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Abstract

Insurance datasets are generally private in order to protect user information, mak-
ing it difficult for the ML research community to access and experiment with this
data. To increase accessibility and innovation on private insurance data, we compile
and share publicly available insurance datasets, analyze challenges inherent in these
datasets, and propose, motivate, and evaluate a Synthetic Data sharing framework
called Synthetic Insurance Data (SID) Testbed that can be used to improve ML per-
formance on tabular datasets by allowing collaborators to generate Synthetic Data
for Data Augmentation. In addition to this framework, we recognize that tabular
data augmentation is not a well understood phenomenon, and we run controlled ex-
periments to better understand how and when data augmentation improves machine
learning performance in the setting of tabular data.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist, Laboratory for Information and Decision Systems

3



4



Acknowledgments

I am thankful for the vast support and guidance I received working on this thesis.

First and foremost, I thank my advisor, Dr. Kalyan Veeramachaneni, for his insightful

advice for designing experiments as well as for his advice on how to communicate well

in papers. I can’t express how thankful I am for Kalyan’s mentorship and direction

throughout my Masters. I also want to thank Dongyu, who I started this project

working very closely with. He taught me the open source software development work-

flow, and I learned a lot working with him. I greatly appreciate all of the extremely

bright students in my lab and friends who helped me and pushed me forward too.

I finally want to thank my parents and my sister, who have always been my rock,

through thick and thin.

5



6



Contents

1 Introduction 21

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Insurance Datasets 29

2.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Dataset Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Insurance Prediction Problems and Our Machine Learning Pipeline 37

3.1 Measuring Prediction Performance with Gini Score . . . . . . . . . . 37

3.2 Our Machine Learning Pipeline . . . . . . . . . . . . . . . . . . . . . 43

4 Evaluating and Enhancing Copula Based Synthetic Data Generation 47

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Copula Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 The Gaussian Copula (GC) . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Gaussian Copula Failure Modes . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Gaussian Copula Failure Mode Analysis Datasets . . . . . . . 52

4.3.2 Let’s see how Gaussian Copula did on Simulated Datasets . . 57

4.4 Segmented Gaussian Copula . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 The Gaussian Mixture Copula Model (GMCM) . . . . . . . . . . . . 60

4.5.1 Gaussian Mixture Copula Model Definition . . . . . . . . . . . 61

7



4.5.2 Fitting Gaussian Mixture Copula Models . . . . . . . . . . . . 63

5 Data Augmentation For Tabular Data 67

5.1 Data Augmentation Workflow . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Common Questions About Data Augmentation Workflow . . . . . . . 69

5.3 Justification for Tabular Data Augmentation . . . . . . . . . . . . . . 70

6 Synthetic Insurance Data (SID) Testbed 73

6.1 SID as a Solution to Collaborative Data Augmentation . . . . . . . . 73

6.2 SID Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 SID API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Entity API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Collaborator API . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Synthetic Data Generation in SID . . . . . . . . . . . . . . . . . . . . 79

6.4.1 Univariate Transforms for Continuous Data . . . . . . . . . . 80

6.4.2 Univariate Transforms for Non-Continuous Data . . . . . . . . 81

6.4.3 Multivariate-Transforms . . . . . . . . . . . . . . . . . . . . . 88

6.5 SID Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5.1 SID: Entity Presets . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 SID: Collaborator Presets . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Tabular Data Augmentation Experiments 95

7.1 General Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Experiment Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Univariate Modeling Experiment . . . . . . . . . . . . . . . . 97

7.2.2 Copula-Dependency Modeling Experiment . . . . . . . . . . . 97

7.2.3 Sampling Method Experiment . . . . . . . . . . . . . . . . . . 98

7.2.4 Amount of Synthetic Data Experiment . . . . . . . . . . . . . 98

8 Tabular Data Augmentation Results And Analysis 99

8.1 Univariate Modeling Results . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Copula-Dependency Modeling Results . . . . . . . . . . . . . . . . . . 102

8



8.3 Sampling Method Results . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3.1 Mixture Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3.2 Quantile Sampling . . . . . . . . . . . . . . . . . . . . . . . . 105

8.4 Amount of Synthetic Data Results . . . . . . . . . . . . . . . . . . . 107

9 Discussion 109

9.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 110

10 Conclusion 113

A Glossary 117

B Gaussian Mixture Copula Model Fitting Algorithms 119

B.1 Auto-Differentiation (AD) GMCM . . . . . . . . . . . . . . . . . . . 120

B.2 PEM GMCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C Full Experimental Results 125

C.1 Univariate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Copula Dependency Results . . . . . . . . . . . . . . . . . . . . . . . 127

C.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.3.1 Mixture Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.3.2 Quantile Sampling . . . . . . . . . . . . . . . . . . . . . . . . 130

C.4 Amount of Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . 130

D Gini Score Algorithm 133

9



10



List of Figures

2-1 This figure is a 100 bin histogram of the PRODUCT_INFO_4 column

in the Prudential_Life dataset. This dataset has 41, 566 samples

however this column only has 1, 085. The most frequent value in this

column is 0.076923077 which occurs with a frequency of 9234, which

means it is around 22.5% of the values in this column. . . . . . . . . 34

2-2 As examples of complex column dependencies, we plot bivariate scatter

plots where the Y-axis is the target column “loss” from the Allstate

dataset and the X-axes are the columns “cont2”, “cont10”, and “cont11”

respectively from the Allstate dataset. . . . . . . . . . . . . . . . . 35

3-1 Diagram of the Lorenz Curve. . . . . . . . . . . . . . . . . . . . . . . 38

3-2 Diagram of Lorenz Curve using the corrected Perfect Model Curve. . 41

3-3 A naive implementation of the Gini Score would be to use the rectangle

rule to approximate the area between curves, as shown on the left.

However, this will lead to errors as you can see the shaded region,

representing the rectangle rule approximation is not very accurate.

Instead, one should use the trapezoid rule. In this problem it gives the

exact area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-4 Highlevel Preprocessing Pipeline . . . . . . . . . . . . . . . . . . . . . 43

4-1 Visual depiction of the forward transform and reverse transform. 49

4-2 Plot of Positive Covariance Gaussian Copula Data. 𝐷 is real data and

𝐷′ is data sampled from a fitted Gaussian Copula. . . . . . . . . . . . 52

11



4-3 Plot of Zero Covariance Gaussian Copula Data. 𝐷 is real data and 𝐷′

is data sampled from a fitted Gaussian Copula. . . . . . . . . . . . . 54

4-4 Plot of Negative Covariance Gaussian Copula Data. 𝐷 is real data and

𝐷′ is data sampled from a fitted Gaussian Copula. . . . . . . . . . . . 55

4-5 Plot of Cross Data. 𝐷 is real data sampled from the Cross Data and

𝐷′ is data sampled from a fitted Gaussian Copula. . . . . . . . . . . . 56

4-6 Plot of Three Mixture Data. The top row represents the forward

transform. 𝐷 is real data sampled from the Cross Data and 𝐷′ is

data sampled from a fitted Gaussian Copula. . . . . . . . . . . . . . . 57

4-7 Segmenting training data into two pieces based on the target. We can

assume we are working with a regression dataset, and segment 1 rep-

resents clients with zero loss while Segment 2 represents clients with

non-zero losses. We train a Gaussian Copula Generator on each seg-

ment, and proportionately sample Synthetic Data from each generator. 59

4-8 In this figure, we plot a plot distribution and the results of clustering

the Cross Data from 4.3 with 5 clusters. The color of each data point

corresponds to its cluster assignment. Each column we vary the clus-

tering algorithms: GMM, MI-GMM, KMeans, and MI-KMeans. Each

row varies the number of added noise columns to the data, from top

to bottom row we have: [0, 5, 10, 100] added noise columns. . . . . . 64

4-9 In this figure, we plot a plot distribution and the results of clustering

the Three Mixture Data from 4.3 with 5 clusters. The color of each

data point corresponds to its cluster assignment. Each column we

vary the clustering algorithms: GMM, MI-GMM, KMeans, and MI-

KMeans. Each row varies the number of added noise columns to the

data: [0, 5, 10, 100]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5-1 Comparison of machine learning original workflow (a) and Data-Augmentation

workflow (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12



6-1 We assume entities have domain expertise on their dataset and can

clean the data into a tabular format that maximizes the inference

value of the data. The entity then fits a generator to their training

data and allows collaborators to sample synthetic data, denoted as 𝑥′

𝑦′. The collaborator will send the entity a Collaborator class with

a data_augmentation function which the entity can then run in a

sandbox environment (for example a docker container) to get test pre-

dictions 𝑦test, score these predictions, and update the collaborator with

the score. All the blue rectangles mark methods that are executed on

the entity’s machines, purple denotes code sourced from a collaborator. 76

6-2 Collaborators receive synthetic data from the generator and develop

a data_augmentation method that generates predictions for 𝑦′test, the

test split of the synthetic data. The collaborators can (on their lo-

cal machine) iterate and improve their data_augmentation method

locally using this score, and, when ready, validate on the real data

by uploading their data_augmentation method to the entity to get

feedback in the form of a score on real data. All the blue rectangles

mark methods that are executed on the entity’s machines, light purple

denotes any methods run on a collaborator’s machine, and the dark

purple block represents the collaborator. . . . . . . . . . . . . . . . . 77

13



6-3 In this figure, we have a dataset of low cardinality numerical data. The

three values in our dataset are 1, 2, and 3 and they have a frequency

of 10, 20, and 30 respectively. In figure 6-3a we provide a frequency

plot for the data. The Low Cardinality Numerical Transformer

transforms the data to subintervals of the unit uniform distribution,

and we plot the output in figure 6-3b. We maintain the ordering of

the data as we see all the transformed values for the data obey that

1 < 2 < 3. Additionally, we observe that 1 has empirical probability

𝑝1 =
1
6

and all the 1 values are scattered uniformly over [0, 1
6
]. Similarly,

the transformed data for 2 and 3 are scattered uniformly on a 𝑝2 = 1
3

and 𝑝3 =
1
2

sized sub-interval of [0, 1]. None of the intervals on which

1, 2, and 3 transformed data lie intersect, which ensures we can reverse

the transform by sampling a point uniformly on [0, 1] and mapping it

to 1, 2, or 3 depending on which value’s subinterval the point lies in. . 83

6-4 In this figure, we give an example of a mixed discrete dataset in figure

6-4c. We show the 1D scatter plot of the Data, coloring points by

where they fall in relation to the discrete points in figure 6-4d. Finally,

we transform the data using the Ordinal Mixed Transformer, which

first takes all continuous data in (0, 1) and maps it to the lowest interval

in the unit uniform distribution. Then it maps the discrete data equal

to 1 to the next lowest, and so on until we get to the data in (3, 4) which

is mapped to the highest interval. The width of the intervals that each

color maps to is the number of points for that color
the total number of points , the empirical probability

of the data in the interval. . . . . . . . . . . . . . . . . . . . . . . . . 87

8-1 Bar plot of the Gaussian Copula data augmentation results. We use

the Spline continuous transform, and plot the ML score improvements.

The improvement is averaged over 10 runs, and the black lines denote

a standard deviation for the sample mean. . . . . . . . . . . . . . . . 100

14



8-2 Bar plot of the Gaussian Copula data augmentation results. We use the

TOR Multivariate-Transform, and plot the ML Score improvements

over all Univariate Continuous Transforms. The improvement is

averaged over 10 runs, and the black lines denote one standard deviation.101

8-3 We report the ML score improvement for each Copula model and

dataset combination, using the TOR Multi-Transform. 𝑟 denotes

the number of mixtures for the GMCM models. Note that the PEM-

GMCM(r=3) errors when it assigns zero probability to a mixture, mak-

ing it fail for the Fraud 2 dataset. . . . . . . . . . . . . . . . . . . . . 102

8-4 3 and 20 mixture AD-GMCM Mixture Sampling results. We plot the

ML Score Improvement for the Mixture with the highest Test Set Score.

The TOR Multivariate-Transform is used. . . . . . . . . . . . . . . 104

8-5 This figure presents linear regression plots with 95% confidence inter-

vals of the test set ML score improvement vs validation set ML score

for each dataset when sampling using the Mixture Sampling method.

We are sampling and augmenting with synthetic data sampled from

the 20 mixture AD-GMCM. We computed 10 trials for each mixture,

for a total of 200 points. . . . . . . . . . . . . . . . . . . . . . . . . . 105

8-6 Quantile with highest Average Test Set ML Score after Data Augmen-

tation is plotted for 3 and 20 Cluster AD-GMCM. There are no results

for the Fraud 2 dataset as it is not tractable to run Quantile sampling

on it as it has very high dimensionality categorical columns. . . . . . 106

8-7 This figure presents linear regression plots with 95% confidence inter-

vals of test set ML score improvement vs validation set ML score. Each

point is from augmenting with synthetic data conditioned on a single

quantile, and is generated by a 20 cluster AD-GMCM. We collect 10

points for each quantile. We observe that there is no consistent posi-

tive correlation across datasets between performance on the validation

and test sets when augmenting with Synthetic Data. . . . . . . . . . 107

15



8-8 Results After Tuning the amount of Synthetic Data for Data Augmen-

tation. We Report Results for 3 and 20 Cluster AD-GMCM. . . . . . 108

D-1 Pred_Sort_Accumulate and Actual_Sort_Accumulate Algorithm Ex-

amples. 𝑝 and 𝑎 columns represent predicted and actual loss values. . 133

16



List of Tables

1 Notation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Statistics for public datasets. See Table 2.2 for a description of each

column and its values. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Column name and meaning dictionary for table 2.1 . . . . . . . . . . 34

3.1 Gini Score Notation Table . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 XGBoost Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Gaussian Copula Notation Table . . . . . . . . . . . . . . . . . . . . 48

4.2 This table summarizes bivariate example datasets that are used to

show what kinds of data the Gaussian Copula can successfully model. 51

4.3 This table summarizes bivariate example datasets that are used to

show the Gaussian Copula failure modes. . . . . . . . . . . . . . . . . 52

4.4 GMCM Notation Table . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Notation for Data Augmentation and SID Table . . . . . . . . . . . . 68

6.1 Summary of SID Univariate Continuous Transforms. . . . . . . . 81

6.2 Summary of SID Univariate Non-Continuous Transforms. . . . . . 82

17



6.3 Summary of SID Multivariate-Transforms. These transforms take

a full dataset and transform it to have uniform marginal distributions.

The Multivariate-Transforms vary in which Univariate distributions

the are designed to model. The Cont, Cat, and Mixed columns in the

table refer to whether the multivariate transform can model univariate

marginals for data that is continuous, categorical, or mixed continu-

ous and discrete respectively. The Low column in the table refers to

whether the multivariate transform can model univariate marginals for

low cardinality numeric univariate data. . . . . . . . . . . . . . . . . 88

6.4 Summary of SID Multivariate-Transforms. . . . . . . . . . . . . . 91

6.5 Summary of SID Collaborator classes. Each Collaborator class per-

forms Tabular Data Augmentation by generating Synthetic Data from

a specific Copula Generator. Collaborators use Multivariate-Transform

to transform the data to have uniform marginals before fitting the Cop-

ula Generator. All of the previously defined Multivariate-Transform

are supported for each Collaborator class. . . . . . . . . . . . . . . 93

B.1 GMCM Fitting Notation Table . . . . . . . . . . . . . . . . . . . . . 119

C.1 Gaussian Copula Experimental Results - Beta Distribution with Unconditional

Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Gaussian Copula Experimental Results - 3 Mixture BMM Distribution

with Unconditional Sampling . . . . . . . . . . . . . . . . . . . . . 126

C.3 Gaussian Copula Experimental Results - varying multivariate-transforms

with Spline Distribution with Unconditional Sampling . . . . . . . 126

C.4 Segmented Gaussian Copula - Unconditional Sampling . . . . . . . 127

C.5 PEM-GMCM, 3 Mixture - Unconditional Sampling . . . . . . . . . 127

C.6 AD-GMCM - 3 Mixture - Unconditional Sampling . . . . . . . . . 127

C.7 AD-GMCM - 20 Mixture - Unconditional Sampling . . . . . . . . . 128

C.8 AD-GMCM - 3 mixture mixture sampling with TOR Multivariate-Transform129

18



C.9 AD-GMCM - 20 mixture mixture sampling with TOR Multivariate-Transform.

Top three mixtures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.10 AD-GMCM - 3 mixture quantile sampling - Multivariate-Transform

TOR. Top three Quantiles scores for each Dataset and the corresponding

Quantile Columns that was conditioned on. . . . . . . . . . . . . . . . 130

C.11 AD-GMCM - 20 mixture quantile sampling Multivariate-Transform

TOR. Top three quantiles scores for each Dataset and the corresponding

Quantile Columns that was conditioned on. . . . . . . . . . . . . . . . 130

C.12 AD-GMCM, 3 mixture - Tuned Unconditional Sampling . . . . . . 131

C.13 AD-GMCM, 20 mixture - Unconditional Tuned Sampling . . . . . 131

19



Variable Definition

D 𝑚 dimensional random variable for samples of real data. All random
variables are bold, and we use the notation that the non-bold, 𝐷 in
this case, is an 𝑚×𝑛 matrix of 𝑛 samples of the random variable. 𝐷
represents a real dataset. D has PDF 𝑓(·). All PDFs are lower case,
and the captial case, F(·), is the CDF. Marginal PDFs and CDFs
use the notation 𝑓𝑗(𝐷𝑗). Inverse CDFs use the notation F−1(·). We
use the following notation interchangably: 𝑓(D) = 𝑓(D1, . . . ,D𝑚)
for all PDFs.

U is D after a marginal CDF transform.
Ω Ω = Φ−1

𝑗 (U). Ω is chosen such that it has a tractable sampling
distribution.

Ω′ represents samples of the random variable Ω from the PDF 𝑞(Ω).
U′ is the marginal CDF transform of Ω′ such that U′

𝑗 = Φ𝑗(Ω
′
𝑗)∀𝑗.

D′ represents Synthetic Data. It is the marginal inverse CDF transform
of U′ such that D′

𝑗 = 𝐹−1
𝑗 (U′

𝑗)∀𝑗. 𝐷′ is an 𝑚×𝑛′ matrix of samples
of the random variable.

𝑝 represents an empirical probability.
𝑟 is the number of mixtures for a mixture model.
𝑥, 𝑦 represents input and target samples for a dataset, where 𝑥 =

(𝐷1, . . . , 𝐷𝑚−1) and 𝑦 = 𝐷𝑚. 𝑥𝑖 and 𝑦𝑖 represent the 𝑖th sample’s
features and target.

𝑟 is the number of mixtures for a mixture model.
𝑀 Machine learning model.

Table 1: Notation Table
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Chapter 1

Introduction

More data is being produced and recorded today than ever before, largely thanks

to the ever-increasing proliferation of data collection and storage technologies. At

the same time, academics who study and work with data, whether to build new

analysis methods, identify challenging problems, or simply test their methods, are

able to access only a very small percentage of the many rich and unique datasets that

might help them move their fields forward. This problem is especially profound for

researchers working with tabular data, because privacy concerns keep many datasets

in this format from being publicly released. In contrast, there are a number of large

open datasets that can be used for image or natural language processing, and more

can be compiled through scraping1. As a result of this lack of availability, a few types

of tabular datasets have become disproportionately popular in academic communities

using data for their research. These include:

Benchmarking datasets. These datasets are used by the academic community

to benchmark their methods. They can be task-driven (like OpenML2) or general-

purpose, like those used in a variety of datasets available through UCI3. Often, these

datasets are less complex than their real-world counterparts.

1In computer vision and natural language processing, although labeling can be a difficult problem,
the sheer availability of data is generally not, except in certain cases where very specific datasets
are required (for example, x-rays for fractures).

2https://www.openml.org/
3https://archive.ics.uci.edu/ml/datasets.php
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Competition datasets. These datasets are released by data science competition

platforms like Kaggle4. While widely available and sometimes reflective of industrial-

world complexities, these are not generally widely adopted, potentially due to restric-

tions on redistribution rights.

Open datasets. A third category of datasets are those collected through a publicly

available API, such as github api5 or the isodata 6. These datasets have interesting

real world properties and come from real-world open systems; however, there are not

very many of them.

While previously unacceptable in research publications, proprietary datasets are

becoming more acceptable at research conferences, provided the methods are also

applied to publicly available data. Proprietary datasets are rich, complex and can

lead to fruitful research endeavors; including proprietary datasets can give papers

additional credibility and bragging rights even though their results may not be veri-

fiable. However, there has been no systematic effort to make such datasets available

for research.

A possible solution to this accessibility problem is Synthetic Data. Over the

past few years, the ability to generate high-quality synthetic tabular data has in-

creased tremendously. Methods and open source software are available for producing

Synthetic Data for tabular[50, 55], time series[23, 54, 32], and multi-table datasets.

Synthetic datasets are also becoming more realistic, as progress is continually made

in generating synthetic phone numbers and other unique data types. Such datasets

may be appealing to entities that have a responsibility to protect users’ private data

but still want to work with outside parties on collaborative data science efforts. Such

an entity could train a synthetic data (SD) generator on their private data, sample

Synthetic Data, and share the newly-generated Synthetic Data with collaborators.

Synthetic Data modeling depends on the prediction task or use case one expects to

use it in.

In this thesis we focus on the insurance industry, which is interested in a number

4https://www.kaggle.com/
5https://docs.github.com/en/rest?apiVersion=2022-11-28
6https://pypi.org/project/isodata
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of prediction problems. Here we briefly define two common problems we identified:

Loss Prediction the task of predicting how much money a particular insurance client

will lose for the entity. This task is business critical for the industry; improvements

in loss prediction can help us better understand what factors put people and compa-

nies at higher risk for loss, identify interventions, and take appropriate preventative

measures [56]. Examples of past work for this task is predicting high loss claimants

for auto-insurance[8, 46] or health insurance[34].

Fraud Prediction this is a binary classification task, where given information about

an insurance loss, you must classify whether the loss is fraudulent. An example of

past work for this task is predicting fraud for auto-insurance[4].

Within the scope of these prediction challenges, the ML task itself can be split

into three types: model building (M), feature engineering + model building (FE+M),

and Data Augmentation + model building (DA+M). An entity sharing data may be

interested in any of these three specific challenges and may craft the task to augment

internal efforts to develop the model. Datasets in this domain also present some

domain-specific challenges for creating synthetic data generators, requiring domain-

specific modeling solutions.

The majority of datasets, including the examples of past work given in the pre-

diction task descriptions [8, 46, 34, 4], are not shared publicly or broadly with the

research community. This can be due to privacy (or accessibility regulations) and

also a lack of a motive for an entity to put in the effort to share this data broadly.

However, we argue that both the privacy constraint and motivation hurdle can be

overcome through a a synthetic data-driven sharing, and we define this solution

in this thesis.

In creating a synthetic data-driven sharing solution, an entity may face several

questions and challenges. First, how close to reality should the synthetic data be?

Often the real data will be multi-table and may include a variety of data types, such

as phone numbers and emails. Should the entity apply specific generators to create

synthetic data for all tables and data types? In fact, many data science competitions

have adopted synthetic data generators – for instance, the popular platform Kaggle
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shared a variety of synthetic datasets under their Tabular Data Playground series in

20227. A review of these datasets shows that none contained data types other than

categorical/numeric, and almost all were single-table datasets.

Often times the metadata, like the column names, could reveal what the entity

is collecting. Should these names be released as well? At present, many sites that

release datasets also adopt column-name anonymization. Even if one decides to create

a dataset that is as realistic as possible, how can this aforementioned realism be

meaningfully evaluated while simultaneously measuring any possible privacy leakage?

This also creates a second challenge: what motivates the entity in question to put

in the effort required to share this dataset with the research team, and what are its

motivations?

To address the challenges that come with creating and sharing synthetic data,

we propose the development of Synthetic data testbeds. These testbeds have the

following properties:

• Task driven: Synthetic data testbeds are driven by a machine learning task:

DA+M, FE+M, or M. Being task-driven allows for the development of soft-

ware frameworks around the synthetic data itself. This enables entities to take

the most advantage of the research performed on the data they share, which

incentivizes the releasing entity.

• Domain specific: These testbeds are designed for a specific domain, and con-

sider the common or unique properties which datasets in that domain typically

feature. It also allows for the creation of domain-specific rules for different pre-

diction challenges and different tasks. This enables customization of the syn-

thetic data generation methods and invocation of the appropriate evaluation

methods.

• Framework oriented: Along with being task driven, we propose these testbeds

have an API between entities and collaborators, making it easy for the releasing

entity to adopt models created by collaborators and provide feedback to the

collaborators.
7https://www.kaggle.com/competitions/tabular-playground-series-jan-2022
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While these testbeds could be useful across many industries, here we detail their

specific applications in the insurance domain. We call this the SID (Synthetic Insur-

ance Data) testbed and propose that the insurance industry adopt this framework

and utilize it to share datasets publicly and/or to share data with collaborators in a

private setting.

In order to test the SID testbed, we need insurance data which is most of the

time private. However, we were able to find a limited number of publicly available

insurance datasets detailed in section 2 which we use to test a prototype of SID.

We create synthetic data generators trained on these datasets, and provide sampling

access and task-specific APIs that are useful for both collaborators and the releas-

ing entity. Our testbed enables releasing entities to follow a systematic procedure

to generate, evaluate, and share synthetic data, and subsequently assess and adopt

solutions created by researchers working on the synthetic data. We specifically focus

on the Data Augmentation(DA+M) task for the aforementioned prediction problems.

1.1 Research Questions

For creating the SID testbed, our first question is how we should model real data for

Data Augmentation. Our Research Questions(RQ) for tabular Data Augmentation

and for SID are:

RQ1 Is accurate univariate column modeling important for tabular Data Augmenta-

tion?

RQ2 Is accurate column dependency modeling important for tabular Data Augmen-

tation?

RQ3 Given a generator, how should we sample for data augmentation?

RQ4 How many Synthetic Data samples should we generate for data augmentation?

RQ5 How could Synthetic Data be used in an ML workflow between an entity and

collaborators such that both entities and collaborators benefit. Specifically, a

25



workflow must benefit entities by allowing them to receive models from collabo-

rators they can easily integrate for the problem they are interested, all without

sharing their private data. Additionally, a workflow must benefit collaborators

by allowing them to receive feedback (in the form of ML metrics) on their ML

model’s performance on real data.

1.2 Contributions of this thesis

In this thesis, we attempt to develop synthetic data for insurance datasets via the

following contributions:

• Tabular Data Augmentation Intuition We run controlled experiments to

better understand when and how to apply Data Augmentation on tabular

datasets. We restrict our exploration to several Copula methods for modeling

the tabular data and generating synthetic data. We experiment with different

sampling methods paired with these generators and evaluate these methods in

terms of the predictive performance when augmenting with the generated data.

• Synthetic Data generation for insurance dataset. We develop a syn-

thetic data generation method for the insurance datasets we work with. We

discuss how to handle high dimensions, high cardinality categorical variables,

non-Gaussian data, and other complexities.

• Workflow for Data Augmentation. We present a workflow for Tabular

Data Augmentation for private datasets. We provide solutions for a variety of

the nuances and challenges which exist in this process.

The thesis is organized as follows: Section 2 introduces publicly available insurance

datasets, discusses the challenges and properties prevalent in insurance datasets, and

introduces a simulated dataset with these properties. Section 3 introduces the ma-

chine learning pipeline we use for our experiments. In Section 4 we cover related work

on Synthetic Data generation using Gaussian Copula models, Gaussian Copula failure

modes, and models that can over come these failures. In Section 5, we cover related
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work on Data Augmentation. Section 6 proposes the SID Testbed for collaborating

on Synthetic Data augmentation to improve ML performance on private tabular in-

surance datasets. In section 7, we design controlled experiments that leverage the

SID API to answer our research questions on Data Augmentation. Section 8 details

our experimental results and analysis. Section 9 covers future works and limitations.

Section 10 gives our conclusion and future works.
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Chapter 2

Insurance Datasets

In this chapter, we describe the publically available insurance datasets we compiled

to evaluate our data augmentation methods and identify synthetic data generator

modeling challenges inherent in these datasets. We are assuming an insurance entity

is interested in the loss prediction tasks and thus we attempt to use a subset of these

datasets for that task.

The datasets we found are each created for a specific inference purpose: fraud pre-

diction (the task of predicting whether a loss claim is real or is fraud), loss prediction

(the task of predicting the monetary loss for an insurance client), or binary loss pre-

diction (the task of predicting whether an insurance company will have a monetary

loss greater than zero). Below we list which task each dataset is created for:

1. Loss Prediction allstate, emicen auto, emicen rail, prudential life 1,

2. Binary Loss Prediction home travel car portos

3. Fraud Prediction Fraud 2, databricks, Fraud 4.

In the following sections of this chapter, we describe these datasets, identify sta-

tistical and qualitative properties describing each dataset, and note the common

challenges found with these datasets.

1This dataset is an edge case, as the task for this dataset is to classify the domain expert labeled
ordinal risk associated with an insurance client.
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2.1 Dataset Descriptions

Here we provide descriptions of each dataset, such as its origins, whether it is anonymized,

and why it was created.

allstate [2]

This dataset was posted by Allstate as a part of a data-science competition on

Kaggle. The goal of the competition is to create an ML model that can predict the

loss for a client. It is unclear how exactly the dataset was generated and what type of

insurance the dataset covers as it is not specified and Allstate offers a range of types of

insurance coverage. All column names are fully-anonymized and have non-descriptive

column names and values.

home [7]

This dataset was created for an R programming language class at Université de

Technologie de Troyes. The course is a part of the university’s big data masters

program. The instructor published the data to allow others exploring data-science to

experiment on the dataset and get feedback on improving the dataset. The columns

names and values are not anonymized. Furthermore, descriptions of each column’s

meaning are provided. The dataset has a binary loss variable representing if a home

had a claim in the past three years which could allow for training a binary loss

classifier. It is unclear if there is an insurance company involved with this dataset,

based on the given information.

travel [37]

This data is derived from a Singaporean travel insurance entity. It is was created

for the task of Binary Loss Prediction. It has a relatively low number of columns,

but the columns have clear descriptions and names. The column values are not

anonymized.

car portos [43] This dataset was released by Porto Seguro, one of the largest insur-

ance providers in Brazil. It was released in a Kaggle competition to predict binary

loss for automobile insurance claims. The categorical column values are changed as

they are all binary (0, or 1), and column names are fully anonymized. The column
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names have a naming convention to indicate groups which have a relationship.

emicen auto & emicen rail [16, 17] These datasets were provided by Emicen to

demo their EmicenPattern data-analysis tool. Both datasets include a loss column

and provide column names and column values that are not anonymized.

prudential life [25] This dataset was released by Prudential Life Insurance for a

Kaggle competition. The goal for this dataset is to classify a client’s risk automat-

ically, rather than manually have employees do so. The target column is ordinal,

has eight levels, and represents the risk category that the insurance company assigns

to a client. The column values are normalized and column names are grouped into

interpretable high-level groups with provided descriptions. For example, there are 41

columns labeled Medical_History_1-41 which represent normalized variables related

to a client’s medical history.

Fraud 2 [18] This dataset was released on Kaggle for the task of fraud prediction.

There are three tables in this dataset:

1. Employee Data - Data pertaining to employees working on the insurance claim.

2. Vendor Data - Data pertaining to the fraud investigation vendor that helped

investigate the claim.

3. Claims Data - The data pertaining to the insurance client and their claim.

The dataset has interpretable column names. Although this dataset is released

for fraud prediction, we are using it for loss prediction, and only using the Claims

Data table.

databricks [13] This dataset was published by Databricks for a fraud-detection demo

of their data-analysis product. The data has interpretable column names. Although

this dataset is released for fraud prediction, we are using it for loss prediction.

Fraud 4 [44] This dataset was created for the task of fraud prediction. The source

of the data is not specified. Although this dataset is released for fraud prediction, we

are using it for loss prediction.
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2.2 Dataset Statistics

We present properties and quantitative statistics describing each insurance dataset in

Table 2.1. Explanations on what each column and column value represent are given

in Table 2.2.

2.3 Dataset Challenges

In this section, we detail the challenging properties prevalent in insurance datasets.

• Non-Gaussian distributions: Several insurance columns, especially loss columns,

generally have a non-Gaussian distribution. We ran a one-sample Kolmogorov-

Smirnov test(kstest), with a p-value threshold of .005, over all of our continu-

ous variable columns (columns that are not categorical or date time). For each

column we took the kstest pvalue between the column sample data and a Gaus-

sian distribution fitted to the column sample data, and found that 98.4% of

the columns had a pvalue below the threshold, and thus follow a non-Gaussian

distribution. This shows that most columns in our dataset are non-Gaussian.

• Mixed Continuous and Discrete columns: Some columns are mixed con-

tinuous and discrete random variables. We give an example in figure 2-1 where

the column cannot be modeled as a common continuous random variable that

assumes zero probability of repeating values (such as a Gaussian, Uniform, or

Beta distribution). A better approach is to model this as a mixed continuous

and discrete variable where values with very low frequencies are modeled with

a common continuous distribution, while values with high probability mass are

modeled discretely.

• High dimensional categorical columns: There are two types of high di-

mensional categorical columns:

– Unique Valued Categorical columns. For these columns, every row (in the

training and test data) has a unique value. Examples of these would be
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Column Name Definition

Anonymity (Anon) FA - Fully Anonymous dataset R - Raw Inter-
pretable Data SD - Interpretable Synthetic Data

Multi-Table (MT) Whether the dataset has multiple tables.
Loss Exists (LE) Whether the dataset have a Loss column.
Premium Exists (PE) Whether the dataset has a Premium column.
Rows The number of rows.
Cols The number of columns.
Cat The number of categorical columns.
Cont The number of continuous columns.
Loss Zero (LZ) The number of rows with Zero Loss (or minimum

ordinal risk for the prudential life dataset).
Loss Unique (LU) The number of unique values in the Loss column.
Loss Data Type (LDtype) Datatype of loss column. Value of cat means col-

umn is categorical.
Average Number of Categories (|Cat|) The average number of categories in each categori-

cal column.
Max Categories (max (Cat)) The maximum number of categories in all categor-

ical columns.

Table 2.2: Column name and meaning dictionary for table 2.1

Figure 2-1: This figure is a 100 bin histogram of the PRODUCT_INFO_4 column in
the Prudential_Life dataset. This dataset has 41, 566 samples however this column
only has 1, 085. The most frequent value in this column is 0.076923077 which occurs
with a frequency of 9234, which means it is around 22.5% of the values in this column.
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street addresses, a full name, or a bank account number.

– Non-Unique Categorical columns. These are categorical columns. These

columns have inference benefits as they can help separate data, however

in insurance datasets, these tend to have high carnality (a large number

of unique values). This means that the typical one-hot encoding can be

intractable for some modeling tasks such as training Gaussian Copula Syn-

thetic Data generators.

• Complex Column Dependencies Column dependencies between features in

Figure 2-2: As examples of complex column dependencies, we plot bivariate scatter
plots where the Y-axis is the target column “loss” from the Allstate dataset and the
X-axes are the columns “cont2”, “cont10”, and “cont11” respectively from the Allstate
dataset.

Insurance data are complex. For example in figure 2-2 we see there is het-

eroskedasticity (changing target variance as we change a predictive feature

value) and nonlinear relationships in the Allstate dataset between the tar-

get column “loss” and the columns “cont2”, “cont10”, and “cont11”. Models that

make strong assumptions on the column relationships will likely fail to capture

the complex interactions between variables.
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Chapter 3

Insurance Prediction Problems and

Our Machine Learning Pipeline

In this chapter we define:

• The metrics we use to measure prediction performance.

• Our Machine Learning pipeline.

3.1 Measuring Prediction Performance with Gini Score

To measure prediction performance for Loss prediction, we use the Gini score. We

now give a clear description of the Gini score as this metric is not commonly used in

ML literature and is a unique measure of model performance.

Gini Score

The Gini Score is a metric that indicates the model’s ability to preserve overall rank,

and thus have discriminatory power. It is often used for loss prediction. In the context

of loss prediction, we are judging how effective the model is at differentiating between

“bad” samples (with high loss) and “good” samples (with low loss). In this section

we give intuition for the Gini Score, and provide some beneficial modifications to
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Variable Definition

UA The unachievable area. It is cacluated as the area under the “Perfect
Model”.

𝐴 This is the area between the “Lorenz Curve” and the “Random
Model”.

𝐵 This is the area between the “Perfect Model” and the “Lorenz Curve”.
Gini Score is 𝐴

𝐴+𝐵
.

𝑦 Represents the actual loss for all clients. 𝑦𝑖 represents the actual loss
for the 𝑖th client.

𝑦 Represents the predicted loss for all clients. 𝑦𝑖 represents the pre-
dicted loss for the 𝑖th client.

𝑖 indexes insurance clients.
𝑛 Is the number of insurance clients.
cum_𝑦𝑖 Is the cumulative sum of the actual losses from client 1 to client 𝑖

when ordering clients by 𝑦 from low to high.

Table 3.1: Gini Score Notation Table

Figure 3-1: Diagram of the Lorenz Curve.

calculating it. Note that we provide notation table 3.1 for quick reference of variables

used in this section.

Somers’ Delta (Somers’ D) is used to measure the ordinal relationship between

two variables. In the context of loss prediction, let’s say that we have two pairs (𝑦𝑖,

𝑦𝑖) and (𝑦𝑗, 𝑦𝑗), we are expecting either:
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1. 𝑦𝑖 > 𝑦𝑗 and 𝑦𝑖 > 𝑦𝑗 or

2. 𝑦𝑖 < 𝑦𝑗 and 𝑦𝑖 < 𝑦𝑗

where 𝑦𝑖 is the loss of sample 𝑖 and 𝑦𝑗 is the predicted loss of sample 𝑖.

Put simply, say a model predicts the samples’ loss and orders them from lowest

to highest. If this ranking matches the real-life ranking of samples by loss, the model

is deemed perfect.

The way the Gini score is calculated is using the “Lorenze curve”. We plotted the

“Lorenze curve” in figure 3-11 and describe it below.

The blue line is the “Lorenz curve” that is constructed using the predicted loss (𝑦).

Basically: all the samples are ordered by the 𝑦 from low to high. Then you are

able to plot every data point ( 𝑖
𝑛
, cum_𝑦𝑖) in the diagram with:

X-Axis 𝑖
𝑛

denoting the cumulative population proportion of 𝑖 clients. Since

there are 𝑛 clients, the proportion is 𝑖
𝑛
.

Y-Axis cum_𝑦𝑖 denoting the cumulative actual loss.

The intuition here is just to put every client that is deemed by the model to

have a low loss (i.e., less risky) on the left of the x-axis and the high risk clients

on the right.

The red line is known as “the Line of Equality” which is expected to be produced

by a “random model”. To explain it, let’s imagine a scenario in which an insur-

ance company has 100 clients and lost $300. That suggests for each client the

insurance company has, it lost 300
100

= 3 dollars on average. So if we use a random

model, i.e., a model which randomly assigns 𝑦 to every client, the cumulative

actual loss in percentage will always equal the proportion of population. In the

example, let’s say when the proportion of the population is 40%, the cumulative

1Note that some past work [20] use proportion of the insurance premium (where premium is
the amount a client payed the insurance company for coverage) the as the X-axis, however not all
datasets have premium columns so we use proportion of population instead. This is equivalent to
assuming all clients have an equal premium.
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actual loss should be expected to be 40% of the total actual loss, which is $120.

The intuition here is that the random ranking of samples will lead to individual

having an averaged loss of $3.

The green line is for a situation in which all the cumulative actual loss is in one

sample (the last individual) and the model was also able to rank it perfectly -

a.k.a when the actual samples were sorted based on the ranking of the model’s

predictions, the ranking was accurate. For example, an insurance company has

100 clients in total and lost $300 overall; now the green line means that for

the first 99 clients, the insurance company lost $0, but for the last client, the

insurance company lost all $300. This situation may not happen in reality,

but modeling it provides a way to calibrate/normalize the upper bound Gini

score values: That is, it is the hardest data for a model to have created a

perfect ranking for, so it is useful to know whether the model could succeed in

predicting this ranking.

The Gini Score is calculated as the ratio of:

• the area (A) between the red line (random model) and the blue line (Lorenz

curve) to

• the area (A+B) between the red line and the green line. As a note, (A+B) is

always equal to 0.5.

There are two problems when calculating Gini score that we address here. First is

the normalization factor (aka 𝐴+𝐵): The green line is not reachable given the data.

To this end, we need to deduct the unreachable area from the denominator (A+B).

To determine the unreachable area based on the given data, we first need to order

all the samples by the ground truth loss and re-plot the Lorenz curve in this order,

as done in figure 3-2. The area (UA) behind this Lorenz curve is the unreachable

area that we should deduct from the original denominator. So the final denominator

should be (0.5 - UA).

Here are our thoughts on using 𝐴+𝐵 = 0.5 as the normalization factor.
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Figure 3-2: Diagram of Lorenz Curve using the corrected Perfect Model Curve.

When it is not a problem Comparison of two models, 𝑀1 and 𝑀2. Both either

get divided by 0.5 or area calculated by using 0.5-UA. So the comparison still

holds regardless of the denominator used as it is constant in both cases.

When it is a problem This has an effect on the pursuit of the best model. In

a scenario where the predicted model is given the exact ranking of the loss,

depending on how the actual ranking is (if the perfect model’s Lorenze curve

is closer to the random model line), we could give a score that is far less than

1 - implying that it may be possible to improve the prediction model, when

actually it is not possible. This creates a problem by giving the impression that

some predictive model could get a better Gini score when this is not true.

In this thesis we use 𝐴+𝐵 = 0.5−UA as the normalization factor to get a gauge of

how close we are to the best ordinal ranking we can get on a given dataset.

The other challenge is actual calculation of the areas 𝐴 and 𝐴 + 𝐵. The area 𝐴

can naively be computed using the rectangle rule2. It is calculated by the sum of the

area of 𝑛 rectangles, where the 𝑖th rectangle has:

2The same procedure can be done to calculate the area 𝐴 + 𝐵, but instead of sorting by the
predicted loss, 𝑦, you sort by the actual loss, 𝑦.
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Figure 3-3: A naive implementation of the Gini Score would be to use the rectangle
rule to approximate the area between curves, as shown on the left. However, this
will lead to errors as you can see the shaded region, representing the rectangle rule
approximation is not very accurate. Instead, one should use the trapezoid rule. In
this problem it gives the exact area.

Height proportion of the population for 𝑖th ranked sample (sorting with 𝑦) minus

the cumulative Actual loss cum_𝑦𝑖. The height is 𝑖
𝑛
− cum_𝑦𝑖.

Width Proportion of a single individual, which is 1
𝑛
.

We propose using the Trapezoidal rule to calculate the area 𝐴 (and 𝐴 + 𝐵), as

it is more accurate. In figure 3-3, we compare how the rectangle rule and trapezoid

rule compute area. Theoretically, the Gini score score using the Somers’ D measure-

ment should take on a value from −1 to 1, with −1 being a perfect negative ordinal

relationship and 1 being a perfect ordinal relationship (meaning the predicted order

is exactly the same as the ground-truth order). However, using rectangle integration

can lead to the resulting score out of the range [-1, 1], while using a trapezoid can

obtain the most accurate value and guarantee the value range from −1 to 1. See the

full algorithm for Gini score, using the trapezoid rule, in Appendix Section D.
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3.2 Our Machine Learning Pipeline

We perform two stages of preprocessing in our pipeline. The first stage is general

preproccessing. General preprocessing converts raw input data into processed data

on which we can train Synthetic Data generators. SD generators generate synthetic

Processed Data. We call the second stage ML Model Preprocessing. This stage takes

in processed data and converts it into machine learning model input data that we

feed direcly to our ML model. See figure 3-4 for a visual of the preprocessing Pipeline

we described.

Raw
Data

Overall Preprocessing

Processed
Data

General

Preprocessing

ML Model

Preprocessing
ML Model
Input Data

Figure 3-4: Highlevel Preprocessing Pipeline

We describe our General Preprocessing and ML Model Preprocessing pipelines in

detail below:

General Preprocessing

We perform General Preprocessing on the raw insurance data as follows:

1. Parse date-time variables into python datetime format

2. Drop ID columns

3. Drop rows with missing target column values

4. Imputing missing values in non-target columns

5. Data is shuffled before splitting into 30% test data and 70% training data.

6. Of the training data, withhold 10% as validation set data (used for XGBoost

early stopping).
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ML Model Preprocessing

For our ML Model Preprocessing we do the following:

1. Encode datetime variables as (year, month, date)

2. Encode categorical variables using one-hot-encoding

3. Normalize continuous variables (including the date time variable encodings) by

subtracting mean and dividing by standard deviation.

We use Xgboost regressor and classifier [11] for regression and classification tasks

respectively. We tune the hyperparameters3, documented in table 3.2, using tree-

structured Parzen Estimator [5] in the Optuna library [1]. We use 10-fold cross

validation in tuning. The XGBoost model is chosen for this task as gradient tree

methods like it are the most common predictive models used in the insurance industry

for tabular data.

Hyperparameter XGBoost Parameter Distribution (Range)

Tree method to use tree_method hist
Number of gradient boosted trees n_estimators 100
Validation metric early stopping early_stopping_rounds 100
𝐿1 Regularization term alpha log-float(1e−6, 2)
𝐿2 Regularization term lambda log-float(1e−6, 2)
Minimum required split loss gamma log-float(1e−6, 64)
Subsample ratio subsample float(0.5, 1)
Max tree depth max_depth integer(2, 20)
Learning rate learning_rate log-float(1e−3, 0.1)
Subsample ratio of columns colsample_bytree float(0.3, 1)

Table 3.2: XGBoost Hyperparameters

For all experiments involving the generation of synthetic data, we repeat the

experiment ten times (generating ten different synthetic data batches) and report the

average and standard deviation of the Gini Scores returned from each trial.

3See this guide to learn more about Xgboost hyperparameters
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We only run our experiments on a subset of the datasets from section 2. In table

3.3, we present the baseline Gini Scores for loss prediction (with no Data Augmenta-

tion) on these datasets.

Dataset Databricks Emicen Auto Emicen Rail Fraud 2

ML Score 0.626 0.953 0.866 0.908

Table 3.3: Baseline Results
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Chapter 4

Evaluating and Enhancing Copula

Based Synthetic Data Generation

In this thesis, we experiment with using a Data Augmentation workflow to leverage

Synthetic Data and improve ML performance. There are several Synthetic Data gen-

erators that learn the probability distribution of columns of tabular data and allow

the sampling of new rows from the model. GAN models ([50] [57], [39]) are very

popular in the space of tabular generator models; however, they are not interpretable

and thus offer little help in pushing forward the understanding of data augmentation

for tabular data. The Copula models can be interpreted more easily as they sepa-

rate univariate column distribution modeling from modeling the joint distribution of

variables.

Gaussian Copulas are popular, but make assumptions on the joint distribution of

the data. Gaussian Copulas can be made more flexible, with the goal of handling

complex column dependencies, by Segmenting or using a generalization of them such

as the Gaussian Mixture Copula model. With these generalizations in mind, Copulas

are a good option for developing Synthetic Data generators for Data Augmentation

and analyzing why they do (or do not) help. In this chapter, we review general

Copula theory, define the Gaussian Copula model, analyze it’s failure modes, and then

introduce two models to overcome these failures: the Segmented Gaussian Copula and

the Gaussian Mixture Copula model.
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4.1 Background

We provide brief background on the theory of Copulas, see [15] for a deeper dive into

Copula theory.

4.1.1 Copula Theory

Variable Definition

𝑓(D Real data PDF. the CDF for the real data is 𝐹 (D).

𝑐(U) Copula PDF for GMCM. The CDF is 𝐶(U).

Ω Is defined as Ω𝑗 = Φ−1
𝑗 (U𝑗). Ω is chosen to be a random variable

we can easily sample from.

Σ Is a covariance matrix.

Table 4.1: Gaussian Copula Notation Table

In this section, we review some results in Copula Theory. We provide summary

notation table 4.4 for this section. A Copula 𝐶 is a joint cumulative distribution

function defined on random variables U𝑖 with uniform marginals, denoted:

𝐶(U1, . . . ,U2).

Sklar’s theorem [45] tells us that any arbitrary cumulative distribution 𝐹 (D1, . . . ,D𝑚)

can be uniquely represented by a Copula after performing a CDF transform 𝐹𝑗(D𝑗)

on each of the marginals D𝑗:

𝐹 (D1, . . . ,D𝑚) = 𝐶(𝐹1(D1), . . . , 𝐹𝑚(D𝑚)).
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Deriving the PDF, 𝑓(D) in terms of the Copula PDF 𝑐(U) corresponding to the

Copula CDF 𝐶(U) we get the following relationship between 𝑓(D) and 𝑐(U):

𝑓(D1, . . . ,D𝑚) = 𝑐(U1, . . . ,U𝑚)
𝑚∏︁
𝑗=1

𝑓𝑗(D𝑗). (4.1)

Copulas are attractive for modeling the probability density function, 𝑓(D), of tabular

data because, as shown in equation 4.1, they separate modeling the marginal distri-

butions of data 𝑓𝑗(D𝑗) from estimating the column dependencies of the data 𝑐(U).

Copulas are also popular for generating synthetic data as Copula densities, 𝑐(U), are

generally chosen such that is easy to sample data from them.

Forward Transform
𝐷 → 𝑈 → Ω

Reverse Transform

Ω′→ 𝑈 ′→ 𝐷′
Figure 4-1: Visual depiction of the forward transform and reverse transform.

Most Copula models, like the Gaussian Copula model, are defined in terms of

a variable, Ω, that is easy to sample. Ω is assumed to have a tractable invertible

transformation to a uniform distribution such that U′
𝑗 = Φ𝑗(Ω

′
𝑗). We can then

transform this data to the original marginal distributions of D. We do this by applying

the inverse marginal CDF function for D such that D′
𝑗 = 𝐹−1

𝑗 (U′
𝑗). Thus we can

can sample Ω′ and transform it into Synthetic Data samples D′. We refer to the

transformation from Ω′ to D′ as the reverse transform.

We additionally define the forward transform from D (real data) to Ω. This is

performed as follows: starting with D, we get that U𝑗 = 𝐹𝑗(D𝑗) and Ω𝑗 = Φ−1
𝑗 (U𝑗).

Notice that U and Ω refer to variables transformed from samples of D in the forward

transform. D′ and U′ refer to variables transformed from samples of Ω′ in the

reverse transform. We give a visual of these transforms in figure 4-1.

Two common Copula models in the Copula literature are the Gaussian Copula
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and various forms of vine Copulas [41, 35]. In this thesis, we focus on using Gaussian

Copulas and the mixture Gaussian Copula model [6, 27, 47] to model the probabil-

ity distribution of our data and experiment with various tabular data augmentation

techniques. Next, we define the Gaussian Copula.

4.2 The Gaussian Copula (GC)

Here we define the Gaussian Copula [15, 41]. For a Gaussian Copula, we assume Ω

follows a multivariate Gaussian distribution with 0 mean and covariance matrix Σ,

such that Σ𝑗,𝑗 = 1∀𝑗. We denote the CDF and PDF as ΦΣ(Ω) and 𝜑Σ(Ω). The

marginal CDFs are defined as Φ𝑗(Ω𝑗) = Φ(Ω𝑗)∀𝑗, where Φ is the CDF of a univariate

standard normal distribution. The Gaussian Copula CDF is

𝐶Σ(U1, . . . ,U𝑚) = ΦΣ(Φ
−1(U1), . . . ,Φ

−1(U𝑚)),

and PDF is

𝑐Σ(U1, . . . ,U𝑚) = 𝜑Σ(Φ
−1(U1), . . . ,Φ

−1(U𝑚)).

We can fit the Gaussian Copula given real data D. The forward transform

is used to transform the D to Ω by fitting a univariate CDF 𝐹𝑗(D𝑗) to D, and get

U𝑗 = 𝐹𝑗(D𝑗). Then we get Ω𝑗:

Ω𝑗 = Φ−1(U𝑗).

we can calculate the parameters for the sampling distribution, Σ, as follows:

Σ𝑖,𝑗 = covariance(Ω𝑖,Ω𝑗).

By sampling from the multivariate normal distribution with covariance Σ, we get

samples Ω′ which we can reverse transform to have SD D′. Next, we analyze the

failure modes of the Gaussian Copula
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Dataset Properties

Positive Covariance Gaussian Copula Data Ω1,Ω2 ∼ Gaussian Copula with covariance

Σ =

ï
1 0.9
0.9 1

ò
Zero Covariance Gaussian Copula Data Ω1,Ω2 ∼ Gaussian Copula with covariance

Σ =

ï
1 0
0 1

ò
Negative Covariance Gaussian Copula
Data

Ω1,Ω2 ∼ Gaussian Copula with covariance

Σ =

ï
1 −0.9
−0.9 1

ò
Table 4.2: This table summarizes bivariate example datasets that are used to show
what kinds of data the Gaussian Copula can successfully model.

4.3 Gaussian Copula Failure Modes

In this section, we discuss the failure modes of the Gaussian Copula, as well as the

types of data that it can correctly model. For this purpose, we introduce several

simulated datasets that allow us to analyze what kinds of distributions a Gaussian

Copula can and cannot model. We then show how the Gaussian Copula’s failure

models can be overcome with Gaussian Mixture Copula Models. First, we define

example datasets in table 4.2 and 4.3. We then provide plots of the data. Finally

we analyze the failure modes of the Gaussian Copula on the example datasets, and

motivate the use of Gaussian Mixture Copula Models and Segmented Gaussian Copula

Models to overcome them.
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Dataset Properties

Cross Data 𝑈1, 𝑈2 ∼ bivariate uniform distribution
with covariance

Σ =

ïï
1 −1
−1 1

ò
,

ï
1 1
1 1

òò
Three Mixture Data 𝐷1, 𝐷2 ∼ bivariate Gaussian Mixture

Model with covariance

Σ =

ïï
1 0
0 1

ò
,

ï
1 0.9
0.9 1

ò
,

ï
1 0.6
0.6 1

òò
Table 4.3: This table summarizes bivariate example datasets that are used to show
the Gaussian Copula failure modes.

4.3.1 Gaussian Copula Failure Mode Analysis Datasets

Figure 4-2: Plot of Positive Covariance Gaussian Copula Data. 𝐷 is real data and
𝐷′ is data sampled from a fitted Gaussian Copula.

Positive Covariance Gaussian Copula Data This dataset (plotted in figure 4-2)

is modeled well by a Gaussian Copula. The data has exponential distribution
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marginals, and the learned covariance for this Gaussian Copula is:

Σ =

⎡⎣ 1 0.9

0.9 1

⎤⎦ .
Thus the covariance between Ω′

1 and Ω′
2 is a high positive value, 0.9.
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Figure 4-3: Plot of Zero Covariance Gaussian Copula Data. 𝐷 is real data and 𝐷′ is
data sampled from a fitted Gaussian Copula.

Zero Covariance Gaussian Copula Data This dataset (plotted in figure 4-3) is

modeled well by a Gaussian Copula. The data has exponential distribution

marginals, and the learned covariance for this Gaussian Copula is:

Σ =

⎡⎣1 0

0 1

⎤⎦ .
Thus the covariance between Ω′

1 and Ω′
2 is zero.
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Figure 4-4: Plot of Negative Covariance Gaussian Copula Data. 𝐷 is real data and
𝐷′ is data sampled from a fitted Gaussian Copula.

Negative Covariance Gaussian Copula Data This dataset (plotted in figure 4-

4) is modeled well by a Gaussian Copula. The data has exponential distribution

marginals, and the learned covariance for this Gaussian Copula is:

Σ =

⎡⎣ 1 −0.9

−0.9 1

⎤⎦ .
Thus the covariance between Ω′

1 and Ω′
2 is −0.9.
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Figure 4-5: Plot of Cross Data. 𝐷 is real data sampled from the Cross Data and 𝐷′

is data sampled from a fitted Gaussian Copula.

Cross Data We create a cross shaped distribution and plot 𝐷 and 𝐷′ in figure 4-5.

To create the data, we sample 𝑈1 from a uniform distribution and define ∀𝑖

𝑈𝑖,2 =

⎧⎪⎨⎪⎩𝑈𝑖,1 with probability 0.5

−𝑈𝑖,1 otherwise

We then assume 𝐷1 and 𝐷2 follow exponential distributions with parameter

𝜆 = 1 and apply the inverse CDF of the exponential distribution to each 𝑈𝑗

to get 𝐷. We get Ω by applying the Gaussian Copula forward transform.

We then can fit a Gaussian Copula to Ω and obtain Ω′ by sampling from the

fitted Gaussian Copula. 𝐷′ and 𝑈 ′ are calculated from Ω′ through the reverse

transform.
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Figure 4-6: Plot of Three Mixture Data. The top row represents the forward trans-
form. 𝐷 is real data sampled from the Cross Data and 𝐷′ is data sampled from a
fitted Gaussian Copula.

Three Mixture Data We create a three mixture Gaussian Mixture Model and sam-

ple 𝐷 from it. The mixture model is parameterized as follows:

• Mixture probabilities: [0, .9, .6]

• Mixture Means: [(0, 0), (10, 10), (0, 10)]

• Mixture Covariances:⎡⎣⎡⎣1 0

0 1

⎤⎦ ,
⎡⎣ 1 0.9

0.9 1

⎤⎦ ,
⎡⎣ 1 0.6

0.6 1

⎤⎦⎤⎦
We can then use the forward transform to get 𝑈 and Ω. After fitting a

Gaussian Copula on Ω we can sample Ω′ from the Copula and use the reverse

transform to calculate 𝑈 ′ and 𝐷′. We plot 𝐷 and 𝐷′ in figure 4-6.

4.3.2 Let’s see how Gaussian Copula did on Simulated Datasets

Gaussian Copulas have several limitations. They can only provide symmetric and

elliptical modeling of data. By only modeling covariance, we can only model linear
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dependence between the Copula and sampling variables U and Ω. Note that this

relationship can become nonlinear after transforming to D′, because of the marginal

inverse CDF transform, 𝐹−1
𝑗 (U). Some types of data are modeled well by Gaussian

Copulas, as observed in figures 4-2, 4-3, and 4-4.

However, the Gaussian Copula assumptions made on the distribution of U and

Ω fail on more complex datasets. We try a more challenging example with the Cross

Data. The plots of real and sampled data are in figure 4-5. We can see that the scatter

plot for 𝐷′ and 𝐷 is completely different. This is because the Gaussian Copula only

models the covariance, and it records a covariance of 0 between Ω1 and Ω2, causing

𝐷1 and 𝐷2 to have zero covariance after the reverse transform. We could instead

fit a Mixture of Gaussian Copulas, fitting the data with a positive covariance to

one mixture and the data with a negative covariance to the other mixture, which

would properly model the data. This is an example where a generalization of the

Gaussian Copula for modeling mixtures can potentially model these more complex

distributions.

Another challenging dataset is the Three Mixture Data. The plots of real and

sampled data are in figure 4-6. We can see that the scatter plot for 𝐷′ and 𝐷 is

completely different. We see that a fourth mixture is hallucinated in the bottom

right of 𝐷′. Since the real data is a guassian mixture model, a Gaussian Mixture

Copula Model would be able to correctly model this data.

For both the Cross Data and Three Mixture Data , the Gaussian Copula fails to

recreate a similar distribution because the dependencies between the two variables are

more complex than just their covariance once transformed to Ω. These failure modes

of the Gaussian Copula beg for a generalization of the Gaussian Copula in order to

model more complex data. In the next two sections, we introduce two models that

attempt to generalize the Gaussian Copula and overcome these failures.
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Segment 1

Number of
Samples GeneratorOriginal Training

Data Synthetic Data

n0

n1

Segment 2

Segment 1

Segment 2

Zero Loss
SD Generator

Non-Zero Loss
SD Generator

Figure 4-7: Segmenting training data into two pieces based on the target. We can
assume we are working with a regression dataset, and segment 1 represents clients
with zero loss while Segment 2 represents clients with non-zero losses. We train a
Gaussian Copula Generator on each segment, and proportionately sample Synthetic
Data from each generator.

4.4 Segmented Gaussian Copula

Here we define our own generalization of the Gaussian Copula that can potentially

overcome the failure modes we defined in section 4.3. The Gaussian Copula model

is very restrictive, but it is very quick to fit, so we can try an heuristic for splitting

the data into mixtures that we individually fit a Gaussian Copula to. Specifically, we

segment the data based on quantiles or categories. Then we fit a Gaussian Copula

to each quantile to try to improve the modeling of column dependencies. As an

heuristic, we segment the data over the target column by segmenting it into two

pieces (as depicted in figure 4-7) corresponding to the two categories if it is a binary

classification task, or two quantiles (split at the median) if it is a regression task.

Without loss of generality, we denote the first piece of the segmented data 𝐷1 and

the second 𝐷2. We fit a Gaussian Copula generator to each segment of the dataset.

Denote 𝑝1, 𝑝2 as the empirical probability that a sample of the data is in segment

1 or segment 2. When sampling from the Segmented Gaussian Copula, we sample

each row from Copula 1 with probability 𝑝1 and from 2 with probability 𝑝2. This

procedure can be generalized to higher numbers of segments than just two. You can

split a continuous target into segments for smaller quantiles or for a multi-class target

we can split it into segments based on each class or groups of classes. We can then
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apply this same methodology of fitting Copulas on each segment, and proportionately

sample from them. The hope with segmenting is that we can approximately separate

the data into segments that can be individually modeled by a Gaussian Copula.

4.5 The Gaussian Mixture Copula Model (GMCM)

To overcome the failure modes of Gaussian Copula models and avoid using heuristics

like the Segmented Gaussian Copula model, we introduce the Gaussian Mixture Cop-

ula Model (GMCM). Gaussian Copula models have significant column dependency

limitations as they only model covariance between columns. Segmented Gaussian

Copulas try to resolve this by modeling different covariances between columns as we

vary the segment, however, the creation of segments using user defined quantiles may

not be optimal. We introduce one more generalization of Gaussian Copula mod-

els which we experiment with in this thesis, the Gaussian Mixture Copula Model

(GMCM) [6, 27], which has a Gaussian Mixture Model (GMM) as its Copula density

𝑐(·). It can learn more complex column dependencies as the Copula density is a GMM

rather than a single Gaussian. Since we learn this GMM, we expect it to better model

the data than the segmented GMCM where we naively segment the data based on

target quantiles or classes. We first describe the GMCM model, then present the al-

gorithms for fitting its parameters, and finally discuss initialization methods for these

initialization sensitive fitting algorithms.
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4.5.1 Gaussian Mixture Copula Model Definition

Variable Definition

𝑟 Number of mixtures in GMM.

𝑘 Mixture index ∈ [1, . . . , 𝑟].

Θ𝑘 Represents the parameters for a multivariate Gaussian. Equals the

tuple (𝜇𝑘,Σ𝑘). Σ𝑘 is the covariance. 𝑉𝑘 is the cholesky decomposition

of Σ𝑘. It is also denoted as
√
Σ𝑘. 𝜇𝑘 is the mean.

𝜋𝑘 is the probability.

Θ Represents the tuple (Θ1, . . . ,Θ𝑟). Fully parameterizes a GMM.

𝜓 is the PDF of a multivariate normal distribution with parameters

Θ𝑘. The CDF is Ψ.

𝜑GMM(Ω; Θ) PDF for GMM. CDF is ΦGMM(Ω).

𝜑GMM
𝑗 (Ωj; Θ) Marginal PDF for GMM over 𝑗𝑡ℎ column. CDF is ΦGMM

𝑗 (Ωj; Θ)

𝐶GMM(U; Θ) Copula CDF for GMCM. PDF is 𝑐GMM(U; Θ).

𝜏 Maximum number of epochs for AD and PEM GMCM algorithms.

𝑡 Is the current epoch number during training. We index variables

that are updated over epochs using the notation Σ
(𝑡)
𝑘 to represent

the value of Σ𝑘 after epoch 𝑡.

𝑍 Represents the latent variables for the PEM GMCM algorithm. 𝑍 ∈

𝑅𝑛×𝑟 and 𝑍𝑖,: represents a categorical distribution over the clusters

data point 𝐷𝑖,: may belong to.

𝜖 Is the convergence threshold. If loss over two PEM GMCM epochs

changes by less than 𝜖, then training is stopped early.

𝜁 Is the number of noise columns added to a dataset. Noise columns

are columns that follow an independent normal distribution.

Table 4.4: GMCM Notation Table
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In this section we define the Gaussian mixture Copula model [47, 27, 6, 26]. See

notation table 4.4 for quick reference of the variables used.

Ψ(Ω1, . . . ,Ω𝑚; Θ𝑘) and 𝜓(Ω1, . . . ,Ω𝑚; Θ𝑘)

are the CDF and PDF respectively of a multivariate normal distribution with param-

eters Θ𝑘 = (𝜇𝑘,Σ𝑘) where 𝜇𝑘 represents the mean and Σ𝑘 the covariance for mixture

𝑘. Ψ𝑗 and 𝜓𝑗 are the marginal CDF and PDF of Ψ and 𝜓. The PDF of a GMM with

𝑟 mixtures is

𝜑GMM(Ω1, . . . ,Ω𝑚; Θ) =
𝑟∑︁

𝑘=1

𝜋𝑘𝜓(Ω1, . . . ,Ω𝑚; Θ𝑘)

where 𝜋𝑘 represents a scalar weight for each mixture. The CDF of the GMM is:

ΦGMM(Ω1, . . . ,Ω𝑚; Θ) =
𝑟∑︁

𝑘=1

𝜋𝑘Ψ(Ω1, . . . ,Ω𝑚; Θ𝑘).

The 𝑗th dimension marginal CDF and PDF of the GMM are denoted as ΦGMM
𝑗 (Ω𝑗; Θ)

and 𝜑GMM
𝑗 (Ω𝑗; Θ) respectively where ΦGMM

𝑗 (Ω𝑗; Θ) = U𝑗
1. Thus ΦGMM

𝑗 (Ω𝑗; Θ) =∑︀𝑟
𝑘=1 𝜋𝑘Ψ𝑗(Ω𝑗; Θ𝑘) and 𝜑GMM

𝑗 (Ω𝑗; Θ) =
∑︀𝑟

𝑘=1 𝜋𝑘𝜓𝑗(Ω𝑗; Θ𝑘) The Gaussian Mixture

Copula CDF is defined as

𝐶(U1, . . . ,U𝑚; Θ) = ΦGMM((ΦGMM
1 )−1(U1; Θ), . . . , (ΦGMM

𝑚 )−1(U𝑚; Θ);Θ)

= ΦGMM(Ω1, . . . ,Ω𝑚; Θ),

and by taking the derivatives of both sides, the Copula PDF is

𝑐(U1, . . . ,U𝑚; Θ) =
𝜑GMM(Ω1, . . . ,Ω𝑚; Θ)∏︀𝑚

𝑗=1 𝜑
GMM
𝑗 (Ω𝑗; Θ)

. (4.2)

.

1Note that there is no closed form for the inverse marginal CDF Φ−1
𝑗 (·), so it must be estimated

as discussed in appendix section B.
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4.5.2 Fitting Gaussian Mixture Copula Models

Most algorithms for learning GMCM parameters maximize

ℒ =
𝑛∏︁
𝑖=1

𝑐(𝑈𝑖,1, . . . , 𝑈𝑖,𝑚; Θ) =
𝑛∏︁
𝑖=1

𝜑GMM(Ω𝑖,1, . . . ,Ω𝑖,𝑚; Θ)∏︀𝑚
𝑗=1 𝜑

GMM
𝑗 (Ω𝑖,𝑗; Θ)

(4.3)

which is simply the empirical form of the Copula density from equation 4.2 and

thus the likelihood of the data given the GMCM parameters. Maximizing this

likelihood is very difficult, and in appendix B we discuss two methods2, the Auto-

Differentiation[27] and Pseudo Expectation Maximization[6] methods, for attempting

to maximize this likelihood and fit a GMCM.

These methods are sensitive to initialization, so in the remainder of this section,

we give a qualitative assessment of different initialization methods for GMCMs.

Initialization Methods

Both GMCM learning methods, AD and PEM are known to be sensitive to initializa-

tion and prone to reaching local optimas [6, 27]. It is most common to use KMeans

or a random initialization in the current Gaussian mixture Copula literature, but

these initialization methods do not perform well on high dimensional data with lots

of random noise columns are added to the data. In this section, we attempt to im-

prove the performance of AD and PEM GMCM by using a better initialization. We

compare different initialization methods on the Cross Data and Three Mixture Data

distributions we introduced in section 4.3, and visually inspect how well they clus-

ter the CDF transformed data, 𝑈 , into clusters such that a Gaussian Copula could

model each individual cluster. This is a desirable initialization because the GMCM

simply models each mixture as a Gaussian Copula. We find that clustering methods

in conjunction with feature selection techniques provide a good initialization.

2Note that these methods are the state of the art for fitting GMCMs when 𝑛 < 𝑚, if you happen
to have data where 𝑚 ≫ 𝑛, you would want to try a different approach such as the HD-GMCM
model [26].
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Figure 4-8: In this figure, we plot a plot distribution and the results of clustering
the Cross Data from 4.3 with 5 clusters. The color of each data point corresponds
to its cluster assignment. Each column we vary the clustering algorithms: GMM,
MI-GMM, KMeans, and MI-KMeans. Each row varies the number of added noise
columns to the data, from top to bottom row we have: [0, 5, 10, 100] added noise
columns.
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Figure 4-9: In this figure, we plot a plot distribution and the results of clustering
the Three Mixture Data from 4.3 with 5 clusters. The color of each data point
corresponds to its cluster assignment. Each column we vary the clustering algorithms:
GMM, MI-GMM, KMeans, and MI-KMeans. Each row varies the number of added
noise columns to the data: [0, 5, 10, 100].

We plot the clustering results of fitting 5 clusters to the Cross Dataafter adding

0, 5, 10, and 100 noise columns (columns of data sampled from independent uniform

distributions) to 𝑈 . To clarify, if we add 𝑔 noise columns, the data would have 𝑔 + 2

columns in total, as two columns are the real bivariate data. We repeat this for

the Three Mixture Data . We would expect a good clustering of the Cross Data

distribution to cluster each of the four lines that make up the cross, and for the

Three Mixture Data, we expect it to be clustered into three sections corresponding

to each of the mixtures in the original GMM from which the data was sampled.

For our Synthetic Data, as we add noise columns, GMM and Kmeans fail to give

reasonable clustering assignments. Specifically, look at the last row of figures 4-8 and

4-9, columns GMM and KMeans, we see that for the Cross Data we are not getting

any separation of the lines, and for the Three Mixture Data, we are getting random
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assignments. Since we are modeling the data for data augmentation, we can assume

that one of the non-noise columns is the target and perform feature selection before

clustering to ensure columns the target depends on are prioritized when clustering.

We calculate the mutual information of the target with each non-target column, and

select the top 𝑣 columns with the highest mutual information values. We then fit a

GMM or KMeans clustering to the target along with these 𝑣 columns, and denote

this clustering approach MI-GMM and MI-KMeans respectively3. For GMM we set

𝑣 = 10 and for KMeans we set 𝑣 = 5. We plot visualizations of the outputs of

these clustering methods as we vary the amount of noise columns in figure 4-8 for the

Cross Data and in figure 4-9 for the Three Mixture Data. For all Synthetic Data

experiments, we use the MI-GMM method as it almost always lead to the highest

log-likelihood values for both PEM-GMCM and AD-GMCM fitting.

3In addition, we remove mixtures with extremely low probability, 𝑝 < 0.01, to ensure every cluster
has a significant amount of data assigned to it as we don’t want a mixture in the GMCM model to
overfit to a very small amount of data as this can cause numerical instability.
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Chapter 5

Data Augmentation For Tabular Data

In this section, we first describe the Data Augmentation workflow. We then address

some common questions pertaining to the application of data augmentation methods.

Finally, we provide justification for the use of Data Augmentation in the tabular data

setting to improve ML efficacy.

5.1 Data Augmentation Workflow

First, we define the goal of Data Augmentation and our workflow. The end goal is to

improve machine learning performance for a specific task. We must first define some

terms, and note that we provide notation table 5.1 for quick reference. We have a

training dataset of real data, 𝐷train, consisting of machine learning model inputs, 𝑥train

and targets 𝑦train. We have a test dataset of real data, 𝐷test, consisting of machine

learning model inputs, 𝑥test and targets 𝑦test. Additionally, for Data Augmentation,

we have some Synthetic Data sampled from a generator, 𝐺, that was trained on 𝐷train,

denoted 𝐷′
train, with machine learning model inputs and targets denoted as 𝑥′train and

𝑦′train respectively. Any number of samples can be generated and used to augment the

real data before learning a machine learning model, 𝑀 , for our goal. We also denote

𝐿 as the learning algorithm used to train a model, 𝑀 , on dataset 𝐷. So 𝑀𝐷 = 𝐿(𝐷).

Original workflow: In part (a) of figure 5-1, we present the original workflow

in which we train an ML pipeline without Synthetic Data. We train a model 𝑀 on

67



Variable Definition

𝐷train Real training dataset, includes ML model input data and targets.
𝑥train Real training ML model input data.
𝑦train Real training ML model targets.
𝐺 is a Synthetic Data generator model.
𝐷′

train Synthetic training dataset, includes ML model input data and tar-
gets.

𝑥′train Synthetic training ML model input data.
𝑥′train Synthetic training ML model targets.
𝐷test Real testing dataset, includes ML model input data and targets.
𝑥test Real testing ML model input data.
𝑦test Real testing ML model targets.
𝑀 Machine learning model.
𝑀𝐷 Machine learning model trained on dataset 𝐷.
𝐿 Learning algorithm for fitting a machine learning model 𝑀 . 𝑀𝐷 =

𝐿(𝐷).
𝑦test Target values predicted by ML model.

Table 5.1: Notation for Data Augmentation and SID Table

L

Train a ML model

Train a ML model

Apply model to test data

(a) (b)

Evaluate

Apply model to test data

Evaluate

= MD( ) L = MD( )

= MD

ML-Metric

(        )     = MD ( )

MD          , ( ) ML-Metric MD          , ( )

Figure 5-1: Comparison of machine learning original workflow (a) and Data-
Augmentation workflow (b).

our real training data and then apply this model to testing data to get our predicted

target, ̂︀𝑦test. We then compute our ML model evaluation metric using the ground
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truth target, 𝑦test, and the predictions, ̂︀𝑦test, as inputs

Synthetic Data augmentation workflow: In part (b) of figure 5-1 we present

the Synthetic Data augmentation workflow, where we train an ML pipeline using real

and Synthetic Data. We train a model 𝑀 on our real training data concatenated

with our Synthetic Data, and then apply this model to our testing data to get our

predicted target, ̂︀𝑦test. We then evaluate our ML evaluation metric using the ground

truth target, 𝑦test, and the predictions, ̂︀𝑦test, as inputs.

5.2 Common Questions About Data Augmentation

Workflow

Now that we have established the workflows, here are some common questions that

arise when using a Synthetic Data augmentation workflow.

How do you know adding data helped? In the figure above, we notice that

the test data used is the same in the original workflow and the workflow with the

Synthetic Data. This enables an equivalent comparison and allows us to answer this

question.

Do you synthesize the target column as well? Yes, to augment our training

data we synthesize the target column as well.

Do you use synthetic data to evaluate the trained machine learning model?

No, we do not. Since Synthetic Data generators are imperfect, samples generated by

them may not perfectly follow the real distribution, and thus these samples should

not be used to evaluate ML models in place of real data.

What data do you use to train the Synthetic Data generator? In this thesis

we train our genrators on the same training samples that will be fed to the machine

learning model. It is important not to train your generator on test data, as this will

allow information from your test set to leak into your ML model via the Synthetic

Data from your generator.

Next, we review related work in Data Augmentation to justify its application in
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the tabular data setting.

5.3 Justification for Tabular Data Augmentation

In this section, we motivate Data Augmentation for tabular data. We reference work

applying Data Augmentation in computer vision (CV), natural lanuage processing

(NLP), and time series domains, all of which has led to improved ML performance.

We justify that these methods help improve ML performance by regularizing ML

models and helping them learn domain-specific invariances. Finally, we discuss how

tabular, Copula-based, Data Augmentation can potentially help regularize ML models

and help them learn a form of invariances for tabular data.

Recent work has shown significant improvements in ML performance in various

domains through the use of Data Augmentation.

In computer vision, many Data Augmentation methods have improved ML per-

formance. Some simple examples of Data Augmentation methods that have been

widely used on tasks such as image classification or object detection are cropping im-

ages, applying rotations, and adding Gaussian noise[51, 52]. Deep learning methods

for generating Data Augmentation have lead to improved performance on tasks such

as image classification as well [51, 52]. For example, ACGAN [38] is a conditional

generator that learns to take the image class as input. It will generate images for this

class and has been used to improve performance when there is class imbalance [51].

Applying NLP to Data Augmentation is a bit more challenging as text data is

modeled using discrete token representations. The CV field uses continuous data, so

the NLP field has developed its own methodologies for augmenting text data. Many of

these Data Augmentation strategies have successfully improved ML performance on

various tasks[19]. For example, previous work has shown improved ML performance

for several text classification methods using token level (tokens represent a word or

part of a word) random perturbations, including random token inserts, deletions, or

swaps[48, 19]. Additionally, deep learning methods for generating Data Augmen-

tation have led to improved performance on tasks such as text classification [19].

70



Synthetic Data generative models are also commonly used. These models are gen-

erally conditioned on a label class. In [3], a label-conditioned generator was trained

by fine-tuning GPT-2 [42] on the task-specific training data. The generator was then

used to generate candidate examples per class. In [30], researchers showed how to

effectively use pretrained models to generate Synthetic Data for Data Augmentation

by conditioning the pretrained model on a label class.

In time series, Data Augmentation methods have been used to improve ML per-

formance on various tasks. Cropping, flipping, and adding noise (jittering) to input

data in the time or frequency domain are methods that have improved ML perfor-

mance for time series forecasting[49]. Synthetic Data generative models also exist

and have been used to improve performance on several time series tasks[24]. An ex-

ample would be the use of GAN[23, 24] time series generative models for the tasks of

predicting normal and abnormal heart behavior from electrocardiogram (ECG) time

series data[53].

Past research has theoretically modeled Data Augmentation and has demonstrated

that Data Augmentation improves ML models by

• making the model learn invariant representations of data[12, 10].

• regularizing the ML model[12, 10].

This begs the question of what these invariances and regularizations will be with our

Copula models for tabular data. For our predictions, we lean on learnings from other

domains. Regularization has a clear interpretation across domains of preventing ML

models from overfitting; however, we must ask what the invariances are. In CV, aug-

menting with rotations of images will clearly lead to invariance to rotations. In NLP,

augmenting with token perturbations with lead to invariance to these perturbations.

In time series data, augmenting with jittered input data will lead to invariance to

jittering. It is not obvious at first glance what invariance is being learned when aug-

menting with Gaussian Copula or Gaussian Mixture Copula Model Synthetic Data

and whether this invariance is desirable for ML tasks.

We hypothesize that GCs and GMCMs provide Synthetic Data invariant to small
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perturbations on the Copula random variables, Ω, and are regularized by the smooth

distribution we assume Ω follows. Data sampled from these Copula models is sampled

from a Gaussian mixture model or a multivariate Gaussian distribution. These are

very smooth simple distributions, and we are effectively regularizing models trained

on this Synthetic Data to follow this Copula density distribution. Additionally, data

sampled from GC and GMCM is perturbation-invariant in the space of Ω because a

small perturbation over the value for a Gaussian or GMM will lead to a very small

change in the probability distribution (as these distributions are smooth). Thus, the

SD directs the model to learn a form of permutation invariance, where target values

should be invariant to small perturbations in the space of Ω.

Several Synthetic Data generator models exist for tabular Data Augmentation. In

the field of classification, SMOTE [9] and SMOTE-enc [36] allow for the generation

of interpolated Synthetic Data samples from real datapoints of the same class; how-

ever, SMOTE is meant for continuous data, while our data has mixed continuous and

discrete elements. Synthetic Data generative models, such as Gaussian Copula [41],

ctgan [50], and ctabgan [57], can help model the probability distribution of the data

while maintaining various levels of invariance in the marginal distribution and column

dependencies. These models are often researched and evaluated for the purpose of

privacy preservation (such as maximizing test set performance when only training

on Synthetic Data) rather than Data Augmentation. Recent work[33] has compared

empirical results of Data Augmentation methods SMOTE[9], GMM, and VAE[29] on

imbalanced classification tasks with tabular data. No work, to our knowledge, has

provided systematic controlled experiments to understand tabular Data Augmenta-

tion. In this thesis, we hope to contribute a systematic study of data augmentation

for tabular data, along with a library for helping push forward innovation and un-

derstanding of Data Augmentation in the broader research community. We know

that generative models have lead to large improvements in performance in CV and

NLP, and we expect to achieve similar gains by applying Synthetic Data to tabular

data. We detail our data augmentation methods and the SID library in the following

section.
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Chapter 6

Synthetic Insurance Data (SID)

Testbed

The goal of this chapter is to provide a solution to RQ5, how we can use Synthetic

Data in an ML workflow between entities and collaborators such that both benefit. We

do this by designing the SID framework, an API which enables entities to collaborate

on data augmentation workflows without sharing private data. In our case, we assume

the entity is interested in Data Augmentation. First we give the motivation for

creating the SID framework, and then we describe the SID API and software design

implemented in the SID library. Note that we use the notation defined in table 5.1

6.1 SID as a Solution to Collaborative Data Aug-

mentation

ML collaborative frameworks for developing prediction models should allow flexible

model development. Additionally, while data augmentation for tabular data is not

well understood in current research literature, it is a promising approach to improving

machine learning performance that should be supported in the SID framework.

Many entity-collaborator interactions are hindered by stringent data regulations.

Two solutions to this issue are:
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• Collaborators may be required to use only the entity’s machines to access the

data; this limitation constrains the development tools available to collabora-

tors, leading to less efficiency and options for collaborators. SID proposes that

collaborators iterate on Data Augmentation methods using Synthetic Data on

their local machines, so they can use whatever tools they are used to, and can

then share their code and environment with the entity.

• The SID framework alternatively allows collaborators to use their own develop-

ment environment and thus saves entities overhead costs associated with man-

aging individual collaborators’ access to internal systems. Furthermore, this

framework saves Entities from sharing direct access to their data and in turn

reduces their risk exposure while making it easier to start external collabora-

tions. This allows for entities to scale their collaborations while simultaneously

allowing validations of models on private data.

6.2 SID Workflow

This section gives a high level overview of how entities and collaborators can interact

through the SID API to allow collaborators the ability to evaluate novel ML Data

Augmentation methods on real data while also keeping sensitive real data private.

1. The entity prepares real data and the ML task. The entity aggregates a

train and test dataset, 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡. The entity must also define an evalu-

ation metric of interest. The entity may optionally provide a default machine

learning model architecture to help collaborators get started.

2. The entity creates a Synthetic Data model. The entity uses SID to train

a Synthetic Data model, 𝐺, on 𝐷𝑡𝑟𝑎𝑖𝑛. They generate a synthetic dataset 𝐷′
𝑡𝑟𝑎𝑖𝑛

and test set 𝐷′
𝑡𝑒𝑠𝑡 of sizes approximately equal to 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 datasets (not

exactly equal to not expose the real dataset sizes) curated to have correlated

inference accuracy with 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡.

3. The entity Shares Synthetic Data and Generator. The entity shares:
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• API access for collaborators to submit their code. The entity runs the

collaborators code on the real data and returns the resulting ML score.

• the ML score of interest.

• The synthetic datasets 𝐷′
𝑡𝑟𝑎𝑖𝑛 and 𝐷′

𝑡𝑒𝑠𝑡

4. Collaborators develop Models and Methods. Collaborators experiment

with different data augmentation methods on the synthetic datasets. They can

design data augmentation methods. Collaborators locally design and build their

approaches on the synthetic datasets, and then submit their code to the entity

to validate on the real data.

5. The entity validates sampled Synthetic Data for Data Augmentation.

The entity now runs the code submitted by the entity putting 𝐷𝑡𝑟𝑎𝑖𝑛 as input

to fit the model and then passes 𝑥𝑡𝑒𝑠𝑡 to get the model’s predictions, 𝑦𝑡𝑒𝑠𝑡. The

ML score is evaluated on these predictions and is shared with the collaborator.

With this information we go back to step 4, as collaborators can iterate on their

data augmentation method based on the feedback.

6.3 SID API

This section outlines how entities and collaborators interact through the SID API.

We first describe the entity-side and collaborator-side of the API, then explain how

the two sides interact through this API.

6.3.1 Entity API

Figure 6-1 describes how entities interact with the SID API at a high level. Below

is a description of the actual API the entity uses. The API is broken up into Inter-

nal Methods that the entity implements internally in order to prep the data, and

External Methods that the entity exposes to collaborators.

Internal Methods
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Entity Workflow

raw_data

data_augmentation

process_data (raw_data)

Collaborator

generator (          ,              )

dataset

x ytrain train

x ytrain      train

           )data_augmentation (    x        ,          , train

SCORE

y train x test

score (            ,            )y ytest test

x y

x'    y'

train train

y test

x ytest test

train           train

x'      y'test  test

Figure 6-1: We assume entities have domain expertise on their dataset and can clean
the data into a tabular format that maximizes the inference value of the data. The
entity then fits a generator to their training data and allows collaborators to sample
synthetic data, denoted as 𝑥′ 𝑦′. The collaborator will send the entity a Collaborator
class with a data_augmentation function which the entity can then run in a sandbox
environment (for example a docker container) to get test predictions 𝑦test, score these
predictions, and update the collaborator with the score. All the blue rectangles mark
methods that are executed on the entity’s machines, purple denotes code sourced
from a collaborator.
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Collaborator Development Workflow

generator

data_augmentation(        ,         ,        )

data_augmentation

score(        ,         )

y’train

Collaborator

y’train

x’train

x’train

y’test

y’test y’test

x’test

x’test

y’test

Figure 6-2: Collaborators receive synthetic data from the generator and develop a
data_augmentation method that generates predictions for 𝑦′test, the test split of the
synthetic data. The collaborators can (on their local machine) iterate and improve
their data_augmentation method locally using this score, and, when ready, validate
on the real data by uploading their data_augmentation method to the entity to get
feedback in the form of a score on real data. All the blue rectangles mark methods
that are executed on the entity’s machines, light purple denotes any methods run on
a collaborator’s machine, and the dark purple block represents the collaborator.
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1. preprocesser(data)

data: raw unaggregated data

This preprocesses data into a tabular form and returns a tabular dataset.

2. fit_generator(data, multivariate_transform, CopulaModel)

data: Processed data.

With categorical data and continuous data labeled, fits a generative model to

the data. In the SID library we assume the generator a Copula model; thus

Multivariate-Transforms (defined in section 6.4.3) are used to convert the

marginal distribution of each column to the uniform distribution, before a Cop-

ula is fit to the CDF transformed data. This generator can then be used to

sample synthetic data.

multivariate_transform: Is a transform used to convert data to have uniform

marginals.

CopulaModel: Copula generator model to fit to the data.

External Methods

1. score(𝑦test, 𝑦test):

Returns ML score where 𝑦test is real test data and 𝑦test is the predictions.

2. generator()

Returns 𝐷′
𝑡𝑟𝑎𝑖𝑛 and 𝐷′

𝑡𝑒𝑠𝑡

3. score_collaborator(data_augmentation).

Runs collaborator’s data_augmentation method on the real data to get pre-

dictions 𝑦𝑡𝑒𝑠𝑡.

Then returns the ML score of these predictions:

return score(𝑦test, 𝑦test).
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6.3.2 Collaborator API

The Collaborator API simply provides a single function:

1. data_augmentation(𝑥′train, 𝑦′train, 𝑥′test): outputs 𝑦′test, the predictions re-

sulting from the collaborators’ Data Augmentation method.

6.4 Synthetic Data Generation in SID

This section describes the SID transforms1 for transforming a general dataset (with

continuous, discrete, mixed continuous and discrete, or datetime column datatypes)

to a continuous multivariate uniform distribution. Modeling tabular data using

Copulas requires a two-stage approach. First, each column of data must be con-

verted to the uniform distribution (we cover this transform in this section); then,

we fit a Copula to the uniform marginal data (as covered in section 4). We exper-

iment with five ways of converting tabular data to uniform distribution which we

call Multivariate-Transforms. These transforms allow us to observe how different

univariate modeling strategies will affect Copula based data augmentation. We hy-

pothesize that generating data which more closely follows the column distribution of

the original data will yield better ML performance than data with worse univariate

modeling strategies.

In the SID library, we provide Univariate-Transforms for applying invertible

transforms to individual columns of data to and from the uniform distribution and we

provide Multivariate-Transforms for transforming entire datasets to have uniform

marginals. In the following subsections, Univariate Continuous Transforms and

Univariate Non-Continuous Transforms are both introduced, and then Multivariate-Transforms

(which combine the Univariate transforms) are introduced.

Note that all columns are assumed to be either Categorical or Continuous for

our modeling. (We convert DateTime columns to Unix Time Stamps, an integer

seconds count, making them continuous.) We aim to model several datatypes in

1Find the SID source code here: https://github.com/DAI-Lab/sid
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order to model data well with Copulas. We list these datatypes below (including the

challenging datatypes discussed in section 2.3):

1. Categorical data

2. Categorical NAN

Missing Categorical values.

3. Continuous data

For continuous data, we can fit a Univariate Continuous Transformer.

4. Continuous NAN values

Missing Continuous values.

5. Mixed Continuous and Discrete data

Continuous data can have point masses at specific values. It is common in

insurance datasets for loss to include a large number of zero-loss clients and

then a smoother continuous distribution of clients with loss greater than zero.

6. Low Cardinality Continuous

Sometimes a column with numerical data will have a very small number of

unique values - for example, a binary column containing only zeros and ones.

Our methods focus on ensuring that data is properly transformed for these different

datatypes. The current most popular Open-Source Library that uses a version of

invertible Multivariate-Transforms, SDV [41], does not properly address all of

these challenges, and we will compare the approach used in the SDV library with

custom methods we develop in the following sections. We begin by defining the

custom methods we develop from the univariate level (transforms that operate on a

single column) to the dataset level (transforms that transform the entire dataset).

6.4.1 Univariate Transforms for Continuous Data

In this section, univariate Continuous Transforms are introduced to model the CDF

and Inverse CDF of continuous datatypes.
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Transform Name Summary

Spline Fit a PCHIP spline[21] to the empirical CDF and inverse CDF of
the data to approximate it’s CDF and inverse CDF.

Beta Fit a Beta distribution to the data and we use the CDF and inverse
CDF as transforms.

BMM Fit a Beta Mixture Model to the data and we use it’s CDF and
inverse CDF as transforms.

Table 6.1: Summary of SID Univariate Continuous Transforms.

The SID library uses several Univariate Continuous Transforms to transform

continuous data to and from the uniform distribution. We summarize these in table

6.1 and describe them in more detail below:

Spline A PCHIP spline [21] (a monotonically increasing spline) is fitted to the em-

pirical CDF of the data before a second PCHIP spline is fit to approximate the

inverse CDF. For the CDF spline, we extrapolate by returning the boundary

value as the output should remain between 0 and 1. For the Inverse CDF, also

known as the Percentage Point Function(PPF), we do not extrapolate as the

inputs are in [0, 1].

Beta Data is linearly scaled to a [0, 1] interval, and a Beta distribution is used to fit

to the data.

Beta Mixture Model Data is linearly scaled to a [0, 1] interval, and Beta Mixture

Model (BMM) is fit to the univariate data. The CDF of this Beta Mixture

model is used to perform CDF transforms on this continuous data. Getting the

inverse CDF for the BMM is not trivial because there is no closed form solution

for it. Thus we approximate the inverse CDF with a PCHIP spline.

6.4.2 Univariate Transforms for Non-Continuous Data

Now we define the Univariate Non-Continuous Transforms, transforms that will

allow us to transform non-continuous tabular datatypes like categorical data and

mixed continuous and discrete data to and from the unit uniform distribution. We
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Transform Name Summary

Noisy label encoder Transforms categorical data to a uniform distribu-
tion.

Low Cardinality Numerical Transforms continuous data with a low cardinality
to a uniform distribution.

Target Ordered Categorical Transforms categorical data to a uniform distribu-
tion.

Target Ordered Mixed Transforms mixed continuous and discrete data to
a uniform distribution.

Ordinal Mixed Is a bijection for transforming mixed continuous
and discrete data to a uniform distribution.

Table 6.2: Summary of SID Univariate Non-Continuous Transforms.

want to transform data to the uniform distribution so we can fit our Copula generators

to it. We experiment with different approaches for this task in this section. We provide

summaries of the approaches in table 6.2 and give a detailed description below:

Noisy Label Encoder Applies a label encoder to categorical data and then adds

a small amount of uniform noise to make the data follow a continuous distri-

bution and avoid point masses. Since the amount of noise added is low, this

transformation is easily reversible by rounding values and reversing the label

encoding. Then, a Univariate Continuous Transform from section 6.4.1 is

fitted on the noisy label encoded data and used to convert to and from the uni-

form distribution. This method is used in the sdv library [41]. NaN Values are

treated as an additional category. A drawback of this method is that fitting a

continuous distribution to the Noisy label encoded data often leads to incorrect

boundaries between each label being learned. Furthermore, in the context of

data augmentation, there is no particular order used in the SDV [41] implemen-

tation to order the label encoded categorical values. This can make it harder to

model column dependencies, especially with a Gaussian Copula which models

a single covariance value between columns.

Low Cardinality Numerical Transformer Used for continuous column with 𝑛

data points with low cardinality, 𝑚 such that 𝑚 << 𝑛. This column only has
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(a) Frequency plot of original data values. (b) 1D Scatterplot of Transformed Data Val-
ues.

Figure 6-3: In this figure, we have a dataset of low cardinality numerical data. The
three values in our dataset are 1, 2, and 3 and they have a frequency of 10, 20,
and 30 respectively. In figure 6-3a we provide a frequency plot for the data. The
Low Cardinality Numerical Transformer transforms the data to subintervals of
the unit uniform distribution, and we plot the output in figure 6-3b. We maintain
the ordering of the data as we see all the transformed values for the data obey that
1 < 2 < 3. Additionally, we observe that 1 has empirical probability 𝑝1 = 1

6
and all

the 1 values are scattered uniformly over [0, 1
6
]. Similarly, the transformed data for 2

and 3 are scattered uniformly on a 𝑝2 = 1
3

and 𝑝3 = 1
2

sized sub-interval of [0, 1]. None
of the intervals on which 1, 2, and 3 transformed data lie intersect, which ensures we
can reverse the transform by sampling a point uniformly on [0, 1] and mapping it to
1, 2, or 3 depending on which value’s subinterval the point lies in.
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point masses as 𝑚 << 𝑛 and thus we model it as an ordinal categorical vari-

able. Assume data takes values 𝑣1, . . . , 𝑣𝑚. Assume that 𝑝𝑖 is the empirical

probability of value 𝑣𝑖. We create a bijective mapping to the uniform distri-

bution that maintains the ordinality of the data by mapping each 𝑣𝑖 to the

uniform distribution on the interval [
∑︀𝑖−1

𝑗=1 𝑝𝑖,
∑︀𝑖

𝑗=1 𝑝𝑖]. For example, 𝑣1 would

be mapped to [0, 𝑝1], and 𝑣2 would be mapped to [𝑝1, 𝑝1 + 𝑝2]. NaN Values are

imputed with the mean before the transform. We provide a visual depiction

of this mapping from values to subintervals of the unit uniform distribution in

figure 6-3. This approach of converting categorical variables to subintervals of

the uniform distribution is used in several other methods in this section.

Target Ordered Categorical Transformer Used for categorical data. The Noisy

Label Encoder for modeling categorical data gives a random ordering to cat-

egories. This is not optimal when using Gaussian Copula and GMCMs which

model column dependencies using covariance. Instead it would make more

sense to order categories by the expected value of the target given the cat-

egory. This will allow the Gaussian Copula to learn a more meaningful co-

variance between the categories and the target than a random ordering. We

describe a procedure for this task below. Assume the column has 𝑚 categories

𝑐1, . . . , 𝑐𝑚. We impose ordinality on these categories by indexing them such that

𝑖 ≤ 𝑗 ↔ E[target|𝑐𝑖] ≤ E[target|𝑐𝑗]. Assume that 𝑝𝑖 is the empirical probability

of 𝑐𝑖. We create a bijective mapping (using essentially the same procedure as

for Low Cardinality Numerical Transformer and depicted in figure 6-3) to

the uniform distribution that maintains the ordinality of the data by mapping

each 𝑐𝑖 to the uniform distribution on the interval [
∑︀𝑖−1

𝑗=1 𝑝𝑖,
∑︀𝑖

𝑗=1 𝑝𝑖]. Notice

that we have imposed ordinality on the categories. In comparison to the Noisy

Label Encoder method, we remove the need for fitting continuous distribution

as this is both inefficient and error prone because the CDF transform will not be

uniform if the Univariate Continuous Transform does not fit the data well.

NaN Values are treated as an additional category. The imposition of ordinality
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should improve modeling using a Gaussian Copula as the covariance between

the target and column will be more accurate, and for a GMCM, categories

with similar conditional expectations for the target can be lumped into a single

mixture as they are spatial neighbors.

Target Ordered Mixed Transformer This transform is meant for mixed contin-

uous and discrete data. Assume the data has continuous values 𝑐1, . . . , 𝑐𝑘

and discrete values 𝑑1, . . . , 𝑑𝑚. We add a categorical column with categories

𝑐, 𝑑1, . . . , 𝑑𝑚, 𝑁𝑎𝑁 indicating whether the univariate data value is continuous,

NaN, or corresponding to a discrete value. This categorical column will be trans-

formed to the uniform distribution using the Target Ordered Categorical

Transformer. Then, for the original continuous column, we either impute or

remove NaNs when fitting the continuous distribution to it as follows:

Impute and Noisy Label Encode NaN values are imputed with the mean

(plus a small epsilon if the mean is an observed value in the data). All

the discrete values and the imputed NaN values are point masses, so we

add a small amount of uniform noise, just as we do with the Noisy Label

Encoder, in order to make sure there are no point masses and the data

follows a smooth continuous distribution.

Remove Remove NaNs and discrete values and then fit the Univariate Continuous

Transform to the remaining continuous data. We then sample from the

uniform distribution when we transform NaNs or discrete values to the

uniform distribution.

We fit a Univariate Continuous Transform to the continuous data using ei-

ther the Impute and Noisy Label Encode or Remove approach above, and use

the CDF to transform it to the uniform distribution. We can reverse this trans-

formation by using the inverse CDF to transform back to original continuous

distribution, and then using the categorical column to keep their value (if the

categorical value is 𝑐) or map to NaN or the respective discrete value (if the

category is NaN or 𝑑𝑖 for some 𝑖).
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Ordinal Mixed Transformer For this method, we transform mixed continuous

and discrete data to the uniform distribution while maintaining ordinality of

the data. Note that NaN values are imputed with the mean (plus a small ep-

silon if the mean is an observed value in the data) and are treated as discrete

values. At a high level, we are mapping the the continuous and discrete data

into subintervals of the uniform distribution such that the order of variables is

maintained after the mapping. We provide a simple example of the approach

in figure 6-4. Below we give that algorithm for computing the subintervals for

the mapping and give a more detailed description of the algorithm.

Algorithm 1 Ordinal Mixed Transformer
Input : 𝑐1, . . . , 𝑐𝑘 - the continuous data values

𝑑1, . . . , 𝑑𝑚 - the discrete values
𝑝𝑖 - the empirical probability of each discrete value
𝑝𝑐 - the empirical probability of a value being continuous

for 𝑖← 1 to 𝑚 do
𝑙← the left side of the interval equals the empirical probability a
datapoint is less than 𝑑𝑖
𝑟 ← 𝑙 + 𝑝𝑖, the right side of the interval equals 𝑙 plus the probability of
the discrete value
𝐼𝑖 ← [𝑙, 𝑟], this is the uniform interval to which the discrete data is
transformed. 𝐼𝑐 ← [0, 1] ∪𝑖 𝐼𝑖, this is the uniform interval on which the
continuous data will be transformed to.

end
Output: 𝐼1, . . . , 𝐼𝑚 - Intervals discrete values are mapped to.

𝐼𝑐 - Interval the continuous data is mapped to.

𝑐1, . . . , 𝑐𝑘 are the continuous values, 𝑑1, . . . , 𝑑𝑚 are the sorted discrete values, so

𝑖 < 𝑗 ↔ 𝑑𝑖 < 𝑑𝑗. We define 𝑝𝑖 as the empirical probability of discrete value of

𝑑𝑖 and 𝑝𝑐 as the empirical probability of a value being continuous. Then we fit

the Univariate Continuous Transform to the continuous data and perform

a CDF transform so 𝑢1, . . . , 𝑢𝑘 are the CDF transformed continuous values.

We partition the unit uniform marginal we are transforming the data to into

intervals. Each discrete value 𝑑𝑖 is mapped to uniform interval on 𝐼𝑖, and the

continuous data is mapped to be uniformly distributed on 𝐼𝑐 as described in

algorithm 1.
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(a) Histogram of 600 Con-
tinuous Data samples from a
beta distribution.

(b) Frequency plot of 600
samples from a discrete dis-
tribution. Same as 6-3a ex-
cept with 600 instead of 60
total samples.

(c) We plot the mixed data
distribution of combining the
data in figure 6-4a and figure
6-4b.

(d) We plot a 1D Scatterplot of the data, coloring each point depending on which discrete
value it is equal to, 1, 2, or 3, or which interval it lies in, (0, 1), (1, 2), (2, 3), or (3, 4).

(e) 1D Scatterplot of Transformed Data Values, with same coloring as in figure 6-4d.

Figure 6-4: In this figure, we give an example of a mixed discrete dataset in figure
6-4c. We show the 1D scatter plot of the Data, coloring points by where they fall
in relation to the discrete points in figure 6-4d. Finally, we transform the data using
the Ordinal Mixed Transformer, which first takes all continuous data in (0, 1) and
maps it to the lowest interval in the unit uniform distribution. Then it maps the
discrete data equal to 1 to the next lowest, and so on until we get to the data in
(3, 4) which is mapped to the highest interval. The width of the intervals that each
color maps to is the number of points for that color

the total number of points , the empirical probability of the data in
the interval.
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Modeled Univariates

Transform Name Cont Cat Low Mixed

SDV Default (SDV) ✓ ✓ ✗ ✗

SDV Categorical (SDV_CA) ✓ ✓ ✓ ✗

Ordinal Mixed Multivariate ✓ ✓ ✓ ✓

Target Ordered Mixed Multivariate ✓ ✓ ✓ ✓

Table 6.3: Summary of SID Multivariate-Transforms. These transforms take
a full dataset and transform it to have uniform marginal distributions. The
Multivariate-Transforms vary in which Univariate distributions the are designed
to model. The Cont, Cat, and Mixed columns in the table refer to whether the
multivariate transform can model univariate marginals for data that is continuous,
categorical, or mixed continuous and discrete respectively. The Low column in the
table refers to whether the multivariate transform can model univariate marginals for
low cardinality numeric univariate data.

For the transformation from the original mixed continous discrete data to the

unit uniform distribution, it is straightforward that for each 𝑑𝑖, we simply sample

a uniform value from the interval 𝐼𝑖. For continuous values, we CDF transform

from 𝑐𝑖 → 𝑢𝑖, and multiply by 𝑝𝑐 (the length of 𝐼𝑐). Then we add the length

of each 𝐼𝑖 where 𝑑𝑖 < 𝑐𝑖 to ensure the data point is in 𝐼𝑐 and that the data is

uniformly distributed on [0, 1].

For the reverse transformation from the unit uniform distribution to the mixed

continuous discrete data, we map datapoints in an interval 𝐼𝑖 to discrete value

𝑑𝑖 (and convert the appropriate 𝑑𝑖 to NaN). For a value 𝑟 in 𝐼𝑐, we subtract∑︀
𝑖|𝑑𝑖<𝑟 𝑝𝑖. This transforms the continuous variables to a uniform distribution

on [0, 𝑝𝑐]. We then divide by 𝑝𝑐 which transforms the continuous data back

to the [0, 1] interval. We can then apply the inverse CDF to transform these

continuous values back to the original distribution.

6.4.3 Multivariate-Transforms

In this section we present different invertible transforms for tranforming entire tabular

datasets to have uniform marginals. We provide a summary of these transforms in

table 6.3. These are implemented in SID and we emperically compare these methods
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in later experiments. Note that SDV Default serves as a baseline implementation

to which we compare our methods. We summarize our transforms in the table 6.3

and give a more detailed description below. For each transform, we provide the

Uniform marginal transform, which transforms from the original data distribution

to a distribution with all uniform marginals. Additionally we provide the Inverse

Transform, which inverts the Uniform marginal transform.

SDV Default (SDV) This is the default transform used by the SDV [41] library,

one of the most popular python libraries for fitting Copulas to tabular data.

Uniform marginal transform

1. Add NaN indicator categorical column for all columns with missing values.

2. Apply Noisy Label Encoder to all categorical columns to make them

continuous.

3. Fit a continuous distribution to each column and apply CDF transform.

Inverse Transform

1. Apply inverse CDF transform to each column.

2. Inverse Noisy Label Encoder for all categorical columns.

3. Use NaN indicator column to map indicated rows to NaN values.

SDV Categorical (SDV_CA) This uses the same approach as the SDV library

for handling categorical data and NaNs, but uses the Ordinal Categorical

transformer to model continuous data with low cardinality, and the Ordinal

Mixed Transformer for the rest of the continuous columns. This change should

allow for better handling of mixed continuous and discrete data.

Uniform marginal transform

1. Add NaN indicator categorical column for all columns with missing values.

2. Apply Noisy Label Encoder to all categorical columns to make them

continuous.

89



3. Apply Ordinal Mixed Transformer transformer to each column and ap-

ply CDF transform.

Inverse Transform

1. Apply inverse Ordinal Mixed Transformer transform to each column.

2. Inverse Noisy Label Encoder for all categorical columns.

3. Use NaN indicator column to map indicated rows to NaN values.

Ordinal Mixed Multivariate (OM) Apply Target Ordered Categorical Transformer

to categorical data, Ordinal Categorical Transformer to continuous data

with low cardinality, and Ordinal Mixed Transformer to the rest of the con-

tinuous columns. To invert, we simply apply the inverse of the univariate trans-

forms to the corresponding columns.

Target Ordered Mixed Multivariate (TOI or TOR) Apply Target Ordered Categorical

Transformer to categorical data, Ordinal Categorical Transformer to con-

tinuous data with low cardinality, and Target Ordered Mixed Transformer

to the rest of the continuous columns. Note that the Target Ordered Mixed

Transformer can either use the Impute and Noisy Label Encode (which

we denote as TOI) or the Remove (which we denote as TOR) setting can be is

used for handling NaNs and discrete values; we experiment with globally using

one setting or the other. To invert, we simply apply the inverse of the univariate

transforms to the corresponding columns.

6.5 SID Sampling Methods

We have discussed multiple approaches to converting raw data to data with uniform

marginals using our Multivariate-Transform. We have also discussed how to fit

several Copula models to this data with uniform marginals in section 4. Now we will

discuss different sampling methods that we experiment with for sampling synthetic

data. The question of what data to sample from the Copula is not trivial; neither
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Transform Summary

Unconditional Sampling Sample approximately half of the real dataset size from
the Synthetic Data generator.

Mixture Sampling Same as Unconditional Sampling except we sample
from a single mixture in GMCM or segment in the Seg-
mented Gaussian Copula model.

Quantile Sampling Same as unconditional sampling except we use rejec-
tion sampling to filter for samples that are in a specific
quantile for a column.

Unconditional Tuned
Sampling

Is the same as Unconditional Sampling except we
tune the amount of Synthetic Data sampled.

Table 6.4: Summary of SID Multivariate-Transforms.

is the question of how much data to sample for the purpose of Data Augmentation

(recall these are research questions 3 and 4 from section 1). Here we introduce and

describe four sampling methods in the SID library to help assess different tabular Data

Augmentation schemes. Note that 𝑛 denotes the number of training data samples.

Unconditional Sampling A fixed amount of Synthetic Data is sampled from the

data generator model. A generator that creates synthetic data that follows

the distribution of the original data may help an ML model better learn the

distribution of the data, and could potentially improve model learning. We

simply sample 𝑛/2 Synthetic Data samples for our experiments.

Mixture Sampling For generators with a notion of mixtures (such as the segmented

Copula generator or the Gaussian mixture Copula model from section 4), we can

sample a fixed amount of data from each mixture. The mixtures that provide

a higher ML performance on a validation set, after augmenting with Synthetic

Data sampled from the mixture, are then used to augment the model. If the

mixture model learns the distribution of a portion of the data that the baseline

ML model normally struggles with, sampling from this mixture could help the

model perform better on this portion. We simply sample 𝑛/2 Synthetic Data

samples for our experiments.

Quantile Sampling For each of the 𝑚 columns in the dataset, we split the data into
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𝑟 quantiles (except for categorical data which we just iterate over all categorical

values). For each column-quantile pair, we sample synthetic data that has

satisfied the condition that all data from this column is within the quantile by

using rejection sampling. This is essentially a brute force method to search over

the space of the Synthetic Data in an attempt to find pockets that we can use

to bias the ML model to perform better. We simply sample 𝑛/2 Synthetic Data

samples for our experiments.

Unconditional Tuned Sampling The SID library also alows for tuning the amount

of Synthetic Data using a tree-structured parzen estimator(TPE) [5]. We as-

sume the optimal number of samples is between 0 and 𝑛. In our implementation,

we estimate the performance of a specific number of Synthetic Data samples, 𝑡,

by performing 10-fold cross validation and sampling a fresh batch of 𝑡 Synthetic

Data samples to augment with for each fold. We average the ML performance

for each fold to get the score for 𝑡, and use TPE to find the 𝑡 value that optimizes

ML performance. For our experiments we sample the data unconditionally, but

you could perform this in conjunction with Mixture or Quantile sampling.

6.5.1 SID: Entity Presets

In the SID library we provide preset entities for all datasets in section 2. These

preset entities are meant to serve as examples to help other researchers interested

in applying these data augmentation experiments to their data, and also serve as an

example that entities can use for considering how to pre-process and prepare their

data and APIs to engage in collaborations involving restricted access to data while

still allowing experimentation with Data Augmentation workflows.

6.6 SID: Collaborator Presets

Collaborators can sample Synthetic Data from the entity to visualize their data,

and then propose their own Data Augmentation or baseline ML model approaches

to evaluate on the entity’s private data. In the SID library, we implement three
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Collaborator Copula Generator

Gaussian Copula Collaborator Gaussian Copula.
Segmented Gaussian Copula
Collaborator

Segmented Gaussian Copula.

Gaussian Mixture Copula Model
Collaborator

Gaussian Mixture Copula Model.

Table 6.5: Summary of SID Collaborator classes. Each Collaborator class per-
forms Tabular Data Augmentation by generating Synthetic Data from a specific Cop-
ula Generator. Collaborators use Multivariate-Transform to transform the data
to have uniform marginals before fitting the Copula Generator. All of the previously
defined Multivariate-Transform are supported for each Collaborator class.

collaborator presets to test the SID API, while also providing useful approaches for

experimenting with Data Augmentation on tabular data. We provide a summary

of the collaborator presets in table 6.5. Below is a description of the implemented

collaborator presets implemented in the SID library:

Gaussian Copula Collaborator This collaborator fits a Gaussian Copula to the

data with a predefined Multivariate-Transform. It allows support for all

sampling methods from section 6.5 except Mixture Sampling as the Gaussian

Copula has no notion of mixtures.

Segmented Gaussian Copula Collaborator This collaborator fits a segmented

Gaussian Copula to the data with a predefined Multivariate-Transform. It

allows support for all sampling methods from section 6.5.

Gaussian Mixture Copula Model Collaborator This collaborator fits a Gaus-

sian mixture Copula model to the data with a predefined Multivariate-Transform.

It allows support for all sampling methods from section 6.5, and allows the use of

fitting the Copula using the AD-GMCM method or the PEM-GMCM methods

discussed in section 4.
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Chapter 7

Tabular Data Augmentation

Experiments

In Section 2, we introduced several challenges pertaining to training Synthetic Data

generator models using real-world insurance data, as well as using Synthetic Data

to improve ML models. We designed experiments to verify whether our proposed

methods can help improve the final performance of ML models, in comparison with a

baseline where Synthetic Data is not introduced at all. We describe our experiments

in this section.

7.1 General Experiment Setup

In this section we cover our baseline and the setup for all of our future experimenta-

tion.

For our experiments, we only use the Databricks, Emicen Auto, Emicen Rail,

and Fraud 2 datasets we describe in section 2. Most of the other datasets had ex-

tremely long runtimes (around 2 days on a system with with 64 cores and a 3060ti

GPU) for training the Gaussian Mixture Copula Synthetic Data model, making it

intractable to get mean and average performances over 10 end-to-end runs with dif-

ferent initializations (as we do for all of our experiments). Additionally, for some

datasets, we were able to get perfect prediction metrics (1 Gini score or 1 AUC for
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example). We removed those datasets in order to benchmark on more challenging

ones.

For our baseline, we train an XGboost model on only training data. Note that

we add no Synthetic Data. See section 3.2 for details and baseline results. Each

experiment shares the same settings, as follows.

1. Run the experiment on each of the following datasets: Databricks, Emicen

Auto, Emicen Rail, and Fraud 2, described in section 2.

2. Use a Copula Synthetic Data generator with the Spline Univariate Continuous

Transform as the default.

3. Augment training data with 𝑛′ samples of Synthetic Data sampled (using Unconditional

Sampling by default) from the generator. 𝑛′ = half the size of the training

dataset by default.

4. For evaluating all our experiments on each dataset, 𝐷, we split 𝐷 into 𝐷train ∪

𝐷test, keeping this split constant. We additionally hold out 10% of the data in

𝐷train as our validation set.

5. We use the same ML model and preprocessing pipeline described in section 3.2

for all experiments.

6. We collect and compare the Gini score as our regression performance metric for

continuous loss prediction and AUC for binary loss and fraud prediction.

7. For each experiment, we fit the generator model once. Using a sampling method

(Unconditional Sampling is used by default), we sample 10 size 𝑛′ batches of

Synthetic Data. For each batch, we augment our training data with the batch,

train a model on the augmented dataset, and record our test set ML score.

8. We define the best model as the one that achieves the highest ML performance

consistently on all datasets. If there is no consistent winner, we select one and

provide our reasoning.
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9. We define the ML score improvement as the test set ML score (when using Data

Augmentation) minus the baseline test set ML score.

7.2 Experiment Definitions

7.2.1 Univariate Modeling Experiment

We perform two Univariate Modeling Experiments to understand the impact of uni-

variate modeling on tabular Data Augmentation.

1. We compare the Data Augmentation performance over all the Multivariate-Transforms.

This will show us whether specific modeling of low cardinality, categorical, and

mixed continuous and discrete univariate data is beneficial. We use the best-

performing multivariate-transform for all of the other experiments.

2. We compare the Data Augmentation performance over all the Univariate

Continuous Transforms. This will reveal the importance of accurate mod-

eling of the continuous data (and its CDF).

7.2.2 Copula-Dependency Modeling Experiment

We experiment with different Copula models, defined in section 4.1, to better un-

derstand how important column dependency modeling is to tabular Data Augmen-

tation. Specifically, we run the Segmented Gaussian Copula, the PEM-GMCM, and

the AD-GMCMs. We use the best Copula model from this experiment for the rest

of the experiments. For both GMCM models, we use MI-GMM initialization; for the

PEM-GMCM model we use only 3 mixtures, as the PEM-GMCM model R program

language implementation [6] struggles with singularities and produces errors on many

datasets when using higher numbers of mixtures. Because our AD-GMCM implemen-

tation is robust to singularities, for AD-GMCM we vary the number of mixtures using

3 and 20 mixtures to compare how this number affects ML performance.
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7.2.3 Sampling Method Experiment

Our goal is to understand whether sampling from certain mixtures or quantiles of

the data is beneficial. We experiment with the Mixture Sampling and Quantile

Sampling methods defined in section 6.5 on the 3 and 20 mixture AD-GMCM. We

compare the best-performing mixture and quantile between the 3 and 20 mixture AD-

GMCM to see whether performance scales with the number of mixtures (indicating

that more complex column dependency modeling improves tabular Data Augmenta-

tion performance). Additionally, we wish to see if these sampling methods are able to

find better Synthetic Data for Data Augmentation than Unconditional Sampling

can.

In a real ML workflow, we would decide on which mixture or quantile to sample

from based on the validation set performance. However, this assumes that the test

set performance is correlated with the validation set, which may not be the case.

We examine the practicality of mixture and quantile sampling by assessing whether

the cross-validation ML score correlates with the test set ML score. Specifically, we

record the cross-validation ML scores for the 20 AD-GMCM, and see whether they

correlate with the test set ML scores.

7.2.4 Amount of Synthetic Data Experiment

To better understand how much Synthetic Data should be used, we take the best

Copula model from experiment 7.2.2 and optimize the amount of SD sampled by

using the Unconditional Tuned Sampling method.
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Chapter 8

Tabular Data Augmentation Results

And Analysis

In this section, we analyze the results of our experiments as detailed in section 7. Full

experimental results are recorded in appendix C.
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8.1 Univariate Modeling Results

Figure 8-1: Bar plot of the Gaussian Copula data augmentation results. We use the
Spline continuous transform, and plot the ML score improvements. The improve-
ment is averaged over 10 runs, and the black lines denote a standard deviation for
the sample mean.

In this section, we are trying to answer RQ1: is accurate univariate column mod-

eling important for tabular Data Augmentation? In figure 8-1, we present the ML

score improvements as we vary the Multivariate-Transforms. Note we are using a

Gaussian Copula Synthetic Data generator with a Spline Univariate Continuous

Transform. We see that the TOR and TOI Multivariate-Transforms perform signif-

icantly better than SDV_CA and SDV on 3 out of 4 of the datasets, performing similarly

to them on the remaining one. OM outperforms SDV_CA and SDV on half the datasets,

and performs similarly on the remaining two. This provides proof that our Target

Ordered Categorical Transformer transform (used by TOR, TOI, and OM) bet-

ter models categorical data compared to the noisy label encoding (used by SDV and

SDV_CAT) resulting in the improved Data Augmentation.

We expected to see an improvement when using SDV_CA instead of SDV as we
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introduce modeling of mixed continuous and discrete data, with the Ordinal Mixed

Transformer, and modeling of low-cardinality continuous data, with the Ordinal

Categorical Transformer. However, there isn’t a significant difference between

Data Augmentation performance for these two Multivariate-Transforms. It is

most probable that these datasets simply don’t contain significant target column

correlations that require mixed continuous and discrete column modeling. For the

rest of our experiments, we use only TOR, as it performed best on all datasets.

Figure 8-2: Bar plot of the Gaussian Copula data augmentation results. We use
the TOR Multivariate-Transform, and plot the ML Score improvements over all
Univariate Continuous Transforms. The improvement is averaged over 10 runs,
and the black lines denote one standard deviation.

In figure 8-2, we plot the ML score improvements when varying the Univariate

Continuous Transforms. We see that they all perform relatively similarly on all

datasets. We expected to see an improvement as we moved from fitting with the

Beta distribution to fitting with BMM; however, the BMM parameter estimation suffered

from instabilities, making it have a bad fit for the Databricks dataset. We also

expected the Spline to have the best results, and to more accurately model the CDF
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transforms for continuous variables, but there isn’t a significant difference on any

dataset. For the rest of the experiments we use the Spline, because it behaves stably

(compared to the BMM), and its non-parametric form makes it more flexible, giving

it a more uniform CDF transform for data (compared to the Beta). This is desirable

for fitting GMCMs, which can have stability issues. See the full Univariate Modeling

Results in the appendix section C.1

8.2 Copula-Dependency Modeling Results

Figure 8-3: We report the ML score improvement for each Copula model and dataset
combination, using the TOR Multi-Transform. 𝑟 denotes the number of mixtures
for the GMCM models. Note that the PEM-GMCM(r=3) errors when it assigns zero
probability to a mixture, making it fail for the Fraud 2 dataset.

In this section, we are trying to answer RQ2: Is accurate column dependency model-

ing important for tabular Data Augmentation? In figure 8-3, we compare the perfor-

mance of each Copula model: Gaussian Copula, Segmented Gaussian Copula (with

two segments), 3 mixture PEM-GMCM, 3 mixture AD-GMCM, and 20 mixture AD-
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GMCM.

We do not see any consistent significant differences in performance when vary-

ing the Copula models. We expected that moving from Gaussian Copula to the

Segmented Gaussian Copula and then to the GMCMs would incrementally improve

performance by allowing more flexible modeling. We also expected the 20 Mixture

AD-GMCM to perform significantly better than the 3 Mixture AD-GMCM, but again,

we see a lack of improvement on these datasets.

We note that none of the models consistently improves the ML performance over

the baseline. We expected adding Synthetic Data from a more flexible Copula model

would improve performance on all datasets. However, for all of the datasets, there is

no significant improvement. Two possible reasons for this behavior are:

• The amount of Synthetic Data we are sampling may need to be tuned to improve

the Data Augmentation performance. We address this in section 8.4.

• Additionally, it may be the case that Unconditional Sampling for tabular

Data Augmentation is not beneficial, so we try alternative sampling methods,

Mixture Sampling and Quantile Sampling, in the next section.

Note that we provide the full Copula-Dependency modeling results in the appendix

section C.2.

8.3 Sampling Method Results

In this section, we are trying to answer RQ3: given a generator, how should we sam-

ple for data augmentation? In these experiments, we observe that specific mixtures

and quantiles improve performance. However, we also find that for these sampling

methods, validation performance is not a good proxy for ML performance, thus it is

not possible to know apriori whether your Synthetic Data will improve performance

on the test set using only validation accuracy.
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8.3.1 Mixture Sampling

Figure 8-4: 3 and 20 mixture AD-GMCM Mixture Sampling results. We plot the
ML Score Improvement for the Mixture with the highest Test Set Score. The TOR
Multivariate-Transform is used.

See full results for Mixture Sampling in the appendix section C.3.1. We plot the best

results obtained using mixture sampling on a 3 and 20 mixture AD-GMCM in figure

8-4.

We observe that mixture sampling sometimes improved performance and some-

times hurt. Now we ask whether it is possible to know a priori, from validation

metrics, whether test set performance will be higher with this augmented training

data. We plot in figure 8-5 the test set ML improvement vs validation set perfor-

mance for each data augmentation trial in order to see if there is a correlation. We

observe that across the 20 mixtures we sample from, there is not consistent corre-

lation between performance on the validation and test sets when augmenting with

Synthetic Data. (Fraud 2 is the only dataset that has a stronger correlation – the

rest do not.) If Synthetic Data were helping our model generalize, we would expect

to observe a correlation between validation and test set accuracies. The lack of such
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Figure 8-5: This figure presents linear regression plots with 95% confidence intervals of
the test set ML score improvement vs validation set ML score for each dataset when
sampling using the Mixture Sampling method. We are sampling and augmenting
with synthetic data sampled from the 20 mixture AD-GMCM. We computed 10 trials
for each mixture, for a total of 200 points.

a correlation in several datasets implies that Synthetic Data from a mixture does not

improve generalization, but has a random effect on training performance (potentially

by overfitting to certain synthetic samples that may or may not be in the test and

validation set).

8.3.2 Quantile Sampling

See full results for Quantile Sampling in the appendix section C.3.2. Some Quantiles

significantly improve performance as shown in figure 8-6, where we share the best

performing quantile result for each dataset when sampling from a GMCM with 3 and

20 clusters. Note that the Fraud 2 dataset was not assessed for this experiment be-

cause it has extremely high-cardinality categorical columns which make it intractable
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Figure 8-6: Quantile with highest Average Test Set ML Score after Data Augmenta-
tion is plotted for 3 and 20 Cluster AD-GMCM. There are no results for the Fraud
2 dataset as it is not tractable to run Quantile sampling on it as it has very high
dimensionality categorical columns.

to perform quantile sampling1. As we increased the number of clusters from 3 to 20,

we again did not see a statistically significant improvement in ML performance.

Quantile sampling cannot be employed practically because, just like with mixture

sampling, there is no way to validate whether your Synthetic Data will improve ML

performance by using the validation set ML score. In figure 8-7, we observe no clear

correlation between the validation set ML Score and the test set ML Score, implying

that validation set performance is not a good estimate of test set performance. This

could potentially be resolved by using a larger validation set size, as in our experi-

ments, we only hold out 10% of our training data as the validation set. Alternatively,

other estimates for test set accuracy could be experimented with, such as Affinity and

Diversity [22], but because most Data Augmentation metrics for evaluating the utility

of Synthetic Data are developed with non-tabular data modalities such as images in

1A variation of quantile sampling that lumps categories together to handle high-cardinality cat-
egorical columns is necessary, but it is not clear how to lump columns together.
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Figure 8-7: This figure presents linear regression plots with 95% confidence intervals
of test set ML score improvement vs validation set ML score. Each point is from
augmenting with synthetic data conditioned on a single quantile, and is generated
by a 20 cluster AD-GMCM. We collect 10 points for each quantile. We observe that
there is no consistent positive correlation across datasets between performance on the
validation and test sets when augmenting with Synthetic Data.

mind, and their application in the tabular data setting is not well understood.

8.4 Amount of Synthetic Data Results

In this section, we are trying to answer RQ4: how many Synthetic Data samples

should we generate for data augmentation? We expected Tuned Unconditional

Sampling to improve performance when compared to Unconditional Sampling;

however, as shown in figure 8-8, it does not. Recall that we tuned by using 10-

fold cross validation, augmented with a fresh batch of Synthetic Data for each fold.

Even though the data is tuned on the average ML score from 10-fold cross validation,

it seems that the TPE parameter tuner is not able to learn to sample an amount of
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Figure 8-8: Results After Tuning the amount of Synthetic Data for Data Augmenta-
tion. We Report Results for 3 and 20 Cluster AD-GMCM.

Synthetic Data that provides a better ML score than is achieved by simply sampling

half of the size of the training dataset (which we did in all other experiments). This is

likely caused by the a lack of validation performance providing a good estimate of ML

performance for tabular Data Augmentation, as we saw with quantile and mixture

sampling. Future work should find better metrics for usability of Synthetic Data for

Data Augmentation and experiment with different optimization methods for tuning

the amount of data to sample.
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Chapter 9

Discussion

In our experiments we showed that using Data Augmentation with tabular data from

Synthetic Data generators can help improve ML performance. In this section we cover

the implications of our results, the limitations of our experiments, and future work

in this area.

9.1 Implications

Our experiments show three implications for using Copula-generated Synthetic Data

for Data Augmentation.

1. Univariate modeling has a significant impact on the quality of Synthetic Data.

Noisy Label Encoders were outperformed by the Target Ordered Categorical

tranformers we introduce, showing that improved modeling of categorical data

is important. Surprisingly, the Univariate Continuous Transforms seemed

to not have a large impact on performance. Additionally, improved univariate

modeling of mixed continuous and discrete data and NaNs did not seem to have

a significant affect on ML performance either.

2. Variations in column dependency modeling, as we tried different Copula models

and varied the number of mixtures in the GMCM model, did not have a sig-

nificant effect on ML performance on our datasets. The GMCM model is very
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difficult to train and likely is reaching local optimas in its training, causing this

lack of improvement. The Segmented Gaussian Copula and Gaussian Copula

models are also likely too restrictive to fit the data well. It would be best to use

a different model architecture for learning complex dependencies such as GANs

or VAEs.

3. Sampling methods such as Quantile Sampling and Mixture Sampling show

promise, as we were able to get higher test set accuracies with them; however,

these sampling methods are not practical because validation set accuracy did

not give a good estimate of test set accuracy.

4. Determining the optimal amount of Synthetic Data is a task subject to a sig-

nificant amount of noise, and using the TPE[5] hyperparameter tuner did not

produce good results at learning the optimal amount of Synthetic Data. Having

a better metric for estimating test set accuracy could help make tuning perform

better. Other methods for tuning the amount of Synthetic Data may perform

better as well in this task.

9.2 Limitations and Future Work

We only ran our experiments on public insurance and fraud datasets with fewer than

60 columns, so our results are limited to datasets of such size with similar properties

and don’t necessary hold for tabular datasets as a whole. We also only used insurance

datasets in our analysis. It is important for future work to experiment on a broader

selection of tabular datasets, both those that are more general and those that may

come with different modeling challenges. We hope that SD test beds will improve

access to more diverse datasets.

We only consider models based on the Gaussian Copula and Gaussian Mixture

Copula generators as they allow for more interpretable experiments by setting the

number of mixtures and the multi-transforms. We did not explore other methods

for Data Augmentation such as with Vine Copulas, GAN-based generators, VAE-
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based generators, or diffusion model based generators, which could better capture

column dependency information and provide better Synthetic Data for Data Aug-

mentation. Future effort should be put into assessing these models for tabular Data

Augmentation and interpreting when and why a batch of Synthetic Data improves

ML performance.

In our experiments, we assumed validation performance would provide a strong

estimate of test set performance when performing tabular Data Augmentation, but it

turns out validation set performance is not always a good estimate when performing

tabular Data Augmentation. Developing better methods for determining, a priori,

the ML value of Synthetic Data for Data Augmentation is an under-explored area

for tabular data, and is a necessary problem for future work to solve in order for any

tabular Data Augmentation methods to predictably improve ML performance. Re-

inforcement learning methods may be useful for developing better sampling methods

and tuning the amount of synthetic data, and would be an interesting direction.
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Chapter 10

Conclusion

In this thesis, we make two main contributions:

• We provide SID, a flexible framework to foster collaborations between entities

with private data and data scientists seeking to validate Data Augmentation

methods on real complex datasets.

• We investigate the real world applicability of tabular Data Augmentation on

complex insurance claim and fraud datasets. We experimented with different

univariate modeling strategies, different Copula models, and different sampling

methods, and attempted to tune the amount of Synthetic Data we augment

with. Assessing how Synthetic Data affects regression and classification perfor-

mance on our datasets left us with mixed results, as well as many directions

to explore to better understand tabular Data Augmentation and build better

methods in the future.

We hope that future researchers and data scientists build off the generators and

sampling methods in the SID library, and develop better tabular generative models

and improved sampling methods while contributing to the open problem of how and

when tabular Synthetic Data improves ML performance. A tabular dataset bench-

mark with several challenging tabular datasets from different domains could help

foster innovation in the tabular data the same way that ImageNet [14] helped in CV;
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however, most complex tabular datasets are kept private by entities in different do-

mains such as healthcare, finance, or insurance. The proliferation of SD testbeds is

essential for progress in tabular Data Augmentation as it will enable massive collab-

orations and improve data accessibility for researchers and data scientists, so that

better ML methods can be validated on complex real-world datasets.
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Appendix A

Glossary

Data Augmentation The practice of using Synthetic Data along with real data to

train an ML model. Described in detail in section 5.

Gaussian Copula A synthetic data generator model for tabular data [41].

Generator A machine learning model that can generate new data samples..

Gini score Somer’s D Gini Coefficient.

Kaggle An online data-science community where datasets and data-science compe-

titions are hosted by users.

loss Amount of money paid out for an insurance client.

Synthetic Data Fake data generated by a generator.
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Appendix B

Gaussian Mixture Copula Model

Fitting Algorithms

Variable Definition

𝜏 Maximum number of epochs for AD and PEM GMCM algorithms.

𝑡 Is the current epoch number during training. We index variables

that are updated over epochs using the notation Σ
(𝑡)
𝑘 to represent

the value of Σ𝑘 after epoch 𝑡.

𝑍 Represents the latent variables for the PEM GMCM algorithm. 𝑍 ∈

𝑅𝑛×𝑟 and 𝑍𝑖,: represents a categorical distribution over the clusters

data point 𝐷𝑖,: may belong to.

𝜖 Is the convergence threshold. If loss over two PEM GMCM epochs

changes by less than 𝜖, then training is stopped early.

𝜁 Is the number of noise columns added to a dataset. Noise columns

are columns that follow an independent normal distribution.

Table B.1: GMCM Fitting Notation Table

Here we describe the AD-GMCM[27] (and our implementation of it) and the PEM-

GMCM[6, 31] algorithms for fitting a GMCM to data. We use the GMCM notation

defined in table 4.4 and additionally define some extra fitting algorithm related pa-
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rameters in B.1.

B.1 Auto-Differentiation (AD) GMCM

AD-GMCM, uses automatic differentiation and gradient descent to learn the copula

parameters. Previous work[27] implemented this algorithm in R, and for this thesis

we re-implemented it in python. The AD-GMCM algorithm is copied for convenience

here in algorithm 2, using the notation defined in this thesis.

Algorithm 2 AD-GMCM [27]
Input : 𝑈 - data with uniform marginals

𝑟 - number of clusters
InitMethod - For initializing 𝜋(0), 𝜇(0),Σ(0) or 𝑉 (0)

𝜏 - number of epochs.
Initialize 𝜋(0), 𝜇(0), 𝑉 (0) based on InitMethod
for 𝑡← 1 to 𝜏 do

Reset 𝑦
Ω

(0)
𝑗 ← Φ−1

𝑗 (𝑈𝑗; 𝜋
(𝑡−1), 𝜇

(𝑡−1)
𝑘 ,Σ

(𝑡−1)
𝑘 )

Gradient Step
𝜋
(𝑡)
𝑘 ← 𝜋

(𝑡−1)
𝑘 + 𝜂 𝜕ℒ

𝜕𝜋𝑘
.

𝜇
(𝑡)
𝑘 ← 𝜇

(𝑡−1)
𝑘 + 𝜂 𝜕ℒ

𝜕𝜇𝑘
.

𝑉
(𝑡)
𝑘 ← 𝑉

(𝑡−1)
𝑘 + 𝜂 𝜕ℒ

𝜕𝑉𝑘
.

Σ
(𝑡)
𝑘 ← 𝑉

(𝑡)
𝑘 𝑉

(𝑡)
𝑘 𝑇 .

end
Output: 𝜋, 𝜇,Σ

We note that different InitMethods can be used to initialize the starting parame-

ters of the GMCM. Since ℒ is not convex, convergence is not assured and AD-GMCM

is very sensitive to starting points, so it is important to try different initializations.

Below we define the initialization methods we try:

• ClusterMethods

1. Use a cluster method such as Kmeans or Gaussian Mixture Model to cluster

𝑈 into 𝑟 clusters.

2. 𝜋(0)
𝑘 ← empirical probability of cluster 𝑘.

𝜇
(0)
𝑘 ← mean of cluster 𝑘.
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Σ
(0)
𝑘 ← covariance matrix of cluster 𝑘.

𝑉
(0)
𝑘 ←

»
Σ

(0)
𝑘 .

• RandomInit Randomly sample 𝑟 matrices 𝑉𝑘, vectors 𝜇𝑘, and probabilities 𝜋𝑘

s.t.
∑︀
𝜋𝑘 = 1. Set Σ𝑘 = 𝑉𝑘𝑉

𝑇
𝑘 (this ensures Σ𝑘 is positive definite).

Note that any auto-differentiation library can be used to compute the gradients

for algorithm 2, and in the SID library we use pytorch [40] and the adam optimizer

[28].

Gaussian Mixture copula suffer from identifiability issues as there is no unique

representation for any Gaussian Mixture Copula as you can translate means or mul-

tiple covarainces while maintaining the sample copula model. This can cause issues

when performing inference on the Gaussian Mixture Copula as you can get exploding

and vanishing covariance or mean parameter values. To try to overcome this, we fol-

low the same procedure as previous work [6], after clustering the data we anchor the

means by subtracting the mean of the first cluster from all clusters. This makes the

first mean be at the origin and all clusters are relative to it. We then divide all covari-

ance matrices by the diagonal of the covariance of of the first cluster. This makes all

covariance matrices relative to the first cluster having unit covariance. Gradients are

also clipped. Since the inverse marginal CDF, Φ−1
𝑗 (𝑈𝑗) has no closed form, we also

use the grid search and interpolation method from previous work [27, 6] to calculate

the inverse marginal CDF.

Numerical Stability Techniques

AD-GMCM can have very unstable training if run naively. Here we provide some

techniques that make training more stable. For our experiments a learning rate of

1𝑒 − 2 with 200 epochs is generally our training setup. One major limitation with

GMCM is the unidentifiability of parameters. GMCM parameters do not define a

unique model because you can translate cluster mean values and scale cluster means

and covariances while maintaining the same model. This can lead to issues with

exploding parameter values when optimizing the parameters of the GMCM using
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Automatic Differentiation. To resolve this, we anchor the first mixture to have a

mean of 0 and have unit variance in each dimension as previous work has done [6].

Additionally, the GMCM model struggles with singularities in the covariance

which make the loss non-finite. To resolve this we optimize the log-cholesky de-

composition of the covariance for each mixture as described in [6]. Note that the

log-cholesky decomposition is the cholesky decomposition but with the log function

applied elementwise to the diagonal. In addition we add a small 𝜖 to the diagonal

of the cholesky decomposition to ensure the covariance matrix is non-singular. We

found that scaling the initial parameters so the means are on the order of 100 (by

multiplying the data by 100 before running the initmethods on it) ensures that 𝜖 is

very small relative to the initial cholesky values and thus does not bias the model

significantly.

B.2 PEM GMCM

We use the same PEM algorithm from [6, 31] and provide a python implementation

in the SID library as well. Denote 𝜓(Ω𝑖,:; (𝜇,Σ)) as the probability of data point 𝑖 in

Ω assuming a multivariate normal distribution with mean and covariance 𝜇 and Σ.

See algorithm 3 for the PEM GMCM algorithm.
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Algorithm 3 PEM-GMCM [6, 31]
Input : 𝑈 - data with uniform marginals

𝑟 - number of mixtures
InitMethod - Cluster method for initializing 𝜋(0), 𝜇(0),Σ(0)

𝜏 - max iterations.
𝑈 ← 𝑈 * 𝑛/(𝑛+ 1) + 1/2(𝑛+ 1) as this helps avoid large inverse CDF values
in copula density. Note that 𝑛 is the number of data points.

Initialize 𝜋(0), 𝜇(0),Σ(0) based on InitMethod with 𝑟 mixtures
for 𝑡← 1 to 𝜏 do

Reset Ω
Ω𝑗 ← Φ−1

𝑗 (𝑈𝑗; 𝜋
(𝑡−1), 𝜇

(𝑡−1)
𝑘 ,Σ

(𝑡−1)
𝑘 )

E Step for GMM
for 𝑘 ← 1 to 𝑟 do

𝑍𝑖,𝑘 =
𝜓(Ω𝑖,:;(𝜇

(𝑡)
𝑘 ,Σ

(𝑡)
𝑘 ))∑︀𝑟

𝑗=1 𝜓(Ω𝑖,:;(𝜇
(𝑡)
𝑗 ,Σ

(𝑡)
𝑗 ))

Setup latent variables (probability

data-point 𝑖 in mixture 𝑘)
if

∑︀𝑛
𝑖=1 𝑍𝑖,𝑘 = 0 then

Remove mixture 𝑘 as it has 0 probability. This handles cases
where we have a singular covariance matrix.

end
end

M Step for GMM
𝜋
(𝑡)
𝑘 ←

∑︀𝑛
𝑖=1 𝑍𝑖,𝑘.

𝜇
(𝑡)
𝑘 ←

∑︀𝑛
𝑖=1 𝑍𝑖,𝑘Ω𝑖,:∑︀𝑛

𝑖=1 𝑍𝑖,𝑘
.

Σ
(𝑡)
𝑘 ←

∑︀𝑛
𝑖=1 𝑍𝑖,𝑘(Ω𝑖,:−𝜇

(𝑡)
𝑘 )(Ω𝑖,:−𝜇

(𝑡)
𝑘 )𝑇∑︀𝑛

𝑖=1 𝑍𝑖,𝑘
.

if |ℒ(𝑡) − ℒ(𝑡+1)| < 𝜖 then
Convergence achieved, break loop

end
end
Output: 𝜋, 𝜇,Σ
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Appendix C

Full Experimental Results

C.1 Univariate Results

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

OM 0.626± 0.011 0.938± 0.001 0.864± 0.001 0.908± 0.002
TOI 0.628± 0.007 0.952± 0.001 0.863± 0.004 0.908± 0.002
TOR 0.628± 0.01 0.951± 0.001 0.864± 0.002 0.908± 0.002
SDV 0.609± 0.014 0.939± 0.002 0.855± 0.003 0.898± 0.002
SDV_CA 0.611± 0.015 0.943± 0.001 0.864± 0.001 0.901± 0.003

Table C.1: Gaussian Copula Experimental Results - Beta Distribution with
Unconditional Sampling
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Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
0.972 0.826
Transform

OM 0.63± 0.014 0.936± 0.002 0.864± 0.001 0.908± 0.002
TOI 0.625± 0.015 0.952± 0.002 0.863± 0.001 0.907± 0.002
TOR 0.618± 0.013 0.951± 0.001 0.863± 0.001 0.907± 0.002
SDV 0.62± 0.016 0.945± 0.002 0.793± 0.003 0.901± 0.002
SDV_CA 0.61± 0.014 0.941± 0.002 0.862± 0.002 0.898± 0.001

Table C.2: Gaussian Copula Experimental Results - 3 Mixture BMM Distribution with
Unconditional Sampling

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

OM 0.625± 0.013 0.935± 0.003 0.864± 0.001 0.908± 0.002
TOI 0.63± 0.012 0.951± 0.001 0.863± 0.002 0.909± 0.001
TOR 0.632± 0.015 0.951± 0.001 0.863± 0.001 0.909± 0.001
SDV 0.616± 0.023 0.933± 0.003 0.864± 0.002 0.895± 0.003
SDV_CA 0.609± 0.018 0.938± 0.002 0.863± 0.001 0.897± 0.002

Table C.3: Gaussian Copula Experimental Results - varying
multivariate-transforms with Spline Distribution with Unconditional
Sampling
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C.2 Copula Dependency Results

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

TOR 0.62± 0.014 0.951± 0.002 0.862± 0.002 0.909± 0.001

Table C.4: Segmented Gaussian Copula - Unconditional Sampling

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

TOR 0.619± 0.015 0.952± 0.001 0.862± 0.001 ✗

Table C.5: PEM-GMCM, 3 Mixture - Unconditional Sampling

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

TOR 0.628± 0.015 0.952± 0.001 0.864± 0.002 0.908± 0.001

Table C.6: AD-GMCM - 3 Mixture - Unconditional Sampling
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Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Transform

TOR 0.626± 0.013 0.952± 0.001 0.861± 0.002 0.909± 0.001

Table C.7: AD-GMCM - 20 Mixture - Unconditional Sampling
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C.3 Sampling Methods

C.3.1 Mixture Sampling

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908
Mixture

1 0.636± 0.022 0.952± 0.001 0.861± 0.002 0.909± 0.001
2 0.634± 0.023 0.938± 0.001 0.864± 0.001 0.907± 0.001
3 0.62± 0.02 0.951± 0.001 0.863± 0.003 0.906± 0.002

Table C.8: AD-GMCM - 3 mixture mixture sampling with TOR
Multivariate-Transform

Dataset DATABRICKS EMICEN_AUTO EMICEN_RAIL FRAUD_2
Baseline 0.626 0.953 0.866 0.908

1 0.639± 0.013 0.953± 0.001 0.865± 0.001 0.911± 0.001
2 0.635± 0.017 0.953± 0.001 0.864± 0.002 0.91± 0.002
3 0.633± 0.018 0.953± 0.001 0.864± 0.001 0.91± 0.001

Table C.9: AD-GMCM - 20 mixture mixture sampling with TOR
Multivariate-Transform. Top three mixtures.
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C.3.2 Quantile Sampling

Dataset Quantile Column Score

EMICEN_AUTO Income 0.955± 0.0
Total Claim Amount 0.954± 0.001
EmploymentStatus 0.954± 0.001

EMICEN_RAIL DEPARTURE CITY 0.867± 0.001
DEPARTURE CITY 0.867± 0.001
DEPARTURE CITY 0.867± 0.001

DATABRICKS incident_hour_of_the_day 0.638± 0.016
auto_year 0.633± 0.017
police_report_available 0.632± 0.019

Table C.10: AD-GMCM - 3 mixture quantile sampling - Multivariate-Transform
TOR. Top three Quantiles scores for each Dataset and the corresponding Quantile
Columns that was conditioned on.

Dataset Quantile Column Score

EMICEN_AUTO Total Claim Amount 0.954± 0.001
Policy 0.954± 0.001
Education 0.954± 0.001

EMICEN_RAIL DAMAGED 0.866± 0.001
DEPARTURE CITY 0.866± 0.0
DAMAGED 0.866± 0.001

DATABRICKS incident_city 0.636± 0.017
insured_hobbies 0.632± 0.015
auto_model 0.632± 0.017

Table C.11: AD-GMCM - 20 mixture quantile sampling Multivariate-Transform
TOR. Top three quantiles scores for each Dataset and the corresponding Quantile
Columns that was conditioned on.

C.4 Amount of Synthetic Data
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Dataset Transform Actual Amount SD score

DATABRICKS TOR 0.374 0.603± 0.011
EMICEN_AUTO TOR 0.410 0.952± 0.001
EMICEN_RAIL TOR 0.090 0.865± 0.001
FRAUD_2 TOR 0.811 0.909± 0.001

Table C.12: AD-GMCM, 3 mixture - Tuned Unconditional Sampling

Dataset Transform Actual Amount SD score

DATABRICKS TOR 0.081 0.62± 0.019
EMICEN_AUTO TOR 0.417 0.952± 0.001
EMICEN_RAIL TOR 0.085 0.865± 0.001
FRAUD_2 TOR 0.142 0.909± 0.002

Table C.13: AD-GMCM, 20 mixture - Unconditional Tuned Sampling
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Appendix D

Gini Score Algorithm

Here we share the algorithm for calculating Gini score. Note that instead of calcu-

lating the area between the lorenze curves and the random model, we calculate the

area between the lorenze curves and the X-axis. The same inaccuracy when using

the rectangle rule and accuracy when using the trapezoid rule discussed in section 3.1

still holds for this area calculation.

loss_table

a

2.5

4

3

p

6

7

8

loss_table

Pred_Sort_Accumulate(loss_table)a

9

2

3

4

p

8

6

6

7

(a) Actual_Sort_Accumulate Algorithm
Example. Accumulates and sorts based
on predicted loss column, 𝑝.

loss_table
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2
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p

6

7

7

loss_table

Actual_Sort_Accumulate(loss_table)
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3
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p

8
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6
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(b) Pred_Sort_Accumulate Algorithm
Example. Accumulates and sorts based
on actual loss column, 𝑎.

Figure D-1: Pred_Sort_Accumulate and Actual_Sort_Accumulate Algorithm Ex-
amples. 𝑝 and 𝑎 columns represent predicted and actual loss values.
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Algorithm 4 Gini_Score(actual_loss, pred_loss)
Input : actual_loss - 𝑁 size vector of actual losses.

pred_loss - 𝑁 size vector of predicted losses from ML model.
loss_table ← Two column table, first column is actual_loss and the
second column is pred_loss
actual_loss_table ← Actual_Sort_Accumulate(loss_table). The
Actual_Sort_Accumulate function takes the average of rows that have the
same actual_loss value in order to break ties and then sorts the table by
actual_loss as shown in table D-1b
pred_loss_table ← Pred_Sort_Accumulate(loss_table). The
Pred_Sort_Accumulate function takes the average of rows that have the
same pred_loss value in order to break ties and then sorts the table by
pred_loss as shown in table D-1a

Normalize all the tables by dividing every column by the sum of all elements
in the column. Thus every column sums to 1.
cum_actual_loss_table ← Take the cumulative sum applied to both
columns in actual_loss_table.
cum_pred_loss_table ← Take the cumulative sum applied to both columns
in pred_loss_table.
area_under_equality ← 0.5 This represents the area under a completely
random model.
area_under_perfect ← The area under the cumulative sum of the actual
loss when we sort by the actual predictions. This is calulated by using the
trapezoid rule to calculate the area under the line with 𝑥 = 1

𝑁
, . . . , 𝑁

𝑁
and

𝑦 =cum_actual_loss_table.
area_under_lorenze ← The area under the cumulative sum of the actual
loss when we sort by predictions. This is calculated by using the trapezoid
rule to calculate the area under the line with 𝑥 = 1

𝑁
, . . . , 𝑁

𝑁
and

𝑦 =cum_pred_loss_table. Note that this curve is called the Lorenze curve.
𝐴← area_under_equality - area_under_lorenze
𝐴+𝐵 ← area_under_equality - area_under_actual
gini ← 𝐴

𝐴+𝐵
.

Output: gini - Somer’s D Gini score
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