suspected cause. The site teams may either fill the role of user (if they also review

the model prediction and usable ML interfaces) or affected party (if they carry out

the O&M team’s suggestions directly). They look into the issue on-site, potentially

reaching out to a contracted party to handle repairs.

As the O&M team is not expected to have much knowledge about ML, we cannot

assume that they will understand explanations that focus on models’ attributes. They

care about the predictions of the models, but may not be as interested in the engi-

neering decisions such as hyper-parameter tuning and model selections that lead to

those predictions. We built prototypes for explanations and communicated with the
2Descriptions of wind turbine teams in this and the following two paragraphs are taken from [23].

31

M&A team to understand how to tune our explanations in a way that appeals to the

O&M team. Through our discussions, we learned that the O&M team is interested

in two main types of question:

1. Is the brake pad going to fail at time 𝑡? What is the explanation for this

prediction?

2. What are the chances of the brake pad experiencing failure over the next couple

of days (or weeks, or months)?

3. When predictions are made over different time horizons, and there is change in

prediction, what changes in the underlying data explain this?

The first two questions require building a machine learning model and explaining

it using classical techniques. The third question, is a variation, where either new

explanation techniques could be designed or existing techniques could be used to

explain the change in the predictions. This is the focus of this thesis.

3.2 Terminology we use in this thesis

To address the formulation of temporal prediction problems, we define relevant nota-

tions in Table 3.2. Notations of time-related properties are taken from [11]. From a

user’s perspective, the most meaningful variables are the cut-off time point (𝑡𝑐) and

the lead time. In deployment, the first refers to the time when the prediction is

made, and the second refers to how far ahead of time the prediction is made with

respect to 𝑡𝑐.

An entity is the item for which the prediction is being made. For example, this

can be the data for “turbine (brake pad) 4,” for which the feature values that include

information and measurements for multiple time steps can be extracted.

The terminology in Table ?? can be used both for data and processing in training

and deployment. It is important to note that explanations are sought in the deploy-

ment. In the next two paragraphs we delineate how this terminology is used in the

two phases.

32

Table 3.2: Notations and definitions for the problem statement.

Notation Definition

entity The entity for which we are making the prediction. It has time series
and event based data associated with it for making the prediction; e.g.,
“turbine 4”.

𝑡𝑐 Cut-off time point. In training: No data after this time point is used
to train the model. In deployment: This is the time point when a
future prediction is made. (note that by definition the future data is
not available at this time point)

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 Target time point. The time point for which the prediction is made.
lead The time delta between 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑡𝑐. 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑐 + lead.
𝑋𝑡𝑐 The input data instance or feature vector. Subscript 𝑡𝑐 denotes the cut-

off time.
𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 The prediction made by the model. This is usually a singular variable

unless the prediction has multiple values. Subscript 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 denotes the
target time point.

𝑓 The model function that produces prediction 𝑌 given input 𝑋.

Training process. Since one entity contains feature values of different times, multi-

ple data instances 𝑋 can be formed from a single entity through feature engineering.

Note that 𝑋 and 𝑌 take different values at different time points. We denote such

values as 𝑋𝑡 and 𝑌𝑡, where 𝑡 is the time point of interest. Many time-series problems

involve creating models that predict future events. In these cases, the input and

target variables will be sampled at different times. The input variables are sampled

at the cut-off time 𝑡𝑐, and the target variables are sampled at the target time 𝑡𝑡𝑎𝑟𝑔𝑒𝑡.

Therefore, the model function 𝑓 is trained to be a mapping from 𝑋𝑡𝑐 to 𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 . For

training a model, if multiple brake pad failures occurred for the same entity, multiple

training examples can be extracted from it. We will explain this in more detail in the

next chapter, along with training data generation.

In deployment. During deployment, at any time point 𝑡𝑐 a feature vector is com-

puted and a prediction is made for the 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 time point, denoted as 𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 . Note

that the real value of 𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 is not available, as it has not occurred yet.

Now, we can reframe the two questions in the previous section:

33

1. "Is the brake pad going to fail at time 𝑡𝑡𝑎𝑟𝑔𝑒𝑡? What is the explanation for this

prediction?" becomes: What is 𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 and the explanation for this prediction?

2. "What are the chances of the brake pad experiencing failure over the next couple

of days (or weeks, or months)?" becomes: What is 𝑌𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑐 +∆1,

𝑡𝑐+∆2,... and the explanations for these predictions, where ∆𝑖 refers to different

lead times of interest?

3.3 Problem Scenarios

Figure 3-1 illustrates the following two scenarios.

3.3.1 Scenario 1: Prediction at a Specific Time Point

In this scenario, the user is interested in what will happen at a specific time point

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for a chosen entity. To understand the reasoning behind such predictions,

the user may also be interested in the difference between predictions made at two

separate time points. “What changed between 𝑡𝑐1 and 𝑡𝑐2 that led to the change in the

prediction? ”

3.3.2 Scenario 2: Predictions at Different Times in the Future

In this scenario, the user is interested in the difference in predictions at different

future time points for a chosen entity. It is for fixed 𝑡𝑐 but with different lead.

This is interesting because it provides insights about the evolution of the prediction

problem overtime. “How did you use the same data differently to make predictions

for different lead| times?”

34

tctc1

tc2 t target

t target t target

t targettc

2∆

1∆1

2∆

∆

Figure 3-1: Illustration of the two deployment scenarios for our prediction task our
users are interested in. The first scenario concerns the predictions made at different
target times (𝑡𝑡𝑎𝑟𝑔𝑒𝑡). The second scenario concerns the predictions made for different
lead times but with the same cut-off time (𝑡𝑐).

35

36

Chapter 4

Training the Machine Models to

Support the two Scenarios

To address the two scenarios presented in the previous chapter, we need to train one

or more ML models that can generate the predictions the users are looking for. The

models and accompanying data are then provided as inputs to explanation algorithms

and interfaces we intend to design to explain to the users “why did the predictions

change? ”. In this chapter, we describe this data and model preparation, using the

“brake pad failure prediction” use-case as an example.

4.1 Modeling Context for Problem Scenarios

cut-off time (𝑡𝑐) lead (∆) prediction time (𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

Context A Dynamic Fixed Dynamic
Context B Fixed Dynamic Dynamic
Context C Dynamic Dynamic Fixed

Table 4.1: Configuration of adopted contexts.

In the previous section, we introduced two common scenarios featuring temporal

predictions that the users are interested in. We as developers build ML workflows and

models to generate predictions for those scenarios. These two scenarios require multi-

37

∆

tc

Constant lead (∆), Change t c

1

∆

tc2

1

2

∆

tc

tc

Change lead (∆), Constant t c

∆

tc1

tc2

1

2

∆

∆

Constant t + ∆ (predict time)c

1 2 3

t target t target t target

t target t target t target

Figure 4-1: This figure shows the relevant time parameters for each of the three
modeling contexts. In context a, the lead time is constant. In context b, the cut-
off time point is constant. In context c, the prediction time we are interested in is
constant.

ple models in order to generate predictions. We discovered three different “contexts”

for which machine learning models need to be trained. (We use “context,” which

comes from the developer’s perspective, to distinguish from “scenario", which comes

from the users’ perspective.) Table 4.1 refers to the configuration of each parameter

in a given context and Figure 4-1 depicts an illustration of the three contexts.

To train these models from historic data, one would need to extract training ex-

amples, segment data (using only data prior to the cut-off time to create features) and

train a ML model. To do this, we adopted the “ label, segment, featurize” framework

proposed by [11] to formalize the problem scenario.

4.1.1 Context A: Explanation of a Single Model’s Behavior for

Data at Different Time Points (𝑡𝑐)

Context A is a straightforward formulation. This context explains a single given

model, with a fixed lead time, and considers the change in prediction for an entity at

different time points. For example, we have an XGBoost model trained with a data

set, with labels set such that the lead is 10 days. We can then use this model to

• make a prediction on January 10𝑡ℎ, 2024 of whether the break pad will fail on

January 20𝑡ℎ, 2024 (10 days ahead).

• make a prediction again on Janaury 17𝑡ℎ, 2024, of whether the break pad will

38

fail on January 27𝑡ℎ, 2024 (10 days ahead).

We are interested in how the model’s prediction changes when more data has

been collected, and at different time points. The underlying time-series data used to

generate explanations for each prediction will have a different 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑠𝑡𝑜𝑝. Studying

with this model allows us to pinpoint when and how a single time-series model changes

its prediction with respect to changes in the input data.

Most implementations of explanations for machine learning models fall into this

category. For example, a local feature attribution method can be used to produce a

contribution each time a prediction is made. In our case, the input to the brake-pad

failure model goes through feature engineering pipelines that transform multiple sig-

nals into tabular features. Therefore, each different time point within the input data

can be viewed as a distinct data instance. This concept is not limited to time-series

problems since this formulation only requires the usage of different data instances, to

which we then append the time points, each as a “property” of its instance. Within

this context, the explanation would be the comparison of the model’s predictions and

its corresponding feature contributions for the selected time points.

4.1.2 Context B: Explanation of Predictions over Different

Lead Times with the Same Cut-off Time

Context B implements Scenario 2 in Chapter 3 by creating a model for each prediction

with different lead times. In many temporal prediction cases, people are interested

in how a model’s prediction varies when it is asked to make predictions for different

time points in the future.

In Context B, users are interested in viewing how the confidence of the model

changes as it starts to predict events that are farther away in the horizon. A major

difference between this context and Context A is that here we are explaining multiple

different models instead of a single model. This is due to our design that the prediction

of a single model only includes a single value. The predictions at different lead times

are generated by different models. More specifically, these models are of the same

39

type but are trained for a different lead time.

As an example, we could train two XGBoost models, one with a lead time of

10 days and one with a lead time of 20 days (denoted as 𝑓10(·) and 𝑓20(·) respec-

tively). We could then use these two models to make two predictions. Let’s say these

predictions are made on January 10𝑡ℎ, 2024:

• What is the prediction for January 20𝑡ℎ, 2024? This would use model 𝑓10.

• What is the prediction for January 30𝑡ℎ, 2024? This would use model 𝑓20.

Unlike for the previous context, in this scenario, these different models are given

the same input data to make their predictions. We can then observe these models’

series of predictions, and the corresponding feature contributions, to see how they

evolve. The goal is to understand what changes when the same data is used to make

predictions for different times in the future.

4.1.3 Context C: Explanation of Predictions for a Specific

Time Point in the Future

Context C also works with Scenario 1, but it takes a completely different approach

from Context A. Here we also use multiple models with different lead times, similar

to Context B.

The difference is that the models used in Context B are making predictions from

one 𝑡𝑐 for different 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, while the models used in Context C are making a prediction

for the same 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 from different values of 𝑡𝑐. Consider the same approach, where we

trained two XGBoost models, one with a lead time of 10 days and one with a lead

time of 20 days (denoted as 𝑓10(·) and 𝑓20(·) respectively). With these two models,

we are able to make the following predictions:

• On January 1𝑠𝑡, 2024, make a prediction for January 21𝑠𝑡, 2024. This uses the

XGBoost model with a lead time of 20 days (𝑓10).

• On January 11𝑠𝑡, 2024, make a prediction for January 21𝑠𝑡, 2024. This uses the

XGBoost model with a lead time of 10 days (𝑓20).

40

Note that in the example above, the date for which the prediction is made remains

the same; that is, January 21𝑠𝑡, 2024.

In this case, each model gets different input data instances. To produce a predic-

tion at the same 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 but from different values of 𝑡𝑐, the models must be fed with

different input data.

4.2 Training ML models using Zephyr

To train multiple machine learning models with different lead times for our brake pad

failure prediction problem, we rely on a system built for developing prediction models

for data from wind turbines, called Zephyr [8]. Zephyr is machine learning framework

for predictive maintenance of wind energy data. The framework consists of a set

of modules to: (1) process raw signal-data and format it into a machine readable

representation; (2) apply a series of signal processing operations to extract valuable

information from signals data; (3) construct prediction problem and automatically

generate labels; (4) featurize data and produce a feature matrix; (5) build and train

machine learning models. For the purpose of this thesis, we will be mainly focusing

on modules 3-5. Training models involves generating labels, feature engineering, and

ultimately training an ML model. To do this, we use the libraries Featuretools1

and Zephyr2. In this chapter, we give a very brief overview of the different steps

involved in training the models that support the different scenarios using Zephyr.

For a more detailed understanding of how ML models are developed in Zephyr, we

refer the reader to [8].

4.2.1 Raw Data

Our raw data sets contain six csv files. Zephyr provides a function that converts csv

files into an Entityset [12]. An Entityset is a collection of tables (entities) and

the relationships between them. An overview of the Entityset used for generating

1https://github.com/alteryx/featuretools
2https://github.com/sintel-dev/zephyr

41

Entityset: SCADA data
DataFrames:

turbines [Rows: 70, Columns: 10]
alarms [Rows: 0, Columns: 5]
notifications [Rows: 127, Columns: 15]
stoppages [Rows: 16898, Columns: 18]
work_orders [Rows: 5735, Columns: 21]
scada [Rows: 7914960, Columns: 167]

Relationships:
alarms.COD_ELEMENT -> turbines.COD_ELEMENT
stoppages.COD_ELEMENT -> turbines.COD_ELEMENT
work_orders.COD_ELEMENT -> turbines.COD_ELEMENT
scada.COD_ELEMENT -> turbines.COD_ELEMENT
notifications.COD_ORDER -> work_orders.COD_ORDER

Figure 4-2: Content of the Entityset. Zephyr processes this data to generate a fea-
turized data set (the input to the machine learning model) and labels based on the
selection of the labeling function and specified time parameters.

training data is shown in Figure 4-2.

This Entityset comprises multiple tables, including:

• turbines which has turbine metadata;

• alarms which records alarm occurrences in the diagnostics system;

• notifications that contains the maintenance history for each turbine;

• stoppages which records the start– and end-time of every time the turbine

stopped as well as the cause for stopping;

• work_orders which have information about maintainence work done on the

turbines;

• scada which includes time-series signals.

Most of these tables are connected via an ID column called COD_ELEMENT, which

uniquely identifies specific turbines.

42

4.2.2 Generate Labels

After the Entityset is created, we use the labeling function provided by Zephyr,

namely brake_pad_presence, to create labels from our data. The labeling function

follows the method set out in [11]. In our use cases, we will generate training sets

with varying lead times. Different settings of this parameter lead to different problem

formulations; labels generated with lead = 0 days are used for training a model that

makes a prediction for the present, while those generated with lead= 30 days are used

for training a model that predicts the result one month from now. For our application

example, we generate data sets with the following range of lead: 0, 5, 10, 15, 20, 25, 30

days. How the labeling function generates the labels given a machine learning task is

detailed in [8].

It is critical to note that to train models with different lead times, the framework

first finds historical examples of brake pad failure cases, then divides the historical

data into two parts based on the cut-off time (𝑡𝑐): the former part is used to train

the models, and the latter part is used to compute the prediction label.

Using the default settings of the labeling function, we obtain 943 labels where a

turbine’s brake pad has failed and 1,498 labels where it has not failed. This results

in a total of 2,441 labels that will be used in the subsequent parts including model

training.

4.2.3 Feature engineering

Zephyr uses the Deep Feature Synthesis (DFS) algorithm from Featuretools to

generate the feature matrix 𝑋𝑡𝑐 given the Entityset and a list of cut-off times. In

the DFS algorithm, we use the default transformation operations, and we limit the

aggregation operations to include: count, sum, percent_true, and max. The most

indicative table in our data for the brake pad problem is the stoppages entity, since it

illustrates any issue that led to needing to stop the turbine from operating. Therefore,

certain entities were deemed irrelevant to the prediction problem at hand by subject

matter experts, and thus were excluded from the feature generation process, these

43

Table 4.2: Hyperparameter settings for the XGBoost models.

hyperparameter value

tree_method “approx”
enable_categorical True
subsample 0.2
sampling_method “uniform”
random_state 35

entities include: notifications, alarms, and work orders. The resulting feature

matrix is completely numeric and has 318 features after those not relevant to the

prediction task are removed. The first five features of 𝑋𝑡𝑐 are COUNT(stoppages),

MAX(stoppages.COD_WO), MAX(stoppages.IND_DURATION),

MAX(stoppages.IND_LOST_GEN), and SUM(stoppages.COD_WO).

4.2.4 Model Training

All the ML models used in our system are XGBoost classifiers [1] that predict whether

the turbine brake pad is going to fail at 𝑡𝑐+lead given input 𝑋𝑡𝑐 . We train the models

until they converge. In this paper, we restricted our applications to explain models

that have converged, but explanation algorithms can also be applied to models that

have not fully converged. Explanations for models that are “incomplete” may still be

valuable; for example, we can use them to learn about which correlations were more

difficult for models. However, this is beyond the scope of this paper.

On average, the training time for each model takes 25 minutes. The train/test

split for the data used to train and evaluate all models are set to 7:3. The list of

parameters we set manaully for the XGBoost classifiers are listed in Table 4.2. The

fitting of the models are performed with the default settings of XGBoost.

44

Table 4.3: Performance scores for models trained for different lead times. We capture
precision, recall, f1, fbeta, AUROC, and average precision.

lead
(days)

precision recall f1 fbeta AUROC average
precision

0 0.989 0.961 0.975 0.983 0.977 0.966
5 0.978 0.961 0.970 0.975 0.974 0.955
10 0.955 0.979 0.967 0.960 0.975 0.943
15 0.978 0.940 0.959 0.970 0.963 0.942
20 0.964 0.933 0.948 0.957 0.955 0.925
25 0.949 0.982 0.965 0.955 0.974 0.939
30 0.943 0.989 0.966 0.952 0.976 0.937

4.2.5 Model Performance Summaries

In Table 4.3, we present the performance metrics for the models trained for different

lead times for the brake pad prediction problem. The high f1 indicates that these

models can be deployed in decision-making.

The plots of the performance metrics of the prediction models are listed in Ap-

pendix A. In general, all measures of model accuracy listed in Table 4.3 are higher

when the lead time is closer to 0 days, and they decrease as the lead time increase.

45

46

Chapter 5

Designing explanations for changes in

predictions

In this chapter, we discuss the explanations we developed to help users understand

the behavior of brake pad prediction models at different time points. Our algorithm

is derivative of local feature contribution algorithms. Local feature contribution

explanations are feature attribution methods that explain a model by calculating the

contribution of each feature to the prediction for a specific instance.

An example of such an explanation is shown in Figure 5-1. In this example, the

ML task being explained is a regression problem that predicts the median price of a

block of houses based on various information about the location and demographics.

For local feature contribution explanations, the feature and feature value are both

integral to the explanation; it does not make sense to state that a feature is important

to some prediction regardless of the value that the feature takes. In Figure 5-1, the

“ocean proximity” feature has a high positive contribution to the predicted price for

this data instance when it takes a value of “near bay.” This feature’s contribution will

change, and may even become negative, if we change its value to another value, such

as “inland”.

On the other hand, two data instances with the exact same value for a feature

may have very different feature contributions. This is because the features of an ML

model are usually not independent. Taking the same housing data set as an example,

47

“ocean proximity” being “near bay” contributes positively to the predicted price in this

selected instance (block of houses). However, if another instance (block of houses) has

the same value for “ocean proximity”, but is located in a flood-prone area, then the

contribution of “ocean proximity” for this specific instance (block of houses) might be

much lower than it is for the block shown in Figure 5-1.

Ocean proximity (near bay)

Neighborhood (San Bruno)

Population (1,703)

Median income ($34,231.00)

Average rooms per house (5.14)

Feature Contributions (Interpretable)

Figure 5-1: An example of an explanation generated by local feature contributions.
The left side of the figure shows the features and feature values for an explained
instance (with feature values in parentheses). The color blue indicates a positive
contribution to the predicted median price, while the color red indicates a negative
contribution. The length of the bar is equal to the absolute value of the contribution
for the corresponding feature and feature value. Figure taken from Pyreal [24].

We select “local feature contribution” as the basis for our algorithm because of

its popularity and intuitiveness. There are many implementations for local feature

contribution algorithms. The most popular example is SHAP [14], which we used to

calculate all the feature contributions in this work.

5.1 Explaining Differences in Predictions

Traditionally, when explaining ML models, the data instances, 𝑋, that need to be

explained are generally assumed to be for separate entities. For the house pricing

model, each instance is a single block of houses.

When explaining temporal ML models, data instances can be from separate en-

tities, but they can also be from the same entity but with feature values taken at

different time intervals. This possibility of extracting multiple data instances can be

48

illustrated by showing how multiple training examples are extracted from the same

entity. In our turbine brake pad case study, this is evident in how the training data

is generated in the label-segment-featurize workflow [11]. Figure 5-2 is used in [11]

to illustrate the training data instances from the original time-series data set. The

first row, “Time series of events” in Figure 5-2, shows all the data points in a given

data entity. The last row, “Select non-overlapping examples,” shows that two data in-

stances are generated from this single entity. From the perspective of the ML model,

these two data instances are standalone instances, and the model does not take the

fact they are from the same entity into account when making predictions for them.

However, this relationship is interesting for human developers and users, as the vari-

ations between the feature values and model predictions in these two instances tell

us about how the data changes as time progresses for this specific entity. In practice,

the sequence of events can be very long, and a single entity can be used to generate

more than two instances. The differences between such instances can tell us about

the evolution of the problem, while the same cannot be said for normal data sets

where data instances do not have special relationships.

We have learned from the success of counterfactual explanations that humans

favor explanations that characterize alternative situations [16, 21]. It is often easier for

humans to understand a concept through comparison with another concepts. Thus, it

is reasonable to think that the notion of change would be beneficial for understanding

a model’s behavior; specifically, picking two or more instances and observing how they

differ. In this work, we consider possible three types of difference: difference in feature

values, difference in model predictions, and difference in feature contributions.

1. Changes in feature values. Changes in feature values are straightforward.

They may contain the most information, but are often less useful for explaining

the model’s prediction alone. It is easy to point out features that changed a

lot in value, but model predictions may not reflect such changes. Nevertheless,

highlighting changes in feature value can be helpful to bridges and users, since

they have knowledge about the subject matter and can draw correlations be-

tween feature values and model predictions without any information about the

49

Figure 5-2: Figure illustrating the generation of data from event-based time-series
data. Figure taken from Fig. 3. of Label, Segment, Featurize [11].

50

model.

2. Changes in model predictions. Changes in model predictions can be mea-

sured by comparing the outputs of two or more input data instances. Model

predictions are mostly used to help users make decisions, so when the predic-

tions change, the decisions may change as well. Some ML systems may use the

predictions from a collection of models – Context B in Chapter 4 is one such

use case. The models are given the same data, so the changes in feature values

do not apply here. The changes in model predictions will be directly related to

the changes of the prediction task.

3. Changes in feature contributions. As mentioned in Chapter 2, the feature

contributions generated by a local explanation algorithm are specific to a data

instance and its full coalition of feature values. Thus, some features may be

relevant for a specific time point, but not for other time points. It can be inter-

esting to see how the contributions of these feature evolve as time progresses. If

the contribution changes a lot for the feature, but the feature values and model

predictions do not change or change very slightly, this may signal that this case

is worth investigating.

In addition, since feature contributions tell us about the importance of each

feature, one use case for feature contributions is to select the most strongly con-

tributing features to build more lightweight models. This is extremely helpful

in model deployment situations where resource constraints make it impossible

to use all the features developers used in training. However, local feature con-

tributions alone cannot ensure that a given set of features are sufficient to train

a model that can perform well in deployment, since the feature contributions

are specific to an instance. Now, we can collect the set of features that con-

tribute the most to the predictions at different time steps for an entity, and

use this collection to represent the features that are important for the model’s

prediction for this entity.

51

52

Chapter 6

System Design

This chapter describes the explanation system in detail and walks through how a

developer (or bridges) can use our system to generate explanations for their brake

pad failure prediction model.

6.1 Application Setup

Pyreal

system
components

primary
outputs

Sibyl DB

SibylappSibyl-API

RealApp

Interpretable
Explanations

InterfacesAPI Endpoint

Usable
Front-End

Full Application
Information

contains usesaccesses

Figure 6-1: Diagram of our explanation system. The back end library Pyreal handles
the calculation of explanations; e.g. feature contributions. Sibyl-API provides func-
tions that accesses RealApp objects that contains information of data, models, and
explanations. Sibylapp is the interface where the user interacts with the explanations.

Our explanation application is built on top of the system illustrated in Figure 6-1.

This system contains three main components. The back end library Pyreal [24], the

API handler Sibyl-API, and the front end interface Sibylapp.

53

6.1.1 Explanation Back End - Pyreal

We perform calculations of the explanation algorithm with Pyreal [24], which is a

Python library that handles and generates useful ML explanations. Pyreal’s primary

component is the RealApp object, which fully encapsulates explanation applications

that contain all necessary objects and information to make model predictions and

generate ML explanations. This includes one or multiple ML models depending on

the use case, explanation objects (explainers) that run explanation algorithms, and

other functionalities that help make these explanations interpretable for humans1.

Pyreal is designed with a low-code interface, so only minimal Python experience

is required to set up a new RealApp object. This is the only step in the Sibyl

configuration process that requires ML developer input, to the degree that setting up

a new ML application requires developer input. Figure 6-2 shows the code snippet to

create a RealApp object and use it to generate ML explanations.

In the system’s workflow, the RealApp objects are created before the user interacts

with the explanations. Throughout the applications relevant to this work, we create

RealApp objects with local feature contribution explainers and store them in a

MongoDB database. The model predictions and feature contributions displayed on

the user interface are all pre-computed and accessed through Sibyl-API.

6.1.2 Data Communication - Sibyl-API

Sibyl-API is a framework that enables retrieval of information in the RealApp object

through the implementation of REST-API. Table 6.1 lists the functions that we used

for the work in this thesis.

The API functions we use fall into the following categories:

1. Entity. Functions in this category provide information about entities and the

data associated with them.

2. Feature. Functions in this category provide information about input features,

such as their readable descriptions, types, and categorizations.
1This paragraph of Pyreal description is taken from [24].

54

import pyreal.applications.titanic as titanic
from pyreal import realapp
from pyreal.transformers import ColumnDropTransformer ,

MultiTypeImputer

Load in data
x_orig , y = titanic.load_titanic_data ()

Load in feature descriptions -> dict(feature_name:
feature_description , ...)

feature_descriptions = titanic.load_feature_descriptions ()

Load in model
model = titanic.load_titanic_model ()

Load in list of transformers
transformers = titanic.load_titanic_transformers ()

Create a RealApp object
realApp = RealApp(model , x_orig , y_orig=y,

transformers=transformers ,
feature_descriptions=feature_descriptions ,
)

Generate and show explanation
explanation = real_app.produce_local_feature_contributions(

sample_data)
swarm_plot(explanation , type="strip")

Figure 6-2: Code snippet for building a RealApp project and generating ML expla-
nations. Here we show the demo with using the Titanic dataset [3].

55

Table 6.1: API functions available in Sibyl-API.

Category URL Description

entity /api/v1/entities/ Get all Entities
entity /api/v1/entities/{eid}/ Get an Entity by ID
entity /api/v1/events/ Get the Events of an Entity
feature /api/v1/categories/ Get all Categories
feature /api/v1/features/ Get all Features
feature /api/v1/features/{feature_name}/ Get a Feature by name
context /api/v1/context/{context_id}/ Get a Context by ID
context /api/v1/context/{context_id}/ Get a Context by ID
context /api/v1/contexts/ Get all Context ids
computing /api/v1/contributions/ Get feature contributions
computing /api/v1/modified_contribution/ Get the feature contribution of an

entity modified by changes
computing /api/v1/modified_prediction/ Get the resulting model predic-

tion after making all changes
computing /api/v1/multi_contributions/ Get feature contributions for mul-

tiple eids, or for multiple row_ids
in a single entity

model /api/v1/models/ Get all Models
model /api/v1/models/{model_id}/ Get a Model by ID
model /api/v1/multi_prediction/ Get multiple predictions. If given

multiple eids, return one predic-
tion per eid

56

3. Model. Functions in this category provide access to all models stored in the

database. A popular usage is to get models’ predictions on data instances.

4. Context. Functions in this category provide context-specific information for

setting up the usable ML interface. All terminology used can be given a domain-

specific alternative — for example, entities could be “houses”, “turbines”, “cus-

tomers”, etc., and features could instead be referred to a “factors” or “properties”.

Additionally, these functions provide information such as how to format model

outputs.

5. Computing. Functions in this category provide explanations and other com-

puted information about the ML model or its predictions. The backend code

for these endpoints usually use the saved RealApp object.

6.1.3 Dataset Preparation

Sibyl-API accesses a prepared MongoDB database. The database stores all infor-

mation about entities, features, models, and context-specific configurations required

to make usable explanation applications. Preparing such a database requires input

from bridges to configure the application in an understandable way for users. This

includes configuring feature descriptions and interpreting ML model outputs. Figure

6-3 shows the configuration to format Sibylapp. The Sibylapp setup for the applica-

tion used in this work requires csv files for entities and feature information, and a list

of pickled RealApp objects that contain all used models and their explanations. The

details about the models are described in Chapter 4.

6.1.4 Application Front End - Sibylapp

Sibylapp is a front end interface developed in Streamlit. It is the interface bridges and

users use for ML deployment and explanations. No coding is necessary to navigate

through this application. The details of using Sibylapp to generate explanations for

event-based time-series models are presented in the next section.

57

Context configurations
output_preset: "failure"
Whether to include entity rows in UIs (if False , only show first

row).
use_rows: True
Label to use for rows
row_label: "Timestamp"
Whether to allow users to see prediction probabilities (only set

to true if models have .
predict_proba () functions)

show_probs: True

Context -specific overrides for common terminology
terms:

entity: "Turbine"
prediction: "Predicted Outcome"
increasing: "Risk" # As in, ‘increasing features ’, or features

that increase model prediction
decreasing: "Protective" # As in, ‘decreasing features ’, or

features that decrease model
prediction

Figure 6-3: Configuration of Sibyl-API for the brake pad failure prediction case study.

6.2 Components of Sibylapp

In this section, we will describe each function of the application in detail. This

application starts by selecting an explanation to use as shown in Figure 6-4. There

are currently six pages, corresponding to six usage scenarios. The pages relevant to

this work are Compare Cases, Change over Time, and Same Target Time.

6.2.1 Application 1: Compare Predictions at Different Time

Points

The first application is implemented under the Compare Cases page. This appli-

cation corresponds to Context A in Chapter 4 and focuses on understanding how a

model’s prediction for a specific entity changes at different time points in future,

fixed lead, and different 𝑡𝑐. As displayed in Figure 6-5, the application first prompts

the user to selects a model and an entity (turbine) and two different instances (in-

dicated by its cut-off time 𝑡𝑐). It then displays the selected model predictions for

the two instances. For classification models like our brake pad failure case study,

58

Figure 6-4: Explanation application selection box. Each option refers to a different
type of explanation and scenario.

the binary outcome alone is not particularly informative for comparison between two

instances, so we provided an option to display the prediction in terms of probability

of the outcome.

Figure 6-6 shows the first part of the display of the Compare Cases application.

It first shows the difference in model predictions for the two selected time points.

This is calculated by subtracting the first model prediction from the second model

prediction. There are some features that can help users to navigate the explanations.

The “Search and filter” dropdown is available for every application; the user can filter

features shown in the contributions table (Figure 6-7) to narrow their focus to certain

features. The filtering supports filter by feature name and feature category.

The next functionality is the sorting of the features. The sorting was based on the

change in feature contributions so that we can list the features that have the most

different contributions on the top of the list. We implemented three sorting strategies.

The first sort by the largest absolute feature contribution difference, which we see as

the features that have their impact change the most between the two predictions.

The second lists the features that experience the most positive change in feature

contribution and the third lists those experience the most negative change. These are

useful to identify which features are experiencing the most change from the perspective

59

Figure 6-5: Selection of data and model for the Compare Cases application. The
shown example selects model 0d (lead=0 days), Turbine WK001 as the explained
entity, and two cut-off times at 2020-01-10 11:28:00 and 2020-01-30 11:28:00. The
predictions for these two instances are 82.7% of normal and 88.2% of normal respec-
tively.

Figure 6-6: Difference in model predictions. The model predicts that the probability
that the brake pad will experience failure at 2020-01-30 11:28:00 is 5.5% lower than
that at 2020-01-10 11:28:00.

60

Figure 6-7: List of features sorted by absolute difference in feature contributions. The
feature values of the two instances are shown side-by-side for clear comparison if the
contribution variation coincides with feature value variation. The first column shows
the feature names. The second column shows the feature values for the first selected
data instance. The third column shows the feature values for the second selected data
instance. The last column shows how much the feature contribution has changed.

of local feature contributions, which often is correlated with the changes in predictions

between the two data instances.

For display purposes, Figure 6-7 only shows the contribution change for each

feature and not the feature contribution values for the two instances. Checking the

“Show original contributions” option in Figure 6-6 will reveal the original feature

contributions for both instances for each feature. The three features with the largest

change in contribution all had their contributions inverse in sign as shown in Figure

6-8. The contribution of The maximum of the "WROT_Brk1HyPres_sd" goes from

-0.259 to 0.043; the contribution of

The maximum of the "IND_LOST_GEN" of all instances of "stoppages"

goes from 0.035 to -0.230; the contribution of The sum of the "WNAC_Vib4_min"

goes from -0.189 to 0.063.

6.2.2 Application 2: Compare Predictions for Different Time

into the Future

The second application is implemented under the Change over Time page. This

application corresponds to Context B in Chapter 4, which shows the predictions

of different lead with the same 𝑡𝑐. As shown in Figure 6-9, the user only selects

61

Figure 6-8: The feature contribution values for the three features that have the largest
difference. All three features have their contribution changed signs. The first column
shows the feature names. The second column shows the feature contribution for
the first selected data instance. The third column shows the feature value for the
first selected data instance. The fourth column shows the feature contribution for
the second selected data instance. The fifth column shows the feature value for the
second selected data instance.

Figure 6-9: Selection of data for the Change over Time application. The shown
example selects Turbine WK001 as the explained entity, and a single cut-off time at
2020-01-10 11:28:00.

62

lead (days) 0 5 10 15 20 25 30

Failure probability 0.173 0.116 0.439 0.160 0.306 0.342 0.264

Figure 6-10: Scatter plot of predictions (in terms of failure probability) over different
lead time for entity Turbine WK001 and cut-off time 2020-01-10 11:28:00.

entity and 𝑡𝑐 for this application. All models loaded into Sibylapp are used in the

application so the user do not have to select a specific model. We use 7 models with

lead ranging from 0 days to 30 days with 5-day increments. All model predictions

and corresponding feature contributions are shown in scatter plots and line charts so

that the user can clearly observe how these values progress over time. Figure 6-10

shows the predictions over different lead times for the selected data instance. This

scatter plot informs the trend of model predictions over different lead times.

Figure 6-11 shows the feature contributions over different lead times. We cur-

rently sort features based on their feature contributions for lead time = 0 days.

Similar to the Compare Cases page, the sorting options include sort by the absolute

value, most positive, and most negative feature contributions. We showed ten fea-

63

Figure 6-11: Line plot of feature contributions over predictions of different lead time.
The features listed in this plot are the 10 features with the largest absolute value of
feature contribution for the model with lead = 0 days, for entity Turbine WK001 and
cut-off time 2020-01-10 11:28:00.

tures for Figure 6-11 for clarity but this number can be adjusted. The features in

the legend can be toggled to show/hide specific feature contributions. In this Figure,

MAX(scada.WNAC_WdDir2_mean) remains the most positive contributing feature over

all different lead times.

6.2.3 Application 3: Compare Predictions for a Specific Time

The third application is implemented under the Same Target Time page. This

application corresponds to Context C in Chapter 4 and shows the variation of model

64

predictions and feature contributions for models with different 𝑡𝑐 but the same 𝑡𝑡𝑎𝑟𝑔𝑒𝑡.

The user only selects entity and 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for this application. As shown in Figure 6-12

and Figure 6-13, we used models with lead = 0, 10, 20, 30 days (separation between

each consecutive cut-off time is 10 days). Since the data instances for each entity

are referenced through their cut-off times, we must find data instances for each model

such that all four predictions are made for the same 𝑡𝑡𝑎𝑟𝑔𝑒𝑡. This is not a big problem

if the data set is dense with respect to the lead times. However, when there are

limited instances for the selected entity, it may be more suitable to first pick the

cut-off times and then train models with lead such that cut-off time plus lead equals

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for each 𝑡𝑐 in the given times.

Figure 6-12 shows the predictions made at different cut-off times. Figure 6-13

shows the feature contributions of models at different cut-off times. Both of these

two plots were designed in a similar fashion to Figure 6-10 of the Change over Time

page.

65

lead time (days) 15 10 5 0

Failure probability 0.147 0.080 0.064 0.097

Figure 6-12: Scatter plot of predictions (in terms of failure probability) made at
different cut-off time for entity Turbine WK002 and target time 2020-02-22 15:33:00.
The time of the day for the cut-off time is 15:33:00 for every data point and is not
displayed in the Figure.

66

Figure 6-13: Line plot of feature contributions over predictions made at different cut-
off times. The features listed in this plot are the 10 features with the largest absolute
value of feature contribution for the model with the earliest cut-off time at 2020-01-23
15:33:00.

67

68

Chapter 7

Conclusion

7.1 Conclusion

In conclusion, this thesis has addressed the critical gap in ML explanation design, par-

ticularly focusing on real-world usable deployment for event-based time-series data.

We developed two explanation scenarios and proposed explanations based on changes

in feature values, model predictions, and feature contributions; we provided insights

into understanding ML models applied to temporal prediction problems such as tur-

bine brake pad failure predictions. Our solution, comprising a usable ML interface

and context-aware explanations, serves as a framework for decision-makers to com-

prehend prediction mechanisms effectively.

Through the development and demonstration of our usable ML interface inte-

grated with explanations tailored to deployment scenarios, we have showcased the

practical applicability of contextual understanding in deploying ML models effectively

through the Pyreal, Sibyl-API, Sibylapp system.

As ML continues to permeate various domains, ensuring transparency and in-

terpretability in model predictions becomes increasingly imperative. Our work con-

tributes to this endeavor by providing a concrete methodology and framework for

developing context-aware ML explanations, ultimately enhancing trust, usability, and

decision-making in real-world applications. Further research in this direction could

explore additional deployment scenarios and refine explanation techniques to accom-

69

modate evolving complexities in ML systems.

7.2 Future Directions

The usable ML system we developed is designed as a general purpose application and

not limited to wind turbine brake pad failure prediction. Most of the explanations

and scenarios in this work are currently still intended for our specific use case, so we

can improve the existing system by applying it to more use cases. In addition, more

flexibility can be added to existing applications. For example, we can enable model

selection in the Change over Time page so that users can choose which lead time

to compare the model predictions and feature contributions.

7.2.1 Custom Explanation scenarios

One big part of this project is the formation of those explanation scenarios. There

may be other common scenarios in time-series modeling that we did not cover in this

work. The design of Sibylapp is generalizable to add new application scenarios and

they will not interfere with other parts of the system.

7.2.2 Evaluation of Explanations

The frameworks and explanations proposed in this work has not gone through a thor-

ough case study with the ML users yet, which is critical for evaluating the usability of

our system. We would also like to explore further use cases of contribution difference

for model deployment.

70

Appendix A

Supplemental plots

A.1 Prediction metric plots for models used in us-

able ML system

71

(a) F scores for model with lead = 0
days.

(b) ROC for model with lead = 0
days.

(c) Confusion matrix for model with
lead = 0 days.

Figure A-1: Model performance metrics for model with lead = 0 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

72

(a) F scores for model with lead = 5
days.

(b) ROC for model with lead = 5
days.

(c) Confusion matrix for model with
lead = 5 days.

Figure A-2: Model performance metrics for model with lead = 5 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

73

(a) F scores for model with lead = 10
days.

(b) ROC for model with lead = 10
days.

(c) Confusion matrix for model with
lead = 10 days.

Figure A-3: Model performance metrics for model with lead = 10 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

74

(a) F scores for model with lead = 15
days.

(b) ROC for model with lead = 15
days.

(c) Confusion matrix for model with
lead = 15 days.

Figure A-4: Model performance metrics for model with lead = 15 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

75

(a) F scores for model with lead = 20
days.

(b) ROC for model with lead = 20
days.

(c) Confusion matrix for model with
lead = 20 days.

Figure A-5: Model performance metrics for model with lead = 20 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

76

(a) F scores for model with lead = 25
days.

(b) ROC for model with lead = 25
days.

(c) Confusion matrix for model with
lead = 25 days.

Figure A-6: Model performance metrics for model with lead = 25 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

77

(a) F scores for model with lead = 30
days.

(b) ROC for model with lead = 30
days.

(c) Confusion matrix for model with
lead = 30 days.

Figure A-7: Model performance metrics for model with lead = 30 days. SME stands
for subject matter experts who enabled feature generation to give high predictive
accuracy for the models.

78

Bibliography

[1] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, KDD ’16, pages 785–794, New York, NY, USA, 2016.
ACM. Number of pages: 10 Place: San Francisco, California, USA tex.acmid:
2939785.

[2] Jonathan Crabbe and Mihaela van der Schaar. Explaining time series predictions
with dynamic masks. In International Conference on Machine Learning, 2021.

[3] Will Cukierski. Titanic - machine learning from disaster, 2012.

[4] Hans de Bruijn, Martijn Warnier, and Marijn Janssen. The perils and pitfalls of
explainable ai: Strategies for explaining algorithmic decision-making. Govern-
ment Information Quarterly, 39(2):101666, 2022.

[5] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning, 2017.

[6] Riccardo Guidotti, Anna Monreale, Francesco Spinnato, Dino Pedreschi, and
Fosca Giannotti. Explaining any time series classifier. 2020 IEEE Second Inter-
national Conference on Cognitive Machine Intelligence (CogMI), pages 167–176,
2020.

[7] Maël Guillemé, Véronique Masson, Laurence Rozé, and Alexandre Termier. Ag-
nostic local explanation for time series classification. 2019 IEEE 31st Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pages 432–439,
2019.

[8] Frances R. Hartwell. Zephyr: a data-centric framework for predictive mainte-
nance of wind turbines, 2023.

[9] Fabian Hinder, Valerie Vaquet, Johannes Brinkrolf, and Barbara Hammer. Model
based explanations of concept drift, 2023.

[10] Helen Jiang and Erwen Senge. On two xai cultures: A case study of non-technical
explanations in deployed ai system, 2021.

79

[11] James Max Kanter, Owen Gillespie, and Kalyan Veeramachaneni. Label, seg-
ment, featurize: A cross domain framework for prediction engineering. In
2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 430–439, 2016.

[12] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: To-
wards automating data science endeavors. In 2015 IEEE International Confer-
ence on Data Science and Advanced Analytics (DSAA), pages 1–10, 2015.

[13] Zachary C. Lipton. The mythos of model interpretability, 2017.

[14] Scott Lundberg and Su-In Lee. A unified approach to interpreting model pre-
dictions, 2017.

[15] Scott M. Lundberg, Bala G. Nair, Monica S. Vavilala, Mayumi Horibe, Michael J.
Eisses, Trevor L. Adams, David Liston, Daniel King-Wai Low, Shu-Fang New-
man, Jerry H. Kim, and Su-In Lee. Explainable machine-learning predictions
for the prevention of hypoxaemia during surgery. Nature biomedical engineering,
2:749 – 760, 2018.

[16] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[17] Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, and Eyke Hüller-
meier. Agnostic explanation of model change based on feature importance. KI -
Künstliche Intelligenz, 36(3-4):211–224, 2022.

[18] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust
you?”: Explaining the predictions of any classifier. 2016.

[19] Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead, 2019.

[20] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps,
2014.

[21] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explana-
tions without opening the black box: Automated decisions and the gdpr, 2018.

[22] Alexandra Zytek, Dongyu Liu, Rhema Vaithianathan, and Kalyan Veeramacha-
neni. Sibyl: Understanding and addressing the usability challenges of machine
learning in high-stakes decision making, 2021.

[23] Alexandra Zytek, Wei-En Wang, Sofia Koukoura, and Kalyan Veeramachaneni.
Lessons from usable ml deployments and application to wind turbine monitoring,
2023.

[24] Alexandra Zytek, Wei-En Wang, Dongyu Liu, Laure Berti-Equille, and Kalyan
Veeramachaneni. Pyreal: A framework for interpretable ml explanations, 2023.

80

