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Abstract

Because wind turbines often operate through harsh weather events, under variable
operating conditions, and in difficult-to-access locations, turbine maintenance is often
challenging and costly. In this thesis, we present Zephyr, a flexible machine learning
framework for predictive maintenance of wind energy assets. Manual analysis of wind
turbine data is difficult and time-consuming due to its volume, variety, and, most im-
portantly, the need for quick detection of issues. Machine learning (ML) methods
are able to automate large-scale data analysis. However, the enormous amount of
contextual information required to actually understand the data impedes the abil-
ity of ML frameworks to provide actionable insights. To this end, Zephyr enables
Subject Matter Experts (SMEs) to incorporate their knowledge at various stages of
ML model development. The Zephyr framework consists of a signal-processing-based
featurization library, a data labeling algorithm – which helps analyze operational
data and maintenance events in order to create labels for machine learning problems
– and a set of automated machine learning pipelines for predicting outcome types.
SMEs incorporate their expertise by providing labeling functions, bands for frequency
domain-based featurization, and several other inputs in an intuitive way. We demon-
strate the efficacy of this framework through two case studies involving maintenance
operation data from wind turbines. Moreover, we show that ML performance can
increase when involving domain expertise by a value as high as 48%.
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Title: Principal Research Scientist
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Chapter 1

Introduction

Wind power is an increasingly popular green energy source. However, because of

the harsh conditions in which they operate, wind turbines are susceptible to weather

events, bird strikes, corrosion, and other stresses that can cause component fail-

ure [18]. Because wind farms are often located in remote or hard to access locations,

unexpected component failures lead to high operational and maintenance costs [17].

Predicting and assessing failures in a timely fashion is critical in order to reduce these

costs and develop feasible maintenance solutions [12].

There have been several machine learning methods developed to predict fail-

ures [23, 24, 10, 5]. However, most developed models are not deployed in the real

world, and instead applied only to research studies. Models developed by only ML

engineers can be impractical for real-world use because ML engineers lack critical

domain knowledge. At the same time, these studies are limited to high profile, high

maintenance oriented failures. As wind is becoming a more important source of en-

ergy, there is an increasing need to quickly develop practical models at scale for a

variety of failures.

Over the past decade, there has been a proliferation of open-source ML tools

and systems, along with methods that automate several steps in the development

of ML models, including feature engineering, modeling, tuning, and model testing

and evaluation. However, building a powerful ML framework that will support a

predictive maintenance system remains challenging.
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First, it requires flexibility in tackling many prediction problems. These ML

frameworks for predictive maintenance systems must be able to adapt to changes in

infrastructure or needs such as monitoring new failures, changing prediction windows,

or incorporating additional data. There is not yet an easy way to set up a prediction

task in the wind energy domain. This can be understood through the lens of data

labeling [13]. So far, data and labels for component failure models have been provided

a priori, and labels often correspond to major events, such as the failure of a gearbox.

Building a model to predict gearbox failure is considered trivial because (1) clearly

labeled data that is readily available, and (2) there are sensing systems specifically

developed for monitoring the health of a turbine’s gearbox [9]. Other predictive

problems are more nuanced since failure events and their precursors require deeper

search and careful examination.

Second, it needs the integration of domain knowledge at each step of the process.

Subject Matter Experts (SMEs) have a deeper understanding of the data, and incor-

porating their knowledge is vital to generating prediction problems and labels, guiding

the generation of new features, and evaluating the practical effectiveness of resulting

models. For example, say we want to develop a model that can predict the failure

of a particular turbine component: the converter. Expert knowledge is necessary

throughout, from prediction task specification through data labeling, featurization,

and output assessment. A good example where expert knowledge is required is the

data labeling step. Expert knowledge is required to understand whether and when

the relevant failure has occurred in the past. For instance, to determine if a converter

failure has occurred, an SME would know to search for a work order notification in

a time window that contains references to a code indicating converter replacement.

Regardless of the specific task, proper labeling often involves processing data from

multiple tables, which requires contextual understanding.

Although existing tools are powerful, SMEs often struggle to bridge the gap be-

tween generalized, task-specific ML tools, and an end-to-end, domain-specific model.

At a practical level, piecing together several tools along with integrating data can

result in a significant amount of customized code infrastructure that that has to be

16



maintained, an issue known as the "pipeline jungle" [22]. Black box solutions may not

incorporate domain knowledge, and often result in a lack of trust and understanding.

For other tools, the flexibility required to adapt to many different ML tasks leads

to complexity and generality that non-machine learning experts may not be able to

easily understand and manipulate. The added complexity of knowing which tools to

use and how to use them together to generate a model makes it difficult for SMEs to

generate models useable in real-world scenarios.

Ideally, a best-of-both-worlds solution allows for automation tools that may lead

to an initial solution, while SMEs use their specific knowledge to improve accuracy

at every step. In addition to data labeling, this can include adding more data sources

or specifying which ones to use, providing feature definitions, and assessing model

output. A useful solution will invite the collaboration and trust of SMEs, providing a

low-code, flexible framework that enables them to assert their knowledge and influence

the process combined with the power of existing ML tools and systems.

1.1 Contributions

To this end, we introduce Zephyr, a domain-specific, data-centric framework for pre-

dictive maintenance of wind turbines. Zephyr is a result of a four-year collabora-

tion [15] between system builders and subject matter experts. Figure 1-1 is a preview

of Zephyr’s ability to improve model performance via SME involvement for the ini-

tial case studies investigating brake pad and converter failure1 (Chapter 5). When

SMEs participated in data label identification and feature engineering, the AUROC

improved by 48% and 8.3%. More importantly, involvement at every stage of the

development process allows subject matter experts to understand and trust the re-

sulting model. We designed the Zephyr ecosystem to be composable, such that SMEs

can inject domain-specific expertise into each step of the framework.

To summarize, the contributions presented in this thesis are as follows:

• The creation of Zephyr, a data-centric framework that spans the entire scope
1These studies are still in progress at the time of writing this thesis.
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Figure 1-1: Receiver Operating Characteristic curves for both case studies where blue
are results produced by Non SMEs and orange are by SMEs. Overall SMEs improved
AUC scores by 48% and 8.3% for the brake pad and converter failure case studies
respectively.

of data to model development, replacing the model-centric view, which focused

more on models rather than the end-to-end process. Zephyr focuses on multi-

source data aggregation, data labeling and feature engineering, and transfers

well to production.

• A framework designed to enable SMEs to incorporate their knowledge at each

stage, improving the resulting models and enhancing SME understanding and

trust.

• Evaluation of Zephyr through two real-world case studies demonstrating how

performance is improved with SME input. The case studies were performed and

evaluated in collaboration with Sara Pidò.

To ground the framework and its applicability, the case studies informed where

customization was necessary leading to some of the design choices for Zephyr. A

working paper, titled "Sintel Zephyr: a Data-Centric Framework for Predictive Main-

tenance of Wind Turbines", is in progress that covers the Zephyr framework. It is
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written with equal contributions from Sara Pidò and Sarah Alnegheimish and is cur-

rently under review. Additionally, SMEs and data scientists Sofia Koukoura and

Robert Jones’ feedback and help drive the case studies and the design choices in the

framework.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces important technical concepts,

presents related work in predictive maintenance of wind turbines, and introduces two

real-world case studies that were used to evaluate the framework. Chapter 3 presents

the overall design of the Zephyr framework, as well as each individual stage from

the integration of data sources to the execution of the machine learning model and

visualization of the results. Chapter 4 details how the framework is designed to take

in subject matter expert input and the tunable controls available to the user. In

Chapter 5, we present and evaluate the results obtained from two real-world case

studies. Finally, Chapter 6 summarizes the conclusions and details future work on

the project.
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Chapter 2

Background

2.1 Prediction Engineering

Prediction engineering describes the process of going from raw timestamped data

to feature vectors and associated labels [13]. This thesis borrows from the Label-

Segment-Featurize framework created by Kanter, et al. [13] which separates predic-

tion engineering into three primary tasks: labeling, segmentation, and featurization.

The work in this thesis uses the Label-Segment-Featurize abstraction and specifically

applies it to wind farm data.

2.1.1 Label

The labeling step searches through the data to generate labeled samples for slices of

data. Each sample is also mapped to a cutoff time which is the initial timestamp

associated with the corresponding data slice. The result from the labeling step are

label times, three element tuples consisting of the cutoff time, unique target entity,

and the label. In machine learning, the label times tell the algorithm when an event

or outcome we are attempting to predict happened.

The target entity is the real world thing we want to make predictions for, for

example an individual wind turbine. In this thesis, the target entity is generally a

unique wind turbine since prediction problems are often turbine focused.
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The cutoff time is the time associated with the label. Cutoff times are crucial

to prevent data leakage because any data after the cutoff time is directly used to

generate the label for the data slice. All data before the cutoff time is considered

valid for use as training data for the corresponding label time, while all data after

the cutoff time is ignored.

The label represents the problem we are trying to solve and is the target we are

trying to predict. The type of a label is dependent on the problem, for example, if

we are trying to predict if a turbine will fail a label will be either True to indicate a

failure occured or False otherwise. Labels can also be multiclass or numerical values.

2.1.2 Segment

Next, the segmentation step generates data useable for learning for each sample gen-

erated during the labeling step. While the cutoff time provides the bare minimum

to prevent data leakage, it is often beneficial to further restrict the data useable for

learning. For example, if it is desired to predict n days in advance, then data useable

for learning should not include the n days prior to the cutoff time for a sample. This

is known as applying a lead to the label time. Segmentation can be applied directly

to a label time’s cutoff time to change what is considered valid learning data for that

specific label time. For example, shifting a cutoff time backwards by one day prevents

data from that day being used in training, meaning the model will predict one day

in advance.

2.1.3 Featurize

Finally, feature engineering is applied to the valid learning data for each sample to

generate a feature vector that can be used for machine learning. Feature engineering is

critical to the performance of machine learning models. Feature engineering changes

how the raw data is represented to a format that is more meaningful to a machine

learning model [14]. At its core, feature engineering relies on applying mathemati-

cal operations to data to either transform or aggregate data into more useful values.
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Traditional feature engineering was done through hand-crafted features made by sub-

ject matter experts, although recently automated feature engineering algorithms have

shown significant improvements in model performance as well [14]. In this work, tradi-

tional signal processing techniques are combined with feature engineering to generate

rich feature vectors.

2.2 Related Work

Wind turbine profitability is critical for energy companies investing in this green tech-

nology, and wind farms seek to improve their operational performance while reducing

operation and maintenance costs. In this context, many machine learning tools and

frameworks have been developed in order to predict failures and optimize maintenance

interventions. As shown by [21], machine learning developments and their priorities

are determined through a systematic process called “Failure Mode Effects and Criti-

cality Analysis” (FMECA), and then extended through an analysis of the respective

failure mechanisms and monitoring options.

2.2.1 Prediction of Turbine Faults

Much of the current work on wind turbines focuses only on predicting mechanical and

electrical failures to avoid excessive downtime and improve prevention and predictive

maintenance.

Some studies focus on detecting anomalous behaviour in a turbine’s performance

in order to uncover faults. For example, [23] showed that deviations in the mean,

baseline and Kurtosis of a baseline compared to online values of the power curve

highlight performance improvements after corrective maintenance actions. In another

work, [24] used a correlation metric between various turbine parameters (e.g. wind

speed and power) to compare fault-free values to live values and detect faults. They

demonstrated that this measure reliably detects mechanical degradation before wind

turbine blade and drive train failures.

Others focus their attention on building classification models to determine whether
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a turbine is operating normally, or if a fault has happened or will happen in the

near future. For example, [10] applied Random Forests and Decision Trees to build

predictive models for turbine failures, and proved that machine learning helps to make

these predictions. [5] showed that faults could be predicted with high precision and

accuracy using an Adaptive Neuro-Fuzzy Inference System.

These works focus largely on prediction and, in particular, studying and devel-

oping model-centric machine learning solutions. Model-centric machine learning so-

lutions tend to focus exclusively on improving performance by modifying the model

itself, as opposed to data-centric methods which approach the data to model prob-

lem more holistically. Model-centric techniques neglect the importance of data to

the performance of the machine learning models and, as a result, may suffer from

worse performance and be more opaque to a subject matter expert compared to a

data-centric model.

More recently, new data-centric solutions have been developed. These methods

provide pipelines that may include data preprocessing, feature engineering, and fea-

ture selection, as well as model building and training. For example, [8] developed a

data-centric ML pipeline focusing on the optimization of the preprocessing and fea-

ture selection steps. However, they do not provide a complete end-to-end pipeline

that performs all of these steps and executes the model.

2.2.2 Wind Data Frameworks

The community has continued to develop frameworks that use wind turbine data to

predict faults. One example is by Nguyen Et al. [19] who developed a framework

for the integration of wind turbine data in order to optimize the remote operations

of offshore wind farms. Jiang Et al. [11] implemented a deep learning framework

which allows multiple wind turbines to collaboratively build a fault detection model

using their private data. Additionally, Leahy Et al. [16] developed a framework that

starts from wind turbine and alarm data to build a model that can classify normal

versus faulty turbines. They created batches of alarm data, cleaned and labeled the

data, and built a classification model. Finally, they measured the performance and

24



evaluated the model.

All these methods are focused on predicting faults in wind turbines. While one

integrates wind turbine data [19], to the best of our knowledge, a framework has not

been developed that performs the whole workflow. Table 2.1 shows the comparison

between the Zephyr framework and existing frameworks, both for doing wind turbine

prediction analysis and more general machine learning framework. The Zephyr frame-

work allows users to start from different kinds of data, join and integrate them, create

labels for a prediction problem, and build features in order to construct a machine

learning model. Furthermore, our framework does not impose a particular labeling

function on the users; instead, they can choose between a set of predefined labeling

functions or their own custom function and answer questions that go beyond failure

presence.

While to our knowledge no end-to-end frameworks have been developed for the

renewable energy domain, other end-to-end, domain specific frameworks have been

successfully developed. One such example is Cardea [4], a flexible, end-to-end machine

learning framework for the healthcare domain.

2.3 Case Studies

Zephyr has been created in partnership with a team of SMEs from a wind energy

company who have provided key insights as well as a significant amount of data. The

SME team works with both on- and offshore wind turbines that demand continuous

monitoring. Because predictive maintenance can reduce the costs induced by failures

and help in planning future repairs, they wish to use automated tools and machine

learning methods to predict when failures might occur. Our objective is to create a

framework for predictive maintenance of wind turbines that enables SMEs to easily

and intuitively incorporate their domain expertise. To showcase Zephyr’s ability to

integrate specific domain knowledge, we present case studies for two different failure

types: premature brake pad wear and converter failure.
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Figure 2-1: An illustration of a turbine drivetrain with six brake pads (in orange,
numbered 1-6) located around its circumference.

2.3.1 Case Study BP: Premature Brake Pad Wear

The first case study looks at Brake Pad (BP) wear at Wind Farm 1. This wind

farm has 70 turbines, for which 55% of brake pads were replaced in 2021. Figure 2-1

is a high-level depiction of the brake pads present in a turbine. Brake pads on the

mechanical drivetrain become worn with use, and are designed to wear out within

an expected time that is aligned with maintenance windows. However, premature

wearing of brake pads often necessitates their replacement before scheduled main-

tenance. Pad replacement can take up to 5-6 shifts to be completed; in addition,

current efficient management of brake pad replacement requires taking periodic phys-

ical measurements of the pads, which is costly and can be risky for maintenance

personnel. Moreover, because of the high volume of brake pad wear occurring outside

of the expected maintenance windows, personnel are required to physically climb up

the turbine and check the pad. This engagement is risky and expensive. Having a

data-driven monitoring approach can help with planning and prioritizing checkups,

ideally reducing the cost and risk.
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Figure 2-2: Part of the electrical system, the converter is responsible for conditioning
and managing variable frequency power before it is integrated with the grid.

2.3.2 Case Study CF: Converter Failure

The second case study examines a Converter Failure (CF) problem at Wind Farm 2.

This wind farm includes over 150 turbines. A critical part of the electrical drivetrain,

the converter, is responsible for efficiently managing and conditioning the variable

frequency power output from the generator prior to local grid integration at the

expected frequency. Figure 2-2 provides a general overview of converters in wind

turbines. A converter comprises a range of power electronics, any of which can suffer

from a variety of unexpected failures [7] and cause the turbine to stop operating. In

Wind Farm 2, more than 60% of turbines have experienced at least one converter

failure. Converters are modular, and parts can typically be replaced quickly during

an up-tower repair to avoid prolonged outages. Unlike other turbine components,

converters do not usually have their own custom monitoring systems, meaning an

ML-based monitoring approach using available data would be useful.

2.3.3 Challenges

For both of these problems, traditional rule-based methods that combine statistical

indicators are currently used to create alerts and notify operation and maintenance

teams of any malfunctions. However, these alerts often do not provide enough advance
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warning for planning and maintenance action, and can even miss failures entirely.

Introducing machine learning can facilitate predictive maintenance for each of these

components. However, there are several challenges.

First, a vast amount of assets and signals must be monitored, necessitating pulling

together data from different places and in different formats.

Second, the raw data provided often lacks the right context and labels for machine

learning model building. In some cases, there are not enough failure examples or

reliable maintenance records to create an accurate model.

Finally, although SMEs can provide the necessary data and context, they may

find it difficult to work with machine learning tools. With Zephyr, we provide an

automated and scalable framework for creating machine learning prediction problems

and building ML models to predict component failure. Zephyr unifies various data

types collected from different data sources, and provides flexibility in generating la-

bels, customizing existing problems, and creating new ones. Zephyr allows SMEs to

interact productively with the framework through a simple and intuitive interface

(APIs).
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Chapter 3

Zephyr Framework

The Zephyr1 framework has been developed in order to help SMEs generate machine

learning pipelines for wind farm data, providing them the flexibility and extensibility

required to add domain-specific knowledge. The library is used to ingest standardized

operations data from wind farms, generate labels for past events for a given predic-

tion problem, and facilitate feature generation for the purposes of creating a machine

learning model. Zephyr focuses on abstraction and automation to facilitate the end

to end process of labeling, feature generation, and modeling. Zephyr’s design also

focuses on user input through tunable parameters, customized inputs, and extensi-

bility options to enable SME knowledge to guide the entire process. This chapter

introduces the Zephyr framework and each component, as well as how SME input is

leveraged throughout the process. This chapter will refer to SMEs as "users" in order

to underline their position as the primary users of the framework.

3.1 Design Goals

The main goal of the Zephyr framework is to allow SMEs to easily go from wind

farm data to a machine learning model. Thus, much of development was focused

on useability and ensuring that Zephyr is flexible enough to meet the needs of its

1meaning a gentle, mild breeze and coming from the name of the Greek god of the west wind,
Zephyrus.
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users. The framework should provide basic building blocks and guidance and enable

SMEs to leverage their domain knowledge to customize and enhance the process. This

includes making it simple for SMEs to define new prediction problems, change input

parameters, and evaluate resulting models. Zephyr should also be able to adapt to

the changing needs and environment of its users. The framework requires flexibility

at each stage in order to account for new or different data, new prediction problems,

or additional knowledge available to the SMEs. Flexibility is also critical to enable

experimentation and iterative development: experimenting with parameters should

not require extensive changes to continue developing new models.

3.2 Library Overview

The Zephyr library is an open-source Python package hosted on GitHub and publicly

available through PyPI. This section provides an overview of the overall design choices

made when creating the library.

3.2.1 Use-case Centric Library

Unlike a tool based library designed to perform a task across many domains, Zephyr

is a use-case centered, domain-specific library. It is designed to encapsulate the end-

to-end workflow of developing a model for the renewable energy domain for use-cases

defined by the available prediction problems. As a result, Zephyr acts as a wrap-

per around multiple general-purpose libraries such as Featuretools2 and Compose3,

which themselves are based on foundational libraries such as pandas4 and NumPy5.

While ML-task and general-purpose libraries are powerful, we discovered while

working with our SME partners that they are often too generalized and difficult to

compose together into an entire pipeline that can be used in a real-world setting.

General-purpose libraries often have flexible APIs with many available parameters to

2https://github.com/alteryx/featuretools
3https://github.com/alteryx/compose
4https://pandas.pydata.org/
5https://numpy.org/
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Figure 3-1: Zephyr workflow. The process starts with users uploading their data.
Zephyr validates and assembles the data by creating an entityset , i.e., a structure that
organizes the data through relational tables (described in Section 3.3). Users proceed
to use Zephyr to create the labeled training examples, which they can iteratively
change if they are not satisfied (described in Section 3.4). In the third step, feature
engineering, Zephyr allows users to add more variables to the entityset to improve
model accuracy. Last but not least, the model is built and executed in order to
visualize the results. This figure shows the loops within which users can iterate
until they are satisfied, both within and between steps. Zephyr natively supports
these loops without the user needing to switch to different software packages and/or
systems.

adapt to many use cases, but this can increase complexity and confusion in usage.

Many tools are built for a single task and have strict input and output specifica-

tions, which can make it difficult for users to use multiple tools in a single pipeline.

As a result, Zephyr was developed to create a framework that uses these underlying

general ML tool libraries, but is designed specifically for the wind turbine domain.

Re-framing machine learning concepts in a domain-specific context helps the SMEs

better understand what each step in the framework is designed to do which, in turn,

allows them to more easily leverage their domain knowledge in the process. Addi-

tionally, encapsulating general purpose libraries with convenience wrappers in Zephyr

helps simplify usage of underlying libraries for the SMEs by providing domain-specific

defaults, removing unnecessary features, and simplifying the API.

3.2.2 Framework Overview

Zephyr is an end-to-end, data-centric framework for generating machine learning mod-

els. Beginning with data ingestion, users load their datasets into the framework, which
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assembles them into a usable standardized format. Once data has been loaded, users

generate data labels from it by defining their own labeling function or selecting one

from a predefined list of prediction problems. Next, the automated machine learning

phase of the framework starts, which consists of three primary steps: feature engi-

neering, model selection, and hyperparameter tuning. Finally, the framework helps

a user analyze their model. By breaking down model generation into these principle

steps, Zephyr simplifies and standardizes the process, enabling structured iterative

improvements and reducing complexity.

Figure 3-1 depicts the Zephyr workflow, highlighting the inherent loops in the

development process. Each stage of the framework is designed to take in user knowl-

edge. Users can also go back and change choices they initially made to experiment

with different configurations. For example, let’s consider the converter failure case

study. The user started by uploading required tables and executing the labeling phase

of the framework. After that, the user created some new features and trained the

model. The obtained Area Under the Curve (AUC) was close to random — around

0.5. Thus, the user went back to improve the model by changing and adding features.

The remainder of this chapter describes each component of the framework.

3.3 Data Representation

The first step in the Zephyr framework is to combine available signal data and op-

erations data into a well-formatted, relational data structure. Much of this data is

standard across wind turbines and farms, which we use to our advantage when ingest-

ing data. It is critical for Zephyr to load data following the raw/natural format that

it is stored in. This allows for continuous data/model updates as more data becomes

available [20]. Each of the two main data sources, signals data and operations data,

is described in more detail below.
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Figure 3-2: Overview of the structure of an entityset . The arrows indicate column
values in the child dataframe linked to the index of the parent dataframe. 𝑇𝐼𝐷 is the
unique turbine identifier and 𝑂 𝐼𝐷 is the unique work order identifier.

3.3.1 Signal Data

Signal data is time series data that originates from wind turbine assets and their auxil-

iary systems. There are two different standard data sources: the Original Equipment

Manufacturer Supervisory Control And Data Acquisition (OEM-SCADA) system,

and the operator’s chosen historical Plant Information (PI) system. We observe that

there may be overlaps or redundancies between these two signal data sources, although

typically one is more information-rich in terms of the number of monitored signals

and/or data collection frequency. Specific data collected at each wind farm could be a

subset of the overall set of signals we incorporate in Zephyr. Particularly, PI/SCADA

signals are sampled at regular intervals as specified in the query (for example, every

10 min). At each timestamp, this data contains numerical information on different

types of wind turbine variables/signals, such as rotor speed, active power, current,

and voltage, and is aggregated using a variety of functions – minimum, maximum,

average, and standard deviation – for each interval.
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3.3.2 Operations Data

Operations data is collected during day-to-day operations and maintenance of a wind

farm. Much of this data is standardized as it comes from SAP Application Perfor-

mance Standard (SAPS) [2] and other systems. Operations data includes:

• Alarms: Alarms generated by onboard diagnostic systems in the turbines and

corresponding timestamps. Each alarm occurrence usually has a time period

(start-end) and an alarm description.

• Stoppages: Information about stoppages associated with each turbine such as

turbine ID, stoppage start time, stoppage end time, and cause description.

• Work orders and contextual information: Maintenance history information for

each turbine, including order ID, order creation date, functional location, and

other attributes.

• Notifications: Information regarding maintenance history on top of work or-

ders, including attributes like malfunction start timestamp, malfunction end

timestamp, fault mode description, and what parts were replaced or repaired.

3.3.3 EntitySet Representation

To organize this data into relational tables, Zephyr uses entitysets [14]. An entityset

is an in-memory representation of a collection of tables and the relationships between

them. Each table (referred to as an entity) in an entityset contains metadata about

columns and the associated data types, and allows columns to be marked as time

indexes for data rows. A time index is a timestamp column in a table that defines

the point in time at which the data in the row was known. Multiple secondary

time index columns may also be specified, which are timestamp columns that map

to the time when the data in specific columns in the row was known. Secondary

time indices are often used for data that is added to a row after the time index. For

example, a work order may have a time index of when the work order was created

and a secondary time index of when the work order is closed for a parts consumed
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column that only gets updated after a work order has been completed. The entityset

representation has been successfully applied in other domains, such as healthcare [4].

Categorical columns in an entityset can also have additional metadata in the form

of interesting values. These are the specific categorical values that are known

by SMEs to have more significance, and are used during the feature generation step

described in Section 3.5.2. For example, if a specific alarm is known to be a common

indicator of certain conditions, users can mark the alarm code as a interesting value

in the alarms entity which will allow the feature generation step to create features

specific to instances of that alarm code.

A primary advantage of the entityset representation is that it allows for users to

go from raw tables to a single standardized relational structure. Once data has been

ingested and converted to an entityset , every downstream step can take advantage

of the metadata contained in the entityset structure. Furthermore, an entityset can

easily be serialized to disk which enables data and workflow sharing, enhancing col-

laboration opportunities. Directly sharing an entityset also reduces reproducibility

errors caused by ingesting and formatting raw data, such as type mismatches or type

conversion errors.

The structure of the entityset generated for the above data sources is depicted in

Figure 3-2. A turbine table is central to the structure and includes a unique identifier

for all turbines, shown as 𝑇𝐼𝐷 . Other tables have a foreign key relationship based on

this turbine ID. The notifications and work orders are connected via the unique

work order identifier, shown as 𝑂 𝐼𝐷 . We chose entityset as a Python representation

for the data because it maintains the relational structure of data during labeling

and featurization. Moreover, it enables us to perform data validation to verify that

the data can be ingested by checking for mandatory columns, such as parent-and-

child relationships and time indices. entitysets form a cornerstone in our automation

because the rest of the framework is able to work with these representations.

When attempting to use Zephyr across wind farms, one common occurrence is

that different farms have different subsets of entities or columns. The entityset cre-

ation step is designed to be as flexible as possible to allow users to add or remove
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tables, columns, or rows while still maintaining the overall structural integrity of the

entityset . Most data columns can be removed or additional columns can be added to

individual entities ; the framework requires only index columns and columns used as

foriegn keys to other entities. Additional tables can be added as separate entities to

the entityset , or entities can be removed if the data is irrelevant or unavailable. For

example, if additional signals or operation data is available, a new table can be added

to the entityset simply by adding the table and defining any relationships between

the new table and the existing structure, e.g. mapping a turbine index column to

the parent turbine entity. Entities can also be removed entirely from the entityset

if needed, although it is generally preferable to leave entities for data integrity and

instead ignore unwanted entities in later steps.

Another possible scenario involves different farms using different names for a sub-

set of fields across entities. With standardization, this is becoming less and less

common. However, Zephyr provides flexibility by enabling the user to provide a map

for column names in the standardized entityset and equivalent names in their data.

While the expected data columns have specified data types, data types of addi-

tional columns will be automatically inferred unless the column type is explicitly set

during entity creation [14]. Columns can also be cast to new types after the entityset

has been created.

3.4 Prediction Engineering

Once an entityset has been created, the user moves on to defining their prediction

problem and generating labeled training examples from their data. This process

involves two components: defining a labeling function and performing a label search

over the data to generate label times.

3.4.1 Writing Labeling Functions

Zephyr offers a selection of predefined prediction problems including: predicting the

stoppage of a wind turbine because of a brake pad issue, predicting converter replace-
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ment, and predicting the total power lost over a period of time. These problems are

defined through a specific function called a labeling function.

The framework is also built to be easily extensible through the creation of custom

labeling functions. Users can create additional labeling functions by: (1) defining

how a label is constructed for one particular data slice; (2) defining how the entityset

should be denormalized into a single table to generate each data slice; and (3) setting

default label search parameters such as gap or number of labeled training examples

per turbine. The label search parameters are discussed in more detail in Section 3.4.2.

In Figure 3-3, we demonstrate how an additional labeling function can be created.

First, a new labeling function is defined. In this case, we want to label each of our

data slices with the total amount of time for which the turbine was stopped during

the window. Next, we define some metadata for our labeling function, namely

that our target entity index is the T_ID and that the time index we want to use

is the END_DATE. Finally, we determine how we want to denormalize our entityset into

a single dataframe for generating slices. Denormalization is done through a helper

function which sequentially merges theentity tables in order. In this example, we

only need the stoppages entity from our entityset , but multiple entities can be listed

and flattened into a single dataframe. Using a few lines of code, users can create new

prediction problems.

3.4.2 Label Search

To generate labeled training examples, Zephyr performs a search process over the

relevant data. Zephyr uses methods from the open source library Compose6, which

focuses on tools for automating the prediction engineering process, to help generate

label times. Compose is used to generate data slices and apply labeling functions using

the label search parameters passed to the prediction engineering process. Each row

in the target table is segmented based on its associated cutoff time into: (1) data

before the cutoff time, which is used for training (2) data after the cutoff time, which

is used to generate labels. The amount of data used to generate a label is dictated by
6https://github.com/alteryx/compose
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def total_stoppage_time(es):
""" Determines the total stoppage time

for a turbine during the window """
def label(ds):

return ds['DURATION'].sum()

meta = {
"target_entity_index" = "T_ID",
"time_index" = "END_DATE"

}

df = denormalize(es, entities=["stoppages"])

return label, df, meta

Figure 3-3: Python snippet for creating labeling functions. This function computes
the total duration the turbine was stopped for.

the prediction window, which sets the size of each data slice that will be taken into

consideration when generating labels. The beginning of the prediction window aligns

with the corresponding cutoff time, and the time between one cutoff time and the

next cutoff time is the gap. By default, the first cutoff time occurs at the beginning

of the data; however, users can optionally specify the minimum data required before

the first cutoff time, shifting the first cutoff time forward by that amount. Figure 3-4

demonstrates how each of these parameters influences the label search.

Additionally, users can apply a lead to the cutoff times to shift them by the

given amount. This shifts the data window allowed to train the model to account

for the amount of time the user wants a prediction in advance. The zoom-in section

of Figure 3-4 highlights how the lead is represented. For example, a lead time of 2

days would mean that any data from up to 2 days before the labeled event would no

longer be available for training.

Finally, users can also control the maximum number of labeled examples they wish

to generate per instance. This is often useful when a large number of labels may be

present or when experimenting with different parameters, as it can reduce the time

needed to execute the label search.
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Figure 3-4: This figure depicts how minimum data, cutoff time, prediction
window, and gap can be used to slice data within Zephyr. Minimum data is the
data left out of the first prediction window, as specified by the user. Prediction
window is the size of the data slice the user wants to consider for their labeling func-
tion. This starts at a specific time, namely the cutoff time. Finally, the gap is the
distance between one cutoff time and the next. Both the gap and the prediction
window are fixed across all data slices and cannot change.

These prediction engineering parameters allows users to fine-tune the search for

labeled training examples based on their data and prediction needs. While this Section

has explained the most important parameters, the full list of available parameters to

control the label engineering process is summarized in 3.1.

3.5 Feature Engineering

As the next step in an ML workflow, relevant features need to be extracted from the

data in order to improve the performance of a model. To improve the model’s accu-

racy, Zephyr enables the creation of features to transform the entityset structure into

a feature matrix that can be used to train a model. Zephyr can use a combination of

41



Parameter Description

window_size The size of prediction window.

num_samples
The number of label samples to return for each unique target
entity.

minimum_data
The minimum amount of data or time before starting the label
search process.

maximum_data
The maximum amount of data to process before stopping the
label search process.

drop_empty
Whether or not to drop empty slices of data when searching for
labels.

gap The amount of time between consecutive samples.

lead
The amount of time to shift cutoff times by to create an
advanced prediction window.

threshold
An optional minimum threshold value to use to convert
continuous labels to binary. The label is True if the value
exceeds the provided threshold value

column_map
An optional dictionary used to change the default mapping of
column aliases to column names used by the dataframe.

Table 3.1: Descriptions of label engineering parameters.

signal processing techniques and automatic relational data manipulations for feature

engineering.

3.5.1 Signal Processing

Signal data is transformed in Zephyr using SigPro7, a signal processing library co-

developed for use with Zephyr. After labeling, users can choose to further process

time series signal data using common signal transformation and aggregation func-

tions. Users select the table(s) containing signal data to be processed, indicate which

column(s) contain signal data, specify the time window to apply aggregations over,

and specify a signal processing pipeline to use. Signal processing pipelines are defined

by selecting which transformation and aggregation primitives to apply and selecting

the appropriate hyperparameters for them. Transformations are applied sequentially
7https://github.com/sintel-dev/SigPro
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TimeTID

01/10 11:28:00

01/13 15:33:00

01/02 00:27:00

01/06 15:39:00

01/02 00:27:00

SUM(stoppages.
DURATION)

SUM(stoppages.
WOID)

SUM(stoppages.
IND_LOST_GEN)

15708.0

15859.0

15859.0

15913.0

15771.0

0.0

0.0

0.0

0.0

0.0

0.0775

0.3977
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AVG
SUM
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Figure 3-5: This figure shows the feature engineering step. The first table high-
lights the parent ID column used as an identifier, the time index columns, and the
original features. The aggregation functions are then applied on the original features
in order to obtain the second table, which includes the ID column, the time and the
engineered features – i.e. the features obtained from the originals after aggregation
functions are applied.

and each aggregation is applied individually to the transformed signals data, result-

ing in a single value for each aggregation. Once processed, these signals can either

replace the original signal’s entity, or be added as an additional entity while retaining

the original signal table. SigPro supports many common signal processing techniques

with customizable hyperparameters, including signal transformations such as Fourier

transforms, as well as aggregations over the whole signal or specific frequency bands

or side bands. A summary of the available signal processing primitives is shown in

3.2 and 3.3.

3.5.2 Feature Generation

Additional features that exploit the relational structure present in the entityset can

be automatically generated using Featuretools [14]. Featuretools recursively ap-

plies data manipulation primitives that transform data columns or aggregate columns

across table relationships defined by the entityset format. Featuretools is also ap-

plied over any time series features generated with SigPro to leverage both common

signal processing with enhanced feature generation. Because Featuretools also uses

entitysets to work with the data, Zephyr seamlessly integrates with the Featuretools

library and exposes essential arguments for users.

Users can select what type of aggregation and transformation functions should
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Primitive Type Description

identity Transformation The identity transform

shift_frequency Transformation Shifts the frequency based on the current
RPM versus the given nominal.

power_spectrum Transformation Generates the power spectrum.

envelopespectrum Transformation Computes the envelope spectrum.

frequency_band Transformation
Extracts a specific specific band by
filtering between a high and low band
frequency.

fft Transformation Apply a discrete Fourier Transform on the
amplitude values.

fft_real Transformation
Apply a discrete Fourier Transform on the
amplitude values and return the real
components

stft Transformation Compute the Short Time Fourier
Transform

stft_real Transformation Compute the Short Time Fourier
Transform and return the real components

Table 3.2: Signal processing transformation primitives available in SigPro.

be applied, drop tables and columns which they think would not lead to valuable

features, specify interesting values in the data, and insert seed features. Interesting

values are set for categorical columns on an entity and are used to indicate specific

values to filter on when generating features. For example, a user may mark a specific

alarm as interesting so as to generate features specific to that alarm in each turbine.

Seed features are manually defined features that are designed to allow users to

specify known useful features that should be generated and used during automated

feature generation. Seed features ensure that known important features are generated

and used during the feature generation process, and rely on domain knowledge to be

created. Seed features and their importance are discussed in more detail in Section 4.3.

The cutoff times generated by the labeling step described in 3.4 are used to ensure

that feature generation does not result in data leakage. During the feature generation

process, any data from after the cutoff time is ignored when creating a feature.
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Primitive Type Description

crest_factor Aggregation Computes the ratio of the peak to the root
mean square

kurtosis Aggregation Computes the kurtosis

mean Aggregation Calculates the mean value of the values

rms Aggregation Computes the root mean square

skew Aggregation Computes the sample skewness

std Aggregation Computes the standard deviation value

var Aggregation Computes the variance value

band_max Aggregation Computes the maximum values for a specific
band

band_mean Aggregation Computes the mean values for a specific
band

band_min Aggregation Computes the minimum values for a specific
band

band_rms Aggregation Computes the root mean square value for a
specific band

band_sideband_pr Aggregation Computes the power ratio values for side
bands versus a specific band

band_sideband_rms Aggregation Computes the root mean square values for a
specific band and associated sidebands

band_sum Aggregation Computes the sum of values for a specific
band

Table 3.3: Signal processing aggregation primitives available in SigPro.

3.6 Model Engineering and Evaluation

Considering the large number of machine learning libraries, each with a variety of

models that can be applied on featurized data, we initially began with creating a

pipeline using XGBoost[6]. XGBoost is a well-known, open-source Python library

that implements gradient boosting machine learning algorithms for classification and

regression. Zephyr offers predefined model pipelines that provide access to these

algorithms. Thus, once the label and feature engineering steps are concluded, the

user moves on to select the model pipeline through Zephyr, and to evaluate it using
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receiving operator curves, confusion matrices and evaluation metrics.

Figure 3-6 shows an XGBoost pipeline used in the case study (Chapter 5).

The pipeline first trains an XGBoost model, which produces the predicted 𝑦.

Zephyr ML pipelines automatically output various model evaluation metrics includ-

ing F1 score, accuracy, and test/train rate. Additionally, the user can use a post-

processing primitive (find_threshold) to get the threshold up to the desired true

positive rate. Through this function, the user passes as input the desired true posi-

tive rate (or any other metric), and can obtain the threshold that achieves it. This

threshold is a learned parameter that is then applied to model output, generating a

variety of metrics. In our experience, this functionality is critical for users since there

are trade-offs between different metrics, and users often wish to control at least one

of them.

y

ŷ

x

ŷ

XGBoost

find_threshold

(a) Pipeline graph

from zephyr_ml import Zephyr

zephyr = Zephyr('xgb')

zephyr.fit(X_train, y_train)

y_hat = zephyr.predict(X_test)

(b) Python SDK

Figure 3-6: XGBoost example for (a) a graph representation of a pipeline (b) a code
snippet for training the pipeline using the Zephyr API, then applying inference on
the test set.
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Chapter 4

Subject Matter Expert Inputs

A key feature of the Zephyr framework is that it enables users, in this case Subject

Matter Experts (SMEs), to incorporate domain expertise into each step of the process.

SMEs have a deep understanding of turbines and the associated data, the problems

that befall them and the contexts in which they occur, and key insight into relevant

and important features. They may also have access to additional data that may be

relevant to the problem and influence the results. This Chapter highlights the more

refined controls within the Zephyr framework, and how SMEs can adapt it to better

fit their specific problems and own needs.

4.1 Data Input

Zephyr is designed to work with signal and operations data that is relatively stan-

dardized across the field, as described in Section 3.3. However, the entityset structure

allows for significant flexibility in the data ingestion step, allowing SMEs to leverage

their knowledge to ensure compatibility between their data and the framework and

add or remove data.

First, Zephyr uses default names for key columns. For example, COD_ELEMENT is

used for the unique identifier for each turbine in the turbines entity, and DAT_START

is used as the time index for the alarms entity. This is done for convenience since

most data sources follow similar naming conventions. However, the column names
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associated with these key columns may differ between different organizations or data

sources, so Zephyr offers the ability to change the default column mapping to match

users’ actual data. Once a new mapping is defined, it may be used as an additional

argument to each step in the Zephyr framework to ensure compatibility throughout

the process.

Second, Zephyr can easily ingest new data for existing entities by updating the

underlying dataframe. For example, SMEs may want to include additional data as it

becomes available or expand a prediction problem to cover more turbines and their

corresponding data. This data can simply be appended to the entity ’s data structure

to be added to the entityset .

Finally, Zephyr can adapt to entirely new sources of data by adding new entities.

SMEs may have access to additional data beyond the signal and operation data that

Zephyr uses, and wish to use it in the framework. A new entity can be added to

an entityset using the EntitySet.add_dataframe method, where entity metadata

including specifying key columns and column typing can optionally be given. A new

relationship mapping the new entity to an existing entity in the entityset must also

be given through the EntitySet.add_relationship method. Once the new data

has been placed in an entity in the relational entityset structure, it can be used in all

future steps.

4.2 Label Engineering

The size of the prediction window, gap, and lead parameters all offer fine-grained

control over the data labeling process. SMEs can take advantage of this to tune the

structure of a prediction problem or control the number of labels generated. For

instance, the length of the lead parameter determines the number of days ahead

of a which a component failure prediction is provided, in order to give reasonable

warning of impending failure. Thus, when a failure is predicted, the time frame for

a response is known and can be mapped into operating and maintenance processes.

Furthermore, if multiple models with different lead parameters are trained, they can
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be put in operation in parallel to give multiple detection points (warnings and alarms

etc.). The prediction window and gap parameters are generally highly domain and

problem specific, as they determine how the data is segmented to search for examples

directly influencing cutoff times and associated labels. SMEs can fine tune these

parameters to ensure labeling functions are optimized in how they search for labels

to fit real-world expectations.

In the BP case study, for example, three lead times were used – 0, 28 and 42

days – while in the CF case study experts used 0, 7 and 10 days. In early iterations,

the lead parameter was minimized to zero days to ensure the prediction problem

was viable simply for failure detection during late failure progression. Importantly,

generating models for new lead times only requires applying a new lead to the

cutoff times and re-running the feature engineering and model generation steps. The

isolated step-by-step nature of the Zephyr framework makes rapid iteration possible

since modifications to one step do not require side-effect modifications in future steps.

While the prediction window, the gap and the lead all influence how data labels

are produced, the labeling function impacts what the labels represent directly. In

Zephyr, three predefined labeling functions are available: one that checks if a converter

was replaced, another that checks for the presence of a brake pad failure, and a third

that calculates the total power loss over a data segment. Additionally, as described

in Section 3.4, Zephyr provides the ability to easily create custom labeling functions.

With a few lines of code, SMEs can create new labeling functions that can be used

directly without additional intensive development. This flexibility means that Zephyr

can easily be expanded by SMEs to allow them to incorporate their knowledge and

explore new prediction problems.
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4.3 Feature Engineering

4.3.1 Signal Processing

SMEs can fully leverage their knowledge of important signals and variables to guide

feature engineering. Given raw signal data, SMEs have a deep understanding of what

transformations and aggregations might lead to relevant features. SigPro easily en-

ables custom signal processing pipelines that can perform commonly applied signal

transformations and aggregations. These signal processing pipelines are further tai-

lored by the SMEs to fit the problem through the selection of hyperparameters such

as specifying relevant signal bands or side bands.

4.3.2 Feature Generation

SMEs can also improve automated feature engineering by selecting aggregation or

transformation functions (called primitives in our library) and using seed features.

SMEs have the domain knowledge required to know which operations may lead to

useful features when applied to their data. By selecting which primitives to use

during feature generation, SMEs can apply their domain knowledge to ensure relevant

features are being generated and help limit the number of irrelevant features that may

get generated.

Seed features allow SMEs to describe custom features (known symptoms or root

causes, for example) in order to generate additional important features beyond those

that are automatically generated. SMEs use their knowledge of past failures that

have been subjected to root cause analysis (RCA), failures included in the FMECA

and symptoms analysis, and other failure analyses to find contributing factors and

symptoms. They then transform these factors into seed features that are used to

enhance the feature engineering step.

Finally, individual columns or entire entities can be ignored during the generation

process to avoid creating features that are known to be irrelevant to the problem or

that may contribute to data leakage. For example, in the converter case study, the
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SMEs dropped the notifications table during the feature engineering step because

it did not contain useful information.

4.4 Model Evaluation

To evaluate a model, an SME has a number of options available. They can select

the desired true positive rate to find an appropriate threshold. They can apply

an F-beta score with a beta set to 0.5, 1, and 2 to achieve a more deterministic

balance (precision orientated, balanced precision-recall or recall orientated), so that

the outcomes are more certain and can be matched to the criticality of failure and

appropriate follow-up response. They can adopt other metrics such as ROC-AUC,

or they can incorporate subject knowledge to determine the most salient metrics

to use. Additionally, a sensitivity analysis is conducted on the F-beta scores with

respect to the class threshold to inform the SME of the optimal class threshold when

making the model operational for inferences. These can then be fed back to the

standard confusion matrix for recalculation at the optimal threshold, as well as the

other evaluations metrics, which are calculated based on a default 0.5 class threshold.
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Chapter 5

Evaluation

To evaluate our framework, we worked with a group of SMEs with experience in

machine learning and data science, as well as a group of data scientists and machine

learning experts without wind turbine expertise (Non SMEs), to use Zephyr to create

models for both case studies independently. Our goal is to emphasize the importance

of integrating domain knowledge into model development and highlight that users can

effectively utilize our framework even without significant machine learning expertise.

In this Chapter, we highlight the differences between the approaches taken by the

Non SMEs and the SMEs, and how the SMEs leveraged their knowledge to achieve

better results.

5.1 Case Studies

5.1.1 Setup

The Brake Pad (BP) case study involves five entities : turbines, notifications,

stoppages, work orders, and SCADA signals. The Converter Failure (CF) case

study involves six entities : turbines, alarms, notifications, stoppages, work

orders, and PI signals. Table 5.1 lists the data used for both case studies.
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BP CF

Table #Rows #Columns #Rows #Columns

Turbines 70 10 150 10
Alarms - - 6566850 10
Notifications 127 15 32515 15
Stoppages 16898 18 113654 18
Work Orders 5735 21 4090 20
SCADA 7910640 167 - -
PI - - 20219255 35

Table 5.1: This table reports characteristics of the case study datasets, in particular
the number of rows (#Rows), and the number of columns (#Columns).

5.1.2 Brake Pad Case Study

Data Loading

To fairly evaluate the resulting models, both the SMEs and Non SMEs used the

same data. After loading in the data for the brake pad case study, presented in

Table 5.1, both sets of users created the entityset through the Zephyr function

create_scada_entityset().

Labeling

In this case, both the SMEs and Non SMEs used the predefined function

brake_pad_presence which was co-developed with SMEs. The Non SMEs did not

change the predefined default parameters, since they do not have a deep knowledge of

the data or the context around the problem. The labeling function uses the following

features:

• The text description associated with the stoppage,

• The ID of the turbine experiencing the stoppage, and

• The end time of the stoppage, which serves as the time index.

The function checks whether the text description of a stoppage contains references

to brake pads, indicating the brake pads were at fault for the stoppage. With their
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search, Non SMEs produced nearly balanced labels: 37 True and 33 False. The

SMEs produced 943 True labels and 1498 False ones, for a total of 2441 labels; i.e.

an average of 34 labels for each turbine. The number of labels differed drastically

because the Non SMEs relied on the default window size of all future data and used

a matching gap, producing only one label for each turbine. The SMEs used a gap

of 20 days, resulting in significantly more labeled examples. The gap is modified

because it must account for an estimated time window that considers multiple work

order replacements for the same component in the window as a single failure incident.

Additionally, both the Non SMEs and the SMEs tried applying different amounts

of lead time, in order to test trade-offs between model accuracy and earlier detection

of future failures. They developed models for lead times of 0 days, 28 days, and

42 days. These leads are chosen because brake pad failures are more promising of

having a longer lead time and period of wear, where abnormality can be detected.

Additionally, the brake pad issue is most problematic in offshore wind turbines, where

access due to planning and weather conditions is restricted.

Feature Engineering

The third step is feature engineering. Both sets of users used Featuretools’ Deep

Feature Synthesis (DFS) [14] in order to automatically generate features to train

a better model. Non SMEs automatically selected the most frequently occurring

categorical values from the turbine table as interesting values and generated features

specific to those values. Other parameters in the feature generation processes were

left to default values, and the Non SMEs were able to generate 1035 features.

The SMEs leveraged their domain knowledge through seed features and careful

primitive selection (Section 4.3. They created four seed features for the SCADA data:

– WROT_Brk1HyTmp1_mean > 80

– WROT_Brk1HyTmp2_mean > 80

– WROT_Brk2HyTmp1_mean > 80
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– WROT_Brk2HyTmp2_mean > 80

These seed features create boolean variables for when the average temperature of

the brake pad exceeds 80◦, a metric that is known to be a potential indicator of an

impending failure. They also limit aggregations to count, sum, percent true, and

max. These operations tend to reveal trends that indicate the health and status of a

turbine over time. The default transformation primitives were used.

The SMEs chose to ignore notifications, alarms, and work orders when auto-

matically creating features, as the SMEs intuited that they do not contain data that

is useful for indicating imminent brake pad failure. By inserting domain knowledge

during the feature engineering step, the SMEs generated a total of 318 features. Im-

portantly, while the SMEs generated fewer features, these features were more relevant

to the problem than those created through the scattershot approach taken by the Non

SMEs.

Modeling and Evaluation

Finally, both sets of users generated an XGBoost Classifier [6] based on a tree model

with an approximate greedy algorithm and a uniform sampling method. The model

performance suffers significantly without domain knowledge. Non SMEs obtained

𝐴𝑈𝐶 = 0.518 with 0 lead, 𝐴𝑈𝐶 = 0.514 with 28 lead, 𝐴𝑈𝐶 = 0.550 with 42 lead,

while the 𝐴𝑈𝐶 of the SMEs are 0.999, 0.998, and 0.996 respectively.

One example that highlights the importance of domain knowledge is, with a lead

time of 0, the most important feature for the model created by the SMEs was built off

a seed feature, specifically PERCENT_TRUE(SCADA.WROT_Brk1HyTmp2_mean>80). As

lead times increase, the importance of this feature falls off, but still remains in the

top 10. The SMEs also saw a benefit in easily extracting feature importance, as

this allows them to validate their feature engineering assumptions, as well as to use

the feature importance as feedback to other stakeholders in order to demystify ML

methods and models and increase user confidence.

Additionally, while performance inevitably falls off as lead time increases, being

able to tune lead times allows the SMEs to holistically evaluate each model and
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consider the trade-offs between model accuracy and early detection. Whereas Non

SMEs may only be able to evaluate a model using traditional metrics, the SMEs have

a more nuanced understanding of when to tolerate drops in performance in exchange

for real-world benefits like earlier detection.

5.1.3 Converter Failure Case Study

Data Loading

As in the previous case study, to fairly evaluate the resulting models, both the SMEs

and Non SMEs used the same data. After loading in the data for the converter

failure case study – that is, the tables turbines, alarms, stoppages, work orders,

notifications, PI data, detailed in Section 2.3.2 – both sets of users created the

entityset through the Zephyr function create_pidata_entityset().

Labeling

Both SMEs and Non SMEs used the same predefined labeling function

converter_replacement_presence. This labeling function was co-developed with

SMEs, who identified relevant columns and logic for determining label value. The

converter_replacement_presence labeling function uses the following columns by

default:

• The SAP code for the notification,

• The short description of the notification,

• The ID of the turbine associated with the notification, and

• The time the malfunction started, which acts as the time index.

The function requires that the SAP code associated with the notification be equal to

36052411 – indicating that a replacement did happen – in order to obtain a label of

True.

57



SMEs and Non SMEs used different parameters in the label search process. Non

SMEs used the default parameters for label generation, i.e., window size equal to

10 days and gap equal to 1. The SMEs used the default window size but changed

the gap to 10 days. As in the brake pad case study, this parameter is modified

because SMEs want to consider multiple repairs as one failure. The SMEs preferred

transparency in the parameters so that they could control the time intervals, which

would be aggregated to shape meaningful features and better represent trends in

assets over time. Both the Non SMEs and the SMEs tried three different lead times:

0 days, 7 days and 10 days. These leads are shorter than the leads applied in the

brake pad case study because converter failures usually do not have a long period

of deterioration before a failure occurs. Also, the converter failure case study refers

to onshore wind turbines, where access is easier and significant lead time to handle

impending failures is not as critical.

Both the Non SMEs and the SMEs obtained unbalanced labels with their pa-

rameters, ending up with 2238 False and only 74 True labels. Because failures in

the dataset were rare and the same prediction window was used, the gap did not

change the number of labels produced for the SMEs.

Feature Engineering

The Non SMEs automatically selected the most frequently occurring categorical val-

ues from the alarms table to generate features specific to those values. Other param-

eters were left as defaults, resulting in the generation of 47 features.

The SMEs were able to leverage their knowledge during the feature creation step

through seed features and careful primitive selection (Section 4.3). Primitive selec-

tion allows SMEs to further focus the power of deep feature synthesis on the most

illuminating mathematical relationships between entities in the data.

One seed feature was created for the PI data: WGEN.W_max > 2000. This seed

feature creates a Boolean variable indicating whether the maximum power generated

over the interval exceeds some threshold. This seed feature was included as an explicit

feature to indicate that the asset is operating at or close to its limit. Due to the lack of
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electrical measurements, additional seed features relating to reactive power and grid

frequency voltage were considered and implemented in later runs, without significant

gains in performance.

The SMEs limited aggregations to count, sum, percent true, min, and max.

These operations tend to reveal trends that indicate the health and status of the tur-

bine over time. The num words transform primitive was also used, which determines

the number of words for each row in a text column.

The SMEs also ignored the notifications entity when automatically creating

features. This was done to limit the number of features generated, because they knew

this data was unlikely to contain features useful for indicating imminent converter

failure. The SMEs generated 1241 features in total, significantly more than the 47

features the Non SMEs produced.

Modeling and Evaluation

Finally, both the Non SMEs and the SMEs concluded the analysis using an XGBoost

Classifier [6] based on a tree model with an approximate greedy algorithm and a

uniform sampling method. Both users were instructed to use the same method for

a fair comparison. In this case study, both the Non SMEs’ and SMEs’ models had

performed poorly, and leveraging the domain knowledge of the SMEs did not help

lead to significant performance improvements. Non SMEs obtained 𝐴𝑈𝐶 = 0.540

with 0 lead, 𝐴𝑈𝐶 = 0.542 with 7 lead, 𝐴𝑈𝐶 = 0.558 with 10 lead, while the 𝐴𝑈𝐶

of the SMEs are 0.514, 0.604, and 0.641.

5.1.4 Ablation Study

Table 5.2 compares the evaluation metrics obtained on the test set for the BP case

study. Particularly, we illustrate the comparison between Non SMEs and SMEs by

removing some of domain information provided by the SMEs. Because SMEs injected

information through parameters at different levels of the pipeline, we computed the

metrics by reverting each parameter to it’s default value, one parameter at a time. For
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example, reverting the gap, or not adding seed features. The gap parameter has the

most significant impact on the results, although other parameters were responsible

for slight improvements as well.
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Figure 5-1: F1 Scores for the two case studies. Results show the pipelines crafted by
SMEs and their respective F1 scores using Zephyr on their Azure platform.

5.1.5 Discussion

Figure 5-1 illustrates the different pipelines created by SMEs to solve the case studies.

In BP, SMEs reached a satisfying F1 Score of 0.97 (F0.5 0.98) in their 4th and 5th

iterations. However, in CF, SMEs investigated over 12 configurations to improve

their model. While pipeline 5, 7, & 12 are the highest-scoring pipelines, at the time

of writing SMEs are still manipulating the parameter settings such that they are able

to train a reliable model. This is not an easy task, as many parameters (mainly

in the early stages of the framework, e.g. the labeling phase) dictate the model

performance. To overcome this challenge, Zephyr needs to connect its parameters to

model performance.
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5.2 Real-World Deployment

SMEs launched Zephyr on their Azure platform for all their team members to use.

After preparing a compute cluster environment on Azure, they were able to install

Zephyr through PyPI using pip installation and then design the results, files and

graphs that need to be registered. Once that is accomplished, they are able to run

the code and view the results of their experiments. Overall, the process took roughly

a couple of weeks to complete. As part of their initial deployment, they launched

both case studies on Azure. The pipelines in Figure 5-1 were all produced from their

Azure platform. For each case study, they experimented over many trials, analyzing

the model performances as they changed the data and certain parameters such as the

gap and the lead.

5.2.1 Addressing Challenges

The wind energy industry still faces various challenges in turbine maintenance –

particularly the three specific challenges the SMEs emphasized for us, as outlined in

Section 2.3.3: the sheer amount of data to be monitored, the lack of context and

labels in the raw data, and difficulty working with existing machine learning tools.

Zephyr aims to solve these three main problems and to help SMEs develop predictive

maintenance systems. Zephyr is an automated, scalable and flexible framework that

allows SMEs to predict wind turbine component failures and to incorporate their

knowledge into the machine learning process in order to improve predictive results.

The data we used to predict brake pad presence or converter failure was composed

of 5 and 6 tables respectively, some with more than 2M rows. Zephyr combines and

analyzes vast amount of available signal data, addressing the problem with handling

the significant quantity of data available for turbine maintenance.

The Zephyr pipeline begins with integration of data into entitysets, followed by

label creation according to the specific labeling function. SMEs can define their own

labeling functions according to the problem at hand, allowing SMEs to easily generate

labels for any prediction problem from the data.
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Last but not least, Zephyr integrates ML power with SME expertise to achieve

the best possible predictions. SMEs with mechanical and electrical engineering back-

grounds used the framework. They were able to inject their knowledge into Zephyr

and use machine learning for predicting the failures in wind turbines. This eliminates

the gap between SMEs and machine learning tools, making it easier for SMEs to

use. Although Zephyr is very helpful to SMEs, many SMEs are not used to applying

data-centric machine learning frameworks. Zephyr’s specificity is advantageous here,

because users must only learn a single, simple framework. While many of the tools

Zephyr uses come with rich and flexible feature sets, many of these options may not

be relevant for a given problem, and ensuring compatibility between these libraries

can generate additional issues. Zephyr ensures compatibility with underlying libraries

and reduces the learning cost for users.
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Chapter 6

Conclusion

This thesis describes Zephyr, a data-centric framework for predictive maintenance of

renewable energy assets. Zephyr allows users to aggregate wind turbine data, generate

labels, and perform feature engineering, as well as model training and evaluation.

Zephyr’s most significant attributes are that it allows domain experts to input their

knowledge at each step of the process, and that it easily enables iterative development

over each of the steps.

In the case studies, we show that Subject Matter Experts (SMEs) obtained much

better results than those obtained by Non SMEs. More specifically, SMEs improved

the 𝐴𝑈𝐶 score by 48% for the brake pad case study and 8.3% for the converter failure

case study. Because they have deep knowledge and understanding of the data, SMEs

are able to collaborate intelligently with Zephyr – inserting new relevant data, adding

primitives and features, and changing label definitions and search parameters.

The SMEs also found significant value in Zephyr’s iterative development struc-

ture and flexibility. They could easily evaluate outputs at each step of the pipeline,

and intuit possible improvements in data labeling or feature engineering. This also

allowed them more flexibility in evaluation – for example, allowing them to tweak the

prediction engineering by applying different lead times, and to evaluate the resulting

models both numerically and in the context of overall real-world utility.

To conclude, Zephyr is a flexible machine learning framework that allows subject

matter experts to generate and execute pipelines for standard wind turbine data.
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Zephyr enables subject matter experts to input their knowledge and easily iterate

over parts of the analysis to obtain the best results.

6.1 Future Work

While there has been great progress in Zephyr as an end-to-end framework for pre-

dictive maintenance of wind turbines, there are future steps that can to be taken to

improve useability and stability of the project.

6.1.1 Library Development

As an open-source library, maintenance and long-term stability of the project are

important for the SMEs relying on the project. Dependency management, documen-

tation, collaboration, and release management are all critical infrastructural issues

faced by many open-source projects. We have made some strides in improving these

pain points. For example, we include regular automatic testing of Zephyr on new

releases of dependencies to catch dependency errors early. In addition, the documen-

tation includes demo Jupyter notebooks to enable users to quickly start experiment-

ing with the library. However, future work on improving the release process, making

improvements to the documentation, and maintaining dependencies will ensure the

stability required for real-world adoption and usage.

6.1.2 Improvement of Prediction Problems

Currently, Zephyr supports three prediction problems out of the box with predefined

labeling functions. While Zephyr offers significant flexibility in creating custom la-

beling functions, additional commonly used labeling functions can be developed and

added to reduce further reduce user workload.

Additionally, with the flexibility available to users through the various parameters

available at each step of the process, optimizing a model’s performance became a more

nuanced problem. SMEs are keen to connect the logic of the parameters in Zephyr
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to the model’s general performance. In other words, what is the general guidance in

choosing these parameters? Improving Zephyr’s ability to guide parameter choice,

especially for users with little to no experience with prediction engineering, is critical

for continuing to bridge the gap between SMEs and model development.
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