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Abstract

Synthetic data appears to be one of the most promising solutions for solving data limitation prob-

lems in Machine Learning (ML). Thanks to computers and new models, synthetic data can now be

generated quickly and in large amounts. However to ensure this data is realistic and useful, it must

be assessed.

In this thesis, we investigate forms of synthetic data assessment based on model improvement. In

other words, we evaluate synthetic data according to its capacity to improve ML models when it is

added to the model training process. To do this, we first performed a review of the existing works

and metrics for assessing synthetic data. Then we proposed new metrics based on unexploited

statistical and ML notions. We finally built regression models that are able to predict model improve-

ment from these metrics’ scores. Those models have a R2 coefficient 0.72 over a cross-validation

and a correlation between the ground truth and the prediction of 0.8.
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1 Introduction

Statistics as a field uses data to derive knowledge. Machine Learning (ML) has become a power-

ful and increasingly popular statistical tool. The two main subfields of ML are supervised and

unsupervised learning. Supervised learning involves training models on labeled data and using

them to predict outcomes (usually defined as “labels". In this thesis, we are only interested in

supervised learning, especially classification tasks. Compared to a regression task, where the label

is a continuous variable, in a classification task the labels are categories. Fig.1 shows the workflow

of how a ML model is built and evaluated for a classification task. The data is first split into train

and test sets, and the model learns to predict the label from the train set. Then, model performance

is assessed by computing the score over the test set.

Real data

Train model
Split Train/

Test set

Compute
Performance scores

(Acc, AUC, ...)Train set

Train set

Data Model Maths Manipulation

Figure 1: Training/Testing procedure

One of the common problems machine learning model developers face is lack of labeled data.

These situations are much too common place in today’s usage of machine learning. In these

situations, one of the common approach is to possibly augment synthetic data to training data. In

this thesis, we use synthetic data as a data augmentation method – data added to train the model.

In Section 1.1 we introduce and define synthetic data and give the motivation of using synthetic

data for machine learning in Section 1.2.

1.1 What is synthetic data?

According to the McGraw-Hill Dictionary of Scientific and Technical Terms[1], synthetic data is “

any production data applicable to a given situation that is not obtained by direct measurement”

Synthetic data has no real origin, but its systematic and large-scale use is characteristic of our

time [2]. This is a result of the growing need for data and the ease of its creation thanks to the

computational methods now available to generate such data.

Machine Learning created the need for synthetic data, and solved it by proposing efficient synthetic

data generators. Indeed, Machine Learning models are now used across society, and all of them

need data to learn and to be trained. However, the larger the architecture of an ML model, the

more data is required to produce viable results. To fulfill this need for data, new ML models have

been created to produce large amounts of high-quality synthetic data [3]. "High-quality" in this

case means that the data is hard to distinguish from real data, even for a human. Generative

Adversarial Network (GAN) is one of the most popular techniques for synthetic data generation.

10



There are many games where one has to distinguish real images from images generated by GANs. [4]

Synthetic data has multiple applications, primarily data augmentation – when one wants more

data from an experiment without repeating it. This can serve a number of purposes, from model

improvement to statistical data analysis.

The second application is data privacy [5]. In multiple domains, such as healthcare, it’s helpful to be

able to work with data (for instance, to clean or process it) without sharing sensitive information. In

this situation, the cleaning and processing method can be developed and tested over synthetic data

and then used with the sensitive data. A third application is population or experiment synthesis,

where data is created to represent situations that don’t exist or experiments that cannot be done yet.

1.2 Use of synthetic data for data augmentation : Concrete example

We present the following example to explain why synthetic data is useful as a data augmentation

method. Let’s consider the dataset vineyard, which has shape (52,3): fifty-two rows and three

columns. The column class is the binary target column, and lugs_1989, lugs_1990 are two

continuous columns (a.k.a feature). We then created a gaussian copula model to fit the data and

generate a synthetic dataset. (This synthetic generator is not a GANs and will be explained further

in the Appendix.) Thanks to this model, we can generate synthetic data with the shape (52,3). We

trained classical ML classifiers, first with only real data in the training and test set, and then with

increasing amounts of synthetic data added to the training set. The test set always stayed the same,

composed only of real data. We computed classical model performance scores after each synthetic

data addition; i.e., the Accuracy, Recall, AUC, F1, and Prec. All performance scores are defined in

the Appendix, Section7.1. A diagram of this experiment is given in Fig.2.

Split Train/
Test set

Compute
Performance

scores
(Acc, AUC, ...)

Train set

Train set

Training 
synthetic

data

Change proportion synthetic data

Train
model

Synthetic
data

Real
data

Keep given
proportion of
synthetic data

Data Model Maths Manipulation

Figure 2: A data augmentation experiment with a simple 3 columns dataset
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Figure 3 shows how we track changes in model
performance when synthetic data is added. Score
values range between 0 and 1, with 1 correspond-
ing to the best possible score. In the case of Accur-
acy, for instance, a score of 1 means that all the
model predictions over the test set are correct. In
Fig.3. The x −axi s is the proportion of synthetic
data in the training set, and the y−axi s is the per-
formance score. When there is no synthetic data
in the training set, the model performances are
not bad but can be improved. The F1 score, AUC,
and Precision metrics perform especially poorly,
with scores under 0.5. As is clear from the chart,
adding synthetic data greatly improves the model
performance. Finally, when there is as much syn-
thetic as real data in the training set, four out of
the five model performance metrics score above
0.8, which is good. This example helps to show
that synthetic data can be used as a data augment-
ation method to improve model performance.

Figure 3: Model performance improvement thanks to
synthetic data addition in the Training set

1.3 Case study and challenges

Can we predict whether data augmentation with a synthetic dataset will improve a model? This

is the central question of this thesis. The motivations behind this question include saving time and

improving synthetic data generation. Indeed, because training is the most time-consuming part

of building an ML model, we would like to know whether a synthetic dataset will improve a model

without re-training. If we’re able to predict the amount improvement, it becomes possible to build

a synthetic data generator that uses this information to create high-quality synthetic data.

To answer this central question, we work with the following setup. First, we consider only tabular

data built to perform a classification task. To generalize our results, we consider multiple datasets

from various fields (science, travel, and economics). For each dataset, we compute metrics designed

for data assessment, and from those metrics, we build models to predict improvement. The output

of those models comprises our evaluation of synthetic data. A good score means that the ML model

should improve with data augmentation and a bad score suggests the opposite outcome.

Challenges. Before delving deeper into the thesis, it’s important to have the following in mind. In

Machine Learning, data is almost everything, but not quite. That is to say, even if you have the most

realistic synthetic data, you may not improve your model performance by adding it to the training,

because of model and experiment limitations.

A model limitation may occur when a model doesn’t have a good structure or learning process for

extracting information from the data. An exaggerated but easily understandable example is that of

training a regression model to perform a classification task. The output of a regression model is

12



continuous, while classification expects categories as output. Clearly, this poorly designed structure

will limit the efficacy of the model.

An experiment limitation in our case is when the target column is difficult to predict from the

others because there are no clear correlations between them. Knowing that, we will try to propose

the best metrics and aggregate them in the most useful way for a user. A good final score should

suggest that model performance could be improved by adding the given synthetic dataset into the

training.

1.4 thesis overview

To end this introduction, we give more details about the structure of this thesis. This thesis is

divided into 4 main steps, corresponding to the colored rectangles in Fig.4. Fig.4 gives a quick

description of every step, as well as their outcomes.

Dataset Pre-Processing : In this step we generate synthetic data for the all datasets we have, and

we select the ones best suited to our experiments. Section.2.1-2.2

SDMetrics Review : Here we review existing metrics that assess synthetic data quality. The goal is to

analyze current strategies, and examine their relevance and implementation. Section.3.3.1, and 3.4

for the results.

New metrics proposal : After this review, we propose new metrics for assessing synthetic data

quality. Those new metrics are based on unexploited statistical and Machine Learning fields. Sec-

tion.3.3.3, 3.5

Optimization problem : In the final part of the thesis, we use existing and new metrics to build ML

models that are able to predict model improvement. Section.4
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Figure 4: Overview of the thesis
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2 Preliminaries

2.1 Datasets description

We use of a large number of datasets in this thesis. We begin with 466 different tabular datasets.

Tab.2 presents some statistics about these datasets in order to illustrate their diversity. While these

datasets come from different fields, such as biology, physics or healthcare, all contain a target

column with classes and all have been built to solve a classification task. Because we want to use

synthetic data for data augmentation, we don’t want to work with datasets that already lead to

models that perfectly or almost perfectly predict the target. Therefore, this first step of the thesis is

generating synthetic data for all the datasets, and selecting those datasets that can gain from data

augmentation.

Mean Median Min Max
Number of rows 4623 500 20 245057

Number of columns 127 11 2 10936
Number of continuous columns 99 7 0 10935
Number of categorical columns 28 2 1 4703

Number of class 2.32 2 2 10

Table 2: Statistics concerning datasets

2.2 Datasets selection

The 466 datasets used in this thesis can all be used for classification tasks. However, dealing with

this amount of data is challenging. For this reason, and because some datasets are not suited for

our thesis, we perform a dataset selection.

All datasets for which adding synthetic data in the training is useless are not suitable for our experi-

ment. This happens in two main situations: First, when a high-performing classification model

can be built using only real data. In this case, synthetic data is not needed for data augmentation,

because the model is already good enough. The other situation is when the classification task is too

hard to be solved by a classical classifier. We detect this when the performance scores are low when

the model is trained over real data. Even if the synthetic data is close to real data, adding it to the

training will not improve model performance because the task is too hard.

In Fig.5, the x − axi s is the performance score achieved when the model is trained only on real

data, called the score baseline. In this figure, one can see that around 30 datasets already reach

performances of 1 in almost all the performance metrics considered: in other words, performance

improvement is almost impossible. Thus, we define our model selection rule based on the Sum

of Model Performance score SMP, defined for dataset i as SMPi = Accuracyi +AUCi +Recalli +
Precisioni +F1i . This quantity is defined between 0 and 5. We computed it for all datasets where
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it was possible to train models, with the results presented in Fig.6. We defined the datasets that

are well suited for our thesis as those having an SMP such that 2<SMP<4. We did this because an

SMP of four or higher indicates the average of all the model performance scores is at or above 0.8,

meaning the model is good enough without adding synthetic data. Meanwhile, an SMP below two

indicates the average of all the performance scores is below 0.4, which shows that the task is too

hard for the models built. After filtering out the datasets that did not have SMP scores between 2

and 4, we were left with 152 datasets.

Figure 5: Profiling dataset Figure 6: Dataset selection

Knowing which datasets we will work with, we are now able to generate synthetic data for them. A

description of the data generation process is given just after.

2.3 Synthetic Data Generation

We have seen that adding synthetic data to a train set can improve model performances on a real

test set (Section. 1.2). This was the first motivation for using synthetic data. The second one is the

constant need for data. Indeed, the more complex a task, the more complex the machine learning

models are, the more parameters they contain, and the more data they require. This need for data

has helped synthetic data generation to become a thriving and urgent research field, where recent

advances in deep learning and data generation have enabled new approaches.

In this thesis, we use one of these approaches, Generative Adversial Networks (GANs). Put simply,

the GAN works by training two neural networks against each other: a generator and a discriminator.

The generator processes random noise to produce synthetic data. The discriminator is a classifier

trained to distinguish real from synthetic data. When they are trained against one another, the

generator can create realistic data after a few iterations. While the primary application of GANs

has been in generating image data, with a particular focus on human faces (Alqahtani et al., 2021),

researchers have also developed specific architectures for tabular data. For example, TableGAN [6]

and TGAN [7] are two specific GAN models used for tabular data. In this thesis, we used TGAN as

synthetic data generator, as well as Gaussian Copula. A description of how Gaussian Copula works
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is given in Appendix (Section.7.2).

2.4 How much synthetic data to add?

Usually, synthetic data is added to the train set in proportion to the real data, such that half of the

samples in the train set are synthetic. We wanted to check that this was the right approach for

our experiment. To do this, we compared the model improvement when different proportions of

synthetic data were added to the train set.

We run this experiment and all the others over the
selected datasets. For each synthetic data propor-
tion in the train set, we compute the proportion
of models improved, which is the ratio between
the number of datasets where the model perform-
ances have increased with synthetic data addition
over the total number of datasets. This is done
for every model performance score, and the res-
ults are presented in Fig.7. From this graph, we
can conclude that 0.5 is a good proportion of syn-
thetic data to add to the train set. Indeed, con-
sidering all model performances, this results in
the most model improvement. Therefore, we add
the synthetic data in this proportion for the next
experiment.

Figure 7: Grid search to find the best proportion of
synthetic data in the training to improve model

Also from Fig.7, one can see that at 0.5 (x−axi s), between 30 and 50 % of datasets have an improved

model thanks to synthetic data augmentation. Also, for some datasets, models perform better when

trained only with synthetic data (when the proportion of synthetic data in the training is 1).
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3 Synthetic Data Assessment

As we have seen, current synthetc data generators allow us to generate thousands of data without

experiment limitations. However, how confident should we be in this data? How realistic are they?

When should we use them? Data Assessment tries to answer all these questions by evaluating data

quality. To do this, the "real data" coming from an experiment is considered as ground truth, and

evaluations are arrived at by comparing the properties of synthetic and real data.

In addition to synthetic data generation, The Synthetic Data Vault (SDV) [8] proposed a state-

of-the-art Python library to assess synthetic data quality, called SDMetrics. Their end-to-end

pipeline computes many metrics to evaluate synthetic data quality and aggregates their results to

give a final score. A description of the metrics they use is given below.

3.1 Synthetic data assessment : what does exist?

3.1.1 Statistical metrics

These metrics are based on statistical test or probability distribution properties. For the statistical

test, they corresponds to a two-sample test. A two-sample test is based around the null hypothesis

H0 : F (Dr ) = F (Ds) with Dr ,Ds as real and synthetic samples respectively and F as their Cumulative

Distribution Function (CDF). This means that real and synthetic data come from the same distri-

bution under the null hypothesis. The tests implemented are the Chi-Square Test (CSTest) and

Kolmogorov-Smirnov Test (KSTest).

3.1.1.1 Chi-square test. This test is defined for discrete columns. Let us consider one discrete

column composed of m +1 categories; the statistic Qm is given in Eq.1. Here, M j is the number of

samples of the category j in the synthetic data (m samples in total), n is the number of samples

in the real data and p j is the probability of drawing the category j . Since we only have access to

the empirical distribution, we have p j = n j

n with n j as the number of samples of the category j

in the real data. Then, under the null hypothesis : H0 :
M j

m = n j

n ∀ j , Qm follows asymptotically a

χ2 distribution with m degrees of freedom. The test is performed over all discrete columns of the

tables. For each, the associated p − value = P (X >Qm) with X ∼χ2(m) is computed, and the final

metric score is the average of all the previous ones. Therefore, the metric score is included in [0,1],

with 1 indicating the best possible score.

Qm =
m+1∑
j=1

(M j −np j )2

np j

d−→χ2(m) (1)
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3.1.1.2 Kolmogorov-Smirnov test. For con-
tinuous columns, Nečasová & Svoboda in [9] used
the Kolmogorov-Smirnov test to evaluate the sim-
ilarity between distributions. For a sample of size
k, the Empirical Cumulative Distribution Func-
tion (ECDF) is defined by F̂ (x) = 1

k

∑k
i=0 1xi<x with

1 as the indicator function and xi as the sample
i of the dataset. Under the null hypothesis :
H0 : F̂Ds (x) → F̂Dr (x) with F̂Dr , F̂Ds as the ECDF of
the real and synthetic data respectively. In these
conditions, the statistic

p
mDm asymptotically

follow a Kolmogorov law given by :

Dm = sup
x

|F̂Dr (x)− F̂Ds (x)| p
mDm

d−→ K

p − value =P(X >p
mDm) X ∼ K

FK (x) =P(X ≤ x) = (
1+2

∞∑
j=1

(−1) j e−2 j 2x2)
1x>0 Figure 8: Empirical and theoretical distributions

Here Dm is the maximum difference in the y −axi s of Fig.8 between the 2 curves for a same x value.

This time, the metric used in SDMetrics is not the p −value but the inverted statistics; that is to say,

1−Dm . Again this test is performed for all continuous columns, and the results are averaged into

one final score.

3.1.1.3 Kulback Leibler Divergence. The two last statistical metrics implemented in SDV [8] are

not from a two sample test. Instead, they are measures of dissimilarity between two probability

distributions. These are based on pdf (probability density function) and are defined in the discrete

or continuous case by Eq.2 :

KL( f1, f2) =∑
i

f1(i ) ln(
f1(i )

f2(i )
) or KL( f1, f2) =

∫ ∞

−∞
f1(x) ln(

f1(x)

f2(x)
)d x (2)

with f1, f2 as the pdfs of the column for the real and synthetic data respectively. According to Eq.2, if

f1 = f2 ∀x then KL( f1, f2) = 0. Therefore, the best possible score for those metrics is 0. However,

those metrics are not bounded, and can take values between [−∞,∞].

3.1.1.4 Likelihood metrics. These metrics attempt to fit a probabilistic model to the real data

and, later, to evaluate the likelihood of the synthetic data on it. In particular, GM Log-Likelihood

(GMLL) fits multiple Gaussian Mixture models to the real data and then estimates the average

log-likelihood of the synthetic data on them.
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3.1.2 Metric to assess synthetic data utility for ML

3.1.2.1 Machine Learning Efficacy Metrics. This family of metrics evaluates whether it is pos-

sible to replace the real data with synthetic data to solve a Machine Learning problem. Train on

Synthetic data Test on real data (TSTR) metrics was introduced in [10] in 2018. They are computed

following the steps illustrated in Fig.9. For these metrics, a ML model is trained only with synthetic

data and then tested over real data. The relevant metrics are the accuracy over the test set for

classification task and R2 coefficient for regression task. These metrics names are Binary Decision

Tree Classifier (BDTC), Binary Ada Boost Classifier (BABC), Binary Logistic Regression (BLR), Binary

MLP Classifier (BMLPC) for binary target, Multi-class Decision Tree Classifier (MCDTC), Multi-class

MLP Classifier (MMLPC) for mutli-class target and Linear Regression (LR),MLP Regressor (MLPR)

for regression. Here the metric name corresponds to one type of classifier/regressor.

Synthetic
data

Train
model TSTR

metric
Real
data

Synthetic
data

generator

Compute
Performance

scores over real
date (ex Acc)

Data Model Maths Manipulation Metric

Figure 9: TSTR computation from data generation

3.1.2.2 Detection Metrics. The metrics of this family evaluate how difficult it is to distinguish

the synthetic data from the real data by using a Machine Learning model. To do this, these metrics

shuffle the real data and synthetic data together with flags indicating whether the data is real or

synthetic, and then cross-validate a Machine Learning model that tries to predict this flag. The

metric score is 1 minus the average ROC AUC score (in the sense of Section7.1.5) across all the

cross-validation splits. Those metrics are Logistic Detection (LD), SVC Detection (SVCD).

3.1.2.3 Privacy metrics. To cover all considerations, SDMetrics also proposed privacy metrics

that measure the privacy of a synthetic dataset with the following question: Can an attacker predict

sensitive attributes in the real dataset trained on synthetic data? For instance, sensitive attributes

might be the age or gender of an individual. Here, the metrics correspond to the Accuracy on a real

test set of an attacker trained with synthetic data. Since those metrics are not as relevant for data

assessment, we don’t use them in this thesis.

3.2 Limitations

The previous overview of SDMetrics laid out their meanings and their possible values. Knowing this,

some limitations can be highlighted.
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3.2.1 Statistical metrics limitation : No multivariate statistical test

Concerning the statistical metrics, all the tests are performed over single columns of the dataset.

Therefore, only marginal distributions are considered. However, it is easy to imagine a situation

where all marginal distributions are respected, but the multivariate distribution is different. Let’s

take the following example :

• 2 datasets composed of 2 columns: one discrete, one continuous.

• For the discrete column, for both the column follows a Bernoulli distribution of probability

p = 0.5, B(p)

• For both datasets, the second column is conditionally defined according to the first.

• For the first dataset, when the value of the fist column is 1, the value of the second column

is drawn from a normal law N (2,1). When the value of the fist column is 0, the value of the

second column is drawn from a normal law N (−2,1)

• For the second dataset, it’s the opposite: When the value of the first column is 1, the value of

the second column is drawn from a normal law N (−2,1) and when it’s 0, the second column

is drawn from a normal law N (2,1)

In this sample case, performing only CSTest and KSTest as statistical tests will result in a high

p − value for each, while the multivariate distribution of the two datasets is different. Indeed, both

marginal distributions are the same although the multivariate ones are not.

3.2.2 ML metrics limitations

ML metrics based on mixing real and synthetic data in the training. In addition, there are no

Machine Learning metrics that quantifies model performances improvement when real and syn-

thetic data are mixed in the training set, even though this is the main use for synthetic data. Indeed,

section (3.1.2.1) has presented the only metrics available for assessing ML model performance, but

in this case the models are trained only with synthetic data.

Redundant metrics. Finally, most of the ML SDMetrics do the same task, and are different only in

terms of models used. For instance, BABC, BDTC, BLR and BMLPC are all binary classifiers trained

with synthetic data and tested over real data. The corresponding metric is always the accuracy over

the test set. This may cause redundant information if all those architectures are able to fit the data

(and they are built to it). Therefore, we will try to present new ML metrics exploiting other fields of

Machine Learning.
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3.3 Our research goals

3.3.1 Metrics review

After the preliminaries, the first part of this thesis involves reviewing existing metrics of SDMetrics.

Because this work focuses on data assessment, we do not consider privacy metrics. Therefore, the

existing metrics studied are given in Tab.3. The key points of the review are given just below :

• Check theoretical/Implementation of SDMetrics : Analyze whether the existing metrics are

theoretically good for synthetic data assessment and if the implementation is correct.

• Assessment over real data : Observe the score for every metric when only real data is involved.

Discard those that don’t give a high score.

• Robustness analysis : Compute the metric score variation when the same data is given

multiple times. Discard those where the score varies too much.

• Correlation study : Compute the correlations between the SDMetrics to see which give

similar results. This can be used to reduce the number of computed metrics.

LogisticDetection SVCDetection BinaryDecisionTreeClassifier BinaryAdaBoostClassifier
BinaryLogisticRegression MLPRegressor MulticlassDecisionTreeClassifier GMLogLikelihood

BinaryMLPClassifier CSTest MulticlassMLPClassifier KSTestExtended
LinearRegression KSTest MulticlassMLPClassifier DiscreteKLDivergence

Table 3: List of existing metrics studied

3.3.2 p − value re-mapping

For now, the metric based on the CSTest and the one for the KSTest are the p − value and the

statistics of the test, respectively. The first change we make is to base the statistical metric only on

the p −value p. This is more meaningful and produces a score between 0 and 1. Moreover, metrics

based on statistics do not take sample sizes into account. Having a KSTest statistic of 0.1 means

different things depending on whether there are 10 or 1000 samples (in the latter situation, the

p-value should be very low, suggesting a different distribution).
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We also introduce the significance level α, com-
monly used in statistical tests, to built the metric
Sα(p). The underlying idea behind this metric is
that if one is not able to reject the null hypothesis
H0 at the level α, Sα(p) should be high. Based
on the criteria Sα(α) = 0.5, we defined Sα(p) as
given in Eq.3 and visible in Fig.10 for different α.
Notably, this metric is concave if α< 0.5.

Sα(p) = ln(mp +1)

ln(m +1)
m = 1−2α

α2
(3)

Figure 10: Statistical metric definition based on the
p-value p and significance level α

3.3.3 New metrics proposal

3.3.3.1 Multivariate study : The multivariate two-sample problem

Non-parametric tests are a family of statistical tests that make no assumptions about underlying

distributions. This test family is commonly used to work with multivariate distributions datasets. As

one has seen, the only statistical tests implemented are based on marginal distributions. Therefore,

we looked to propose multivariate statistical tests that consider entire datasets (set of columns).

We used non-parametric statistical tests for this. However, because these tests are distribution-

free, it is not possible to directly derive a p − value from the statistics. As explained by Efron &

Tibshirani in [11], the permutation method is one statistical trick for building a p − value for any

non-parametric test. The procedure is described as follows for the two sample problems: Let D1,

D1,1 · · ·D1,k datasets drawn from the same distribution F1, with k ∈N large. Let D2 drawn from F2

be the dataset that we want to perform the two sample problems, i.e. test H0 : F1 = F2. Compute

the non parametric statistic φ(D1,D2) as well as the statistics φ(D1,D1,i )∀i ∈ 1, · · · ,k. Compute the

p − value p as p = 1
k

∑k
i=1 I(φ(D1,D2) < φ(D1,D1,i )) with I(x) the identity function, that is 1 if x is

True and 0 otherwise. The main constraint of the permutation test is lack of access to a large num-

ber of datasets D1,1 · · ·D1,k . To solve this, D1,1 · · ·D1,k is usually created by shuffling and sampling

multiple times from a big dataset D3 drawn from F1. The other constraint is the computational

intensity of computing k time the statistics with k large. To overcome this, it is necessary to study

the p−value variation function of k for all datasets and find the first k that gives a robust p−value

(e.g. one that does not vary much if we repeat the same experiment).

Now that we have a way to compute a p − value for a non parametric test, we present 4 non

parametric tests built to solve the multivariate two sample test.
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3.3.3.2 Friedmaan-Rafsky test Friedman & Rafsky [12] introduced procedures for the nonpara-

metric two-sample problem that are based on the minimal spanning tree (MST). This test is the

multivariate extension of the one defined by Wald & Wolfowitz in [13]. Let consider two columns of

continuous variable A and B. This univariate test consists of sorting the elements from A combined

with B and counting the number of switches r of either 1’s or 2’s, where each element of A is replaced

by a 1 and each member of B is replaced by a 2. The null hypothesis is equivalent to a random order

of 1’s and 2’s. As explained in [14], for the mutlivariate case, they replace the notion of a sorted list of

elements from A union B with a minimal spanning tree (MST). The statistics are defined by Eq.4-7

with di the degree of node i in the MST, i.e. the number of edges connected to node i .

φR =r −µ
σ

∼N(0,1) (4)

µ= 2nm

n +m
(5)

σ2 = 2nm

2(n +m)(n +m −1)
· [(

2nm −n −m

n +m
)+ c −n −m +2

(n +m −2)(n +m −3)
[(n +m)(n +m −1)−4nm +2]]

(6)

c =1

2

n+m∑
i=1

di (di −1) (7)

3.3.3.3 Energy test Zech & Aslan in [15] proposed a multivariate two-sample test based on

the concept of minimum energy. They consider the real dataset Dr : X1, · · · ,Xn of n samples as a

system of positive charges of charge 1
n each, and the synthetic dataset Ds : Y1, · · · ,Ym as a system of

negative charges of charge − 1
m each. The charges are normalized such that each sample contains

a total charge of one unit. From electrostatics, we know that in the limit of where n,m tend to

infinity, the total potential energy of the combined samples computed for a potential following a

one-over-distance law will be minimum if both charge samples have the same distribution. The

energy test generalizes these conditions. For the two-sample test, they use a logarithmic potential in

Rd (Xi ,Y j ∈Rd ,∀i ∈ {1, · · · ,n},∀ j ∈ {1, · · · ,m}). Their test statistics φE consist of three terms, which

correspond to the energies of Dr (φDr ), Dr (φDs ) and the interaction energy (φDr ,Ds ) of the two

samples. Its definition is given Eqs.8-11 with R(r ) =−ln(r ).

φE =φDr +φDs +φDr ,Ds (8)

φDr =
1

n2

∑
i< j

R(|xi −x j |) (9)

φDs =
1

m2

∑
i< j

R(|yi −y j |) (10)

φDr ,Ds =− 1

nm

n∑
i=1

m∑
j=1

R(|xi −y j |) (11)

3.3.3.4 KNN test The K-Nearest Neighbors Test was first defined by Schilling in [16]. Taking

sample Dr , Ds the idea is to compute the distance between all real and synthetic samples. Then,
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for every samples we look at its k nearest neighbors if they are real or synthetic and we expect

this to be a mix of the two. If not, this means that real samples are close together and far from

synthetic samples, showing a difference in the distribution. Formally, one defines Z : Z1, · · · ,Zn+m

with Zi = Xi ,∀i ∈ {1, · · · ,n} and Z j = Y j−n ,∀ j {n +1, · · · ,n +m}. Let ||·|| be a norm and define the

k− th nearest neighbor to Zi as that point Z j satisfies ||Zi −Z j ′ ||<||Zi −Z j || for exactly k−1 values of

j ′ (1É j ′ É n +m, j ′ ̸= i , j ). The first statistic proposed in [16], φk is given in Eq.12 and is simply the

proportion of all k nearest neighbor comparisons in which a point and its neighbor are members of

the same sample. Ii (r ) = 1 if the r − th nearest neighbor of Zi belongs to the same sample as Zi ,

Ii (r ) = 0 otherwise. Once again, a low statistical value suggests that the two samples comes from

the same distribution. To compute a p−value from this statistic, the permutation method is used.

φk = 1

(n +m)k

n+m∑
i=1

k∑
r=1

Ii (r ) (12)

3.3.3.5 Maximum Mean Discrepancy test (MMD) From the work of Gretton et al. in [17] and

Borgwardt et al. in [18], MMD is a distance measure between distributions. Its definition is

MMD(F1,F2) = ||EDr ∼F1 (ψ(Dr ))−EDs∼F2 (ψ(Ds))||H with Dr ,Ds , random variables following F1,F2

distribution respectively, || · ||H a norm in the Hilbert space (probability measure), ψ a func-

tion. If one defines a kernel function as a scalar product over the Hilbert space, i.e. k(x, y) =<
ψ(x),ψ(y) >H , then after some computation one has MMD2(F1,F2) = EDr ,D′

r ∼F1
k(Dr ,D′

r )+EDs ,D′
s∼F2

k(Ds ,D′
s)−

2EDr ∼F1,Ds∼F2 k(Dr ,Ds). This equation follows the kernel trick in the sense that one no longer needs

to compute ψ, which can be difficult. One example of kernel function is the Gaussian given by

k(x, x ′) = e
−||x−x′||2

2σ2 . Here, the statistic is the square root of the empirical version of the previous

equation, defined by by Eq.13. Here again, the lower the statistic, the harder is it to reject the

hypothesis that both samples come from the same distribution. The permutation method is used

to compute a p − value for this test.

φ2
M MD = 1

n(n −1)

m∑
i ̸= j

k(Xi , X j )+ 1

m(m −1)

m∑
i ̸= j

k(Yi ,Y j )− 2

nm

m,n∑
i , j=1

k(Xi ,Y j ) (13)

3.3.4 New metrics based on ML

SDMetrics proposes machine learning metrics, including detection and efficacy metrics. For the

detection metric, a classifier is trained to distinguish real and synthetic data, with the metric equal

to one minus the accuracy reach of the model. The efficacy metrics describe the accuracy reached

by a model trained with synthetic data and tested on real data. Here, we explore totally different

fields of machine learning in order to propose new metrics. The first is based on Shapley value [19],

a solution concept first used in cooperative game theory that has begun to be used in machine

learning for data and features importance. The second is based on dimension reduction with

principal component analysis (PCA/FAMD)
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3.3.4.1 Shapley value Lloyd Shapley won the Nobel price in economics in 2012 for the introduc-

tion of the Shapley value [19]. Shapley value is a concept that tries to answer the following question

: In a cooperative game where each player plays together to reach an overall gain, how important is

each player to the overall cooperation, and what payoff can he or she reasonably expect? Following

the work of Ghorbani & Zou[20] and also [21] [22], the players are the data rows in the training.

Therefore, a Shapley value tries to estimate which rows in the training help or harm the model. Let

D be the training dataset, and V (A) the performance reached when the ML model is trained over

dataset A. We use the notation φs(i ) and φS(i , x) to define the Shapley values of row i or of row i

with performance x, respectively. The Shapley values φS are defined following these rules :

• If a data row does not change the performance when added to any subset of the training data

sources, then it should be given zero value. More precisely, suppose for all S ⊆ D − {i },V (S) =
V (S ∪ i ), then φS(i )= 0.

• If for data i and j and any subset S ⊆ D−{i , j }, we have V (S∪{i }) =V (S∪{ j }) thenφS(i ) =φS( j )

. In other words, if i and j contribute equally when added to any subset of our training data,

then i and j should be given the same value by symmetry.

• When the overall performance score is the sum of separate performance scores, the overall

value of a datum should be the sum of its value for each score: φS(i ,V +W ) = φS(i ,V )+
φS(i ,W ) for performance scores V ,W . For instance, if datum i contributes values φS(i ,V1)

and φS(i ,V2) to the predictions of test points 1 and 2, respectively, then we expect the value of

i in predicting both test points—i.e. when V =V 1+V 2—to be φS(i ,V1)+φS(i ,V2).

It has been shown that any function satisfying those rules must have the shapeφS(i ) = c
∑

S⊆D−{i }
V (D)−V (S) n −1

|S|


with c a constant and n the number of rows (datum) in D . Because this definition computationally

strenuous, Ghorbani & Zou [20] proposed a Monte Carlo-based algorithm to estimate it. We use

this algorithm to compute Shapley values in this thesis.

Based on the Shapley values, we propose 2 metrics to assess synthetic data quality. Both are

built around the question : Does a synthetic data row help or harm the training? The first one,

MSH AP , is based on the mean values of synthetic and real Shapley values. To compute it, one first

maps the mean of synthetic and real Shapley values φ̄s,s ynt , φ̄s,r eal to [0,1] following a common

rule, defining φ̂s,s ynt , φ̂s,r eal and finally using the function Sα(p). We use Sα(p) for its property of

Sα(α) = 0.5 which is also convenient in this case. The complete definition of MSH AP is given in

Eq.14. The second one, OSH AP , is based on the magnitude order of the Shapley values. Because

the higher the Shapley value is, the more the row contributes positively during training, this metric

gives a positive reward if synthetic data has high Shapley values and negative rewards otherwise. To

do so, the Shapley values are ordered according to their value: let { ¯̄φ}2n
i=1

the set of ordered Shapley
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values with 2n samples, n real and synthetic respectively. OSH AP is defined by Eq.15 with I( ¯̄φi ∈ s),

that is one if sample i is synthetic and zero otherwise.

MSH AP = Sφ̂s,r eal
(φ̂s,s ynt ) = ln(mφ̂s,s ynt +1)

ln(m +1)
m = 1−2φ̂s,r eal

φ̂2
s,r eal

(14)

OSH AP = 1

2
· (1+ 2

n(n +1)

2n∑
i=0

(i −n)I( ¯̄φi ∈ s)) (15)

MSHAP

OSHAP

Sort Shapley
values by

magnitude values

Map Shapley
values to [0,1]

Mean Shapley
value real data

Mean Shapley value
synthetic data

Compute
Shapley
values

Synthetic
data

Real
data

Data Model Maths Manipulation Metric

Figure 11: Scheme computation Shapley based metrics

3.3.4.2 PCA based metric PCA of a collection of points in a real coordinate space are a sequence

of p unit vectors, where the i − th vector is the direction of a line that best fits the data while

being orthogonal to the first i −1 vectors. [23] It was introduced by Pearson [24] in 1901 and is

now commonly used, especially in data compression. Indeed, this method allows us to reduce

the dimensionality and therefore the size of the data while keeping its main information. By

construction, the first dimension of a PCA captures the main information of the data. Therefore, the

question motivating this metric is: Do synthetic and real data share the same main information?

More specifically, if one projects them into the first principal components, will they fill the same

space? We asked this question considering only the 2 first principal components because this allows

us to create graphs in order to better visualize what is going on. We then used the Jaccard similarity

metric [25] to assess the similarity between synthetic and real data in the reduced space. This score

is the ratio between the intersection and the union of 2 spaces. It is defined between 0 and 1 and

suits our assumption: the score is one when real and synthetic data fill the same subspace and

share the same main information, and 0 if the scatter plots don’t overlap, suggesting an important

difference between the datasets. Since we are working with a dataset composed of continuous and

categorical columns, we used FAMD as PCA techniques. This last is better suited for our case, and a

description is given in Annexe. Then, to compute the metric, we proceed as follows: First, we fit the

principal components over the real data. Next, we project the real and synthetic data according to

those components, giving a scatter plot for each. Finally, we compute the area of the intersection

AI of the scatter plot and the area of their union AU to define the metric MF AMD = AI
AU
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Figure 12: Scheme MF M AD computation

3.4 Results SDMetrics review

3.4.1 Result assessment over real data

The theoretical/Implementation review has lead to corrections for the CS and KSTest. A description

of the corrections that we made as well as some results deriving from these corrections are given in

Section.4.4.2. For the other metrics, the theoretical definition as well as the implementation seem

correct. We pursue this review by giving only real data to all SDMetrics. That is to say, rather than

doing metric(real_data,synthetic_data), we do metric(real_data_1,real_data_2). We

expect this score to be high. We did this for every selected dataset. Then we took the mean score

and the standard deviation among the datasets.

We fixed a threshold to 0.5 to discard metrics. If the mean among datasets is below 0.5, this means

the metric is not able to give a good score even if it received only real data. Thus we cannot expect it

to give a good score for "good" synthetic data. The results are presented in Fig.13 ofr all SDMetrics,

using abbreviations. From this graph, most of the metric give a good score which prove their

relevance. For the one that do not give a good score, we have the regression metrics (LR and MLPR)

that are designed for regression task and should not be computed when the target is categorical.

Thus it was expected to reject them in this case. Then CKLD as well as BMLPC have also a mean

below 0.5 and so will not be used for the last part of the project.
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Figure 13: Mean metric score and standard deviation when only real data is given to the metrics.

3.4.2 Robustness check

The robustness check is performed to ensure that we can trust the output score of the metrics. We

did this because several metrics are built from models that need to be train and depending on the

training, the metrics score may change.

Therefore, for each dataset, we give
thirty times the same real and synthetic
data and compute the standard devi-
ation of the metric. We then took the
mean and std of this standard deviation
across the datasets. Fig.14 gives the res-
ult of this experiment. From this graph,
we see that the statistical metrics have
no variation as expected and the met-
rics build on models have variations.
The mean standard deviation for SVCD
is 0.05 corresponding to 5% for instance.
BMLPC is the metric with the highest
mean variation and presents significant
variation across the datasets. However
putting a threshold at 0.1, all the met-
rics have a mean under it and can then
be considered robust. No metric is dis-
carded from this experiment.

Figure 14: Mean standard deviation of the SDMetrics.

3.4.3 Correlation analysis

We end this metric review with a correlation analysis. The goal of this is to see if some SDMetrics

have common output when receiving same datasets. This can be a way to reduce the number of
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computed metrics.

For this experiment, we com-
pute the metrics for all the se-
lected datasets giving a vec-
tor of size 152 for every met-
ric and we then compute the
correlation between the vec-
tors. The result is given in
Fig.15. As we can see, all the
TSTR metrics are highly cor-
related. This confirmed the
limitation we made about re-
dundant information of the
metrics. Therefore, if we need
to reduce the number of met-
rics, we should keep just one
TSTR.

Figure 15: Heatmap correlation ofSDMetrics.

3.5 Results new metrics proposal

3.5.1 Statistical tests

As discussed, the multivariate two sample tests will allow to consider multivariate distribution

while only the marginals were considered before. Nevertheless, because they are non-parametric

test, we have to built empirically a p − value for them. In the Literature the Permutation Method

(Section 3.3.3.1) is commonly used for this purpose. With this method, one parameter needs to

be optimized, the number of permutation, or number of try k. The more permutation, the more

robust the p − value is but also the more time it takes to compute it. Here we tried to find this

trade off between computational time and robustness. To do this, we increase k and for each k we

compute the p − value multiples times (30).

We then compute the standard deviation of the
p − value for this k and for the dataset used. Fi-
nally, we do this for all datasets and aggregate the
result to have the mean standard deviation over
the dataset for each k as well as the standard de-
viation of the mean. The result are presented in
Fig.16. As expected the standard deviation de-
creased by increasing k, so the p − value is more
and more robust. From Fig.16, we chose k = 400
as number of permutation because the mean vari-
ation is low enough for our purpose. Indeed we
are note interested in rejecting the null hypothesis
with a significance level α of 1% but rather 10% or
20% so a variation around 1% is acceptable.

Figure 16: Mean standard deviation of the p − value
computed by the permutation method function of the

number of permutation k.

30



3.5.2 Shapley value

For the metrics MSH AP , OSH AP , we run a first experiment to check their robustness. Since the

shapley values are computed from a Monte Carlo algorithm, we wanted to ensure that the metrics

score don’t change if we compute multiple time the sahpley values. Especially we investigated the

effect of shuffling the samples over shapley values. To do this we compared the shapley value of

each sample before and after shuffling the dataset. We did this for one dataset and the results are

presented in Fig.17, 18. According to Fig.17, the shapley values are well aligned along the identity

line, meaning that shuffling the samples in the dataset doesn’t change a lot their value. However,

those little variations are enough to break the magnitude order as visible in Fig.18. From this graph

we concluded that we can not use OSH AP because it will not be a robust metric.

Figure 17: Shapley value variation Figure 18: Shapley value order variation

Nevertheless, because the mean should not be affected by the variations shown in Fig.17, we

computed it before and after shuffling the dataset and we did this for every datasets. The result

presented in Fig.19 shows that the means of the synthetic or real shapley values don’t vary by

shuffling the sampling. Therefore as confirmed by Fig.20MSH AP is robust to the shuffling and then

can be used to assess synthetic data quality.

Figure 19: Mean shapley value variation Figure 20: MSH AP variation
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3.5.3 PCA/FAMD based metric

For the PCA/FAMD based metric, the main chal-
lenge was to defined the area for the scatter plots.
To do this, we used the CovexHull() method of
Scipy to find the edge of each area. Then one
difficulty was for the intersection area, since an
edge is when the real and synthetic data area
cross each other which is not necessarily a point
of the scatter plot. To overcome this, between
each edge of both area, the right equation was de-
rived and then all the intersection points between
the lines to finally isolated those that are in both
area, being the intersection of the two area. The
area is computed using Polygon.area() from
shapely.geometry library. One example show-
ing the different areas is given in Fig.21.

Figure 21: Example Datasets projection into principal
component and metric computation
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4 Model Improvement prediction based on metric score

4.1 Lack of correlation

As said before, one main use of synthetic is for model performance improvement. The data assess-

ment should reflect this in the sense that a good synthetic data evaluation should lead to a model

improvement by adding this data in the training. This is the more meaningful point of view of data

assessment in this case. Of course, other limitations from the model can prevent any improvement

even with a really good dataset.

This part investigates the correlation between model improvement and the final score given by

SDMetrics. To do this, we took again many datasets (datasets informations are given in Tab.2)and

generate synthetic data for each of them. We compute model performances (Accuracy, AUC, Recall,

Precision and F1) before and after adding synthetic data in the training. We can then define the

Improvement as : x −a as the difference after and before adding synthetic data (x and a respect-

ively). Next, for the SDMetrics, we use the method evaluate(synthetic_data,real_data) from

SDMetrics that outputs an evaluation value of the synthetic data given the real data. This evaluation

is got by aggregating the score of all the metrics described previously. In our case, the privacy

metrics are not taken into account. Fig.22 is a diagram that shows how the final score of SDMetrics is

computed. Then, doing this for all datasets, correlations between data evaluation and improvement

are then computed. The result is given in Tab.4 while Fig.23 represents the improvement function

of the data evaluation. Each point corresponds to one dataset. This tab shows that there is no huge

correlation between the data evaluation and the model improvement. This is confirmed when

looking the the scatter plot of Fig.23. Mostly, the correlation is negative in the case of the Accuracy,

suggesting that a good synthetic data evaluation should lead in a decrease of the Accuracy of the

model. The contrary is much more meaningful.

Compute the
mean over

all SDMetrics

Synthetic
data

Statistical
metrics

TSTR
metrics

Final score 
SDMetrics

Likelihood
metrics

Detection
metrics

Real
data

Data Maths Manipulation Metric

Figure 22: Computation final score SDMetrics
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Accuracy AUC Recall Prec. F1
Correlation

Model Improvement/
SDMetrics score

-0.38 0.27 0.18 0.11 0.27

Table 4: Correlation between Model Improvement and score of SDMetrics for different model quality metrics

Figure 23: Correlation SDMetrics final score and model improvement

Finally, to better understand this result, we compute the correlation between the improvement

and each metric of SDMetrics. As visible on Fig.24, the more dense region is near the 0 correlation,

meaning that most of the SDMetrics have a little correlation with the model improvement. This

motivates this project’s main idea: to find new metrics more meaningful to assess synthetic data

quality. The orange violin are got by defining a new improvement function (section 4.2) from the

graph. This new definition has moved most of the correlation from a negative to a positive sign

which is a good point.
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Figure 24: Density distribution of the correlation between SDMetrics and improvement

4.2 New Improvement method

As explained before, the model improvement is defined by Improvement : x −a with a and x as the

scores before and after the addition of synthetic data to the training, respectively. This definition

is the most common one and is well suited for the scores we are interested in (Accuracy, Recall,

F1, Precision, AUC). However, it suffers from two main limitations. First, its extreme values (i.e

[−a,1−a]) are not independent of a. In addition, moving the model accuracy from 0.5 to 0.53 gives

the same improvement of 0.03 that moving from 0.9 to 0.93 does, while in this case an increase of

0.03 is outstanding. A new improvement function fa(x) given in Eq.16 and visible in Fig.25 was

defined to overcome those limitations. The criteria that led to this new definition are as follows:

• fa(a) = 0

• fa(x) > 0 if x > a and fa(x) <= 0 if x <= a

• fa(x) ∈ [−1,1]∀x ∈ [0,1] and continuous

• The higher a is, the better if x > a

fa(x) =


x −a

1−a
x >= a

e
x−a
1−a −1

1−e
−a

1−a
x < a

(16)

Figure 25: New Improvement function
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4.3 Optimization problem

We just saw that the final result score that SDMetrics output is not very informative in term of model

improvement. However, since synthetic data for data augmentation is used for this purpose, it

could be really worth it to have a score linked to model improvement. Therefore, the idea is to try

to predict the improvement of the model performance based on the metric scores. For now, as

we have seen, the output OE (DR ,DS) of evaluate() is the mean over all the computed metrics;

that is OE (DR ,DS) = 1
k

∑k
i=1 si (DR ,DS) with DR ,DS as the real and synthetic datasets respectively,

and si as the metric i over the k computed. The idea is to modify this to have OE (DR ,DS) j =
A j ({si (DR ,DS)}k

i=1) with A j as a model trained to predict the improvement of the performance

j (Acc, AUC,...) ( j ∈ {1, · · · ,5}), receiving the metric score as input. Therefore, we now have five

different outputs. Fig.26 gives a scheme of how the model A j are trained from the datasets, with

each color corresponding to a particular task and data type.

Real data Improvement: f  (x)

Target

a

Train / Test Model:
baseline performance a

(Acc, AUC, ...)

Train / Test Model: data
augmentation performance x

(Acc, AUC, ...)

Optimization model:
Predict the improvement

based on the metric score

Synthetic data assessment:
Metric scores

Input
Synthetic data

Data Model Maths Manipulation Metric

Figure 26: Optimization map

The input of every model is a dataset of shape (X ,Y ), with X as the number of datasets and Y as

the number of metrics. The target has shape (X ,1), corresponding to the improvement after data

augmentation for each dataset. To do this, we used all SDMetrics minus those that were discarded.

We added the new ones and replaced the ones we corrected. For each model performance, we then

performed a model comparison to select the best model for our problem.

4.4 First results correlation metric score and model improvement

In this section, some previous results are reviewed to observe their implication in terms of model

improvement. The results concerned are the dataset selection, the correction of the CSTest and

KSTest of SDMetrics. Moreover, we propose an assessment of the new metrics based on model

improvement.
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4.4.1 Data selection check based on model improvement

According to Fig.6, most of the datasets must not be considered for our project (152 considered over

466). However, for the last part of the project, the optimization one, the more dataset, the better.

Therefore we wanted to check that selecting those datasets was worth it. To do this, we compared

the correlation between model improvement and SDMetrics scores when taking all the datasets or

the chosen ones. We did this for all model performance scores and SDMetrics scores. The results

are given in Fig.27. To understand this graph, the nearest to 1 or -1 the distributions are, the better

in our case. This means that there is a good correlation between the SDMetric scores and the model

improvement fa(x) described in Section 4.2. From Fig.27, we see that the distributions are better by

selecting the dataset. Especially for the AUC or the F1 score which are the model performance of

interest in our case, we moved from a mean distribution negative and close to 0 to a positive one

with value around 0.2.

Figure 27: Violin plot presenting correlation distribution between SDMetrcis score and Model Performance
score

To better understand the meaning of Fig.27, we compared the effect of the data selection for

one SDMetric, the Binary MLPClassifier. in Fig.28 are shown the scatter plot between model

improvement and metric score. One point corresponds to one dataset. For this graph, we expect to

have points around the line defined by the point (0,-1), (1,1), meaning a high positive correlation,

so a good metric score when the model has improved thanks to synthetic data addition. According

to Fig.28, correlations seem better with the selected dataset. This is confirmed by comparing the

correlation with and without selecting the dataset as done in Tab.5. From this table, selecting the

datasets has increased the correlation significantly, justifying the need for this first step.
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Accuracy AUC Recall Precision F1
All dataset -0.44 -0.07 0.39 -0.04 -0.02

Selected dataset -0.38 0.37 0.44 0.38 0.46

Table 5: Comparison correlation Model Improvement/Binary MLPClassifier score before and after dataset
selection

Figure 28: Scatter plot model Improvement versus Binary MLPClassifier score with all the datasets and the
selected dataset.

4.4.2 SDMetrics corrections

4.4.2.1 CSTest The CSTest is an excellent way to check if two categorical columns come from

the same distribution. However, due to a misunderstanding in Scipy documentation, this metric

is badly computed by SDMetrics. In their documentation, it’s written chisquare(f_obs,f_exp)

with f_obs,f_exp Observed and expected frequencies in each category respectively. Nevertheless,

following their tutorial, f_obs,f_exp appears to the observed and expected count in each cat-

egory and not the frequencies. SDMetrics uses scipy.stat.chisquare(f_obs,f_exp) but gives

frequencies (value between 0 and 1) while counts must be given.

We detected this error because the p − value was always really high, even if the two categorical

columns have totally different distributions. Therefore, we corrected this by giving counts. We then

also analyzed the effect of re-mapping the p − value p with Sα(p) choosing α= 0.1. The results for

the correlations are presented in Tab.6 as well as the scatter plot between the improvement and the

metric score in Fig.29. Again in Fig.29 one point corresponds to one dataset. We can see on this

graph the left shift of score made by the correction. Before due to the frequencies, the statistics was

always low and so the p − value really high. After the correction, a lot of score are near 0 and the

r e −mappi ng allows to distribute the score less in the extremity. That was the idea behind the
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r e −mappi ng , to be less severe than the statistical test. From Tab.6 we see that the correction and

the re-mapping have significantly increased the correlation between model improvement and the

metric score. Therefore the final CSTest metric (Correction + p − value mapping) is much more

relevant to assess data quality for model improvement.

Accuracy AUC Recall Precision F1
SDMetric -0.13 -0.23 0.3 0.24 0.20

Correction -0.18 0.46 0.39 0.42 0.41
Correction + p − value

mapping S0.1(p)
-0.19 0.53 0.46 0.48 0.48

Table 6: Comparison correlation between Improvement function fa(x) and CSTest score before and after
metrics correction and p − value mapping.

Figure 29: Comparison scatter plot Model Improvement/CS Test score for different definitions of the metric.

4.4.2.2 KSTest The KSTest is used to check if two continuous columns come from the same

distribution. This time the test is well implemented but the returned score of SDMetric is a term of

the test statistic rather than the p−value. As described in Section 3.1.1.2, the statistic is
p

mDm with

m the number of samples. Dm is the maximum difference between the two ECDF and SDMetrics

returns 1−Dm However by doing this, the sample size dependency of the test is totally lost. It’s really

different for the test and the p − value to have Dm equals to 0.1 for m = 10 or m = 1000. Therefore

the modification we made was to use the p − value p of the test and to re-map it with S0.1(p). The

results are presented in Tab.7 for the correlation and Fig.30. Here again, the correction has made

increased a lot the correlation model improvement/ metric score which is good for the last part of

the project. According to Tab.7, This time the p −value mapping makes the correlations decrease a

bit, but stay much higher than before the correction.

39



Accuracy AUC Recall Precision F1
SDMetric -0.03 -0.14 0.00 0.15 0.15

Correction -0.39 0.58 0.38 0.49 0.48
Correction +

p − value mapping
-0.33 0.50 0.34 0.45 0.42

Table 7: Comparison correlation between Improvement function fa(x) and KSTest score before and after
metrics correction and p − value mapping.

Figure 30: Comparison scatter plot Model Improvement/KS Test score for different definitions of the metric.

4.4.3 New metrics assessment

Here we compare the new metrics with the one of SDMetrics in terms of model improvement. The

idea is then to plot again the violin distribution of the correlation between the Improvement fa(x)

and the metrics score and observe where the new metrics are.

As the SDMetrics are diverse and more or less correlated to model improvements, we will use the

following rules to assess the relevance of the new ones. If the correlation is near 0 for all performance

score (Accuracy, AUC,...) the metric is not suited for our experiment. If its correlations are around

the mean correlation of the SDMetrics, the metric is in average as good as the sdmetric which is

fine. If its correlations reach high to extreme value (from 0.7 to 1 correlation in absolute value),

the new metrics is particularly good for our experiment. Knowing this, we present the result in

Fig.31. On this graph, one can see that the new statistical tests are always around or above the

mean correlation, so they are informative MSH AP is one of the most informative metric for Accuracy

improvement but is anti-correlated with all other performance. Finally MF AMD gives correlation a
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bit lower than the other SDMetrics in average. However the results are good enough to use all the

new metrics to build a model to predict the improvements based on metric score. This is the task of

the last part of this project.

Figure 31: Correlation distributions with new metrics

4.5 Improvement prediction based on metric score

Now that we have reviewed and defined all the metrics, one can use them to solve the optimization

problem. The purpose of it is to predict if a dataset (synthetic) will or not improve model perform-

ance by data augmentation based on its metric scores. When the training takes a lot of time, this

reveals really useful because it will give some insights on how the model will behave by adding the

dataset in the training without the need to train it with. Moreover, this is a direct approach to assess

data quality based on model improvement. To perform this task, we first removed all the metrics

that didn’t success the first metric selection.

Then we can perform a model selection. To do this, we used Pycaret to compare many regression

model architecture. Since we are doing a regression task, the performance score we’re interested

in are no longer the Accuracy or the Recall. The one commonly used and that we chose are given

by Eqs.17-19 with y the true values, ŷ the predicted ones and n the number of samples. ȳ , ¯̂y

corresponds to the mean true and predicted values respectively. For the Mean Absolute Error (MAE)

and Root Mean Squred Error (RMSE), the closer to zero, the better while for the R2 coefficient, the

closer to one the better.

MAE(y, ŷ) = 1

n

n∑
i=1

|yi − ŷi | (17)
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RMSE(y, ŷ) =
√

1

n

n∑
i=1

(yi − ŷi )2 (18)

R2(y, ŷ) = 1−
n∑

i=1

(yi − ŷi )2

(yi − ȳ)2
(19)

After some exploration, we decided to build one model per performance score. For each, multiple

regressors are trained and tested with a cross validation. The result for the AUC are given in Tab.8

and in Appendix for the other performance score (Tabs.10-13). From those tables, Extra Trees

Regressor is always the best model to fit our problem. Therefore, a quick theoretical description of

it is given in Appendix. Then, the score over the cross validation are quite good, reaching a R2 of

0.72 for the AUC for instance. This can be seen as a proof of concept that model improvement can

be roughly well predicted only based on the data, without knowing the classifier or the difficulty of

the task.

Model MAE RMSE R2

et Extra Trees Regressor 0.1351 0.2219 0.7276
lightgbm Light Gradient Boosting Machine 0.1636 0.2331 0.6955

gbr Gradient Boosting Regressor 0.156 0.2316 0.6941
rf Random Forest Regressor 0.1734 0.2445 0.6621

ada AdaBoost Regressor 0.1918 0.2499 0.6547
ridge Ridge Regression 0.2179 0.2724 0.5892

br Bayesian Ridge 0.2172 0.2726 0.589
lr Linear Regression 0.2172 0.2795 0.568
dt Decision Tree Regressor 0.171 0.2865 0.5122

knn K Neighbors Regressor 0.2358 0.3007 0.5094
par Passive Aggressive Regressor 0.2361 0.2955 0.5086

omp Orthogonal Matching Pursuit 0.2517 0.3035 0.5032
lar Least Angle Regression 0.2847 0.3593 0.0537

lasso Lasso Regression 0.3799 0.4556 -0.1134
en Elastic Net 0.3799 0.4556 -0.1134
llar Lasso Least Angle Regression 0.3799 0.4556 -0.1134

dummy Dummy Regressor 0.3799 0.4556 -0.1134

Table 8: Model comparison I AUC
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To better see the meaning of the values of Tab.8,
we plotted the predicted improvement versus its
true improvement for one test set of the cross val-
idation. Here again, one point corresponds to one
dataset. Fig.32 presents this result for the AUC,
the other performance score are given in the Ap-
pendix (Section ) by Figs.35-38. As one can see on
this graph, we reached a correlation of 0.8 which
is satisfying and the fit we derived from the scatter
plot is close to the identity line.

Figure 32: Comparison Model/SDMetrics prediction
over the test set for the AUC
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5 Discussion

5.1 Dataset selection

The innovative part of this project lays in how we worked with many datasets to generalize the

results. Accordingly, we didn’t assess the quality of a metric for one specific dataset, but over a

variety of datasets. However, working with many datasets is challenging because everything we

defined must work with all datasets. For this reason, we started with a pipeline to clean the datasets

and generate synthetic data and meta information over the datasets (metadata to describe which

category is categorical/continuous). We did not restrict the training time or architecture of the

datasets (number of classes in the target column). Still, we tried to ensure that the datasets we

worked needed to be augmented with synthetic data. We used the SMP (Sum of Model Performance)

as a threshold to select the data. With these thresholds, we ended up using less than half of the

datasets we originally had at our disposal. Fig.28 has shown that we discarded the datasets that

didn’t require data augmentation.

5.2 Metrics Review

Our metrics review allowed us to discover existing metrics for assessing synthetic data quality.

While most of them were theoretically relevant and well implemented, we found and corrected

errors in some of them. In particular, for the statistical metrics, CS and KS tests were poorly imple-

mented, causing a loss of sample size dependency in the tests. We showed that our corrections

better correlated these metrics to model improvement. The re-mapping Sα(p) allowed us to get

more various and meaningful values for data assessment. Nevertheless, the score of those metrics

is still the average over the discrete/continuous columns, therefore only based on the marginals.

We tried to generalize the CSTest to a multivariate one by stacking the category, but dealing with

unseen and impossible categorical configurations made these metrics uncomputable without

expert knowledge. Something we didn’t try that could have been interesting is to do a weighted

mean over the columns. We know that for the CS Test, the more categories there are, the easier it is

to reject the null hypothesis at the same sample size. Weights may correct this.

By using only real data to find the metrics, we could detect those that didn’t give good results

and therefore should not be used because they cannot detect real data. This allowed us to discard

some metrics that were not designed to assess synthetic data for classification datasets. Before,

those metrics had been part of the mean final score, even though they did not make sense there

because they were unsuited. The Linear regression LR metric is one example of such a metric, as it

is suited for regression tasks.

44



5.3 New Metrics proposal

The conclusions of the metric review were there was no multivariate statistical test and only two

families of machine learning metrics: detection metrics and TSTR metrics (trained on synthetic

data, tested on real data). Therefore, the goals were to find and implement multivariate two-sample

statistical tests, and to propose other machine learning approaches to assess synthetic data.

For the multivariate test, we found four non-parametric tests well designed for multi-dimensional

datasets. Each takes the full synthetic and real datasets as input. The challenge here was to define

a p − value for those tests. The permutation technique gave a robust and computationally fast

solution to this challenge. We then saw that those metrics correlate with model improvement in the

range of other SDMetrics – a bit above the mean, which is promising. However, as expected, those

metrics are highly correlated because they try to check the same null hypothesis. It is good that

they output similar p − value because it is strange when some tests and not others reject the null

hypothesis. In addition, all those metrics are based on distance between real and synthetic samples

in the multi-dimensional space. While this makes total sense for continuous columns, the notion of

distance between categorical distances is unclear.

The first machine learning metric we proposed is MSHAP. At first sight, the Shapley value no-

tion perfectly fits what we are looking for. Indeed, this notion is used nowadays to assess feature

and row importance in training. Because we’re trying to evaluate synthetic data based on model

improvement, we are particularly interested in knowing whether synthetic data rows are important

or useless in the training. Therefore, in theory, the Shapley value was almost the solution for our

project. However, some experimental limitations have constrained its usability. The main limit is

the computational intensity required to compute the Shapley value of every row of the training

set. While this is fixed by using a Monte-Carlo approach, we noticed that with this approach, we

lost the order induced by the values, and thus were unable to use OSH AP . The second limitation is

that the Shapley values are defined according to a model, while we were looking for a model-free

data assessment. In our case, we computed the Shapley values by training a logistic regression

model. Last but not least, Shapley values are also defined according to one performance score. In

our case, we chose Accuracy, which as is evident from Fig.31, MSH AP is one of the more correlated

metrics for Accuracy but is anti-correlated for other performance scores. A way to fix this could be

to define multiple MSH AP , one by performance score. However, this will increase the computational

insensitivity, which is its main limitation. One the main challenge for using Shapley values is to

fix the computational time. Indeed, to get Shapley values, one must train multiple times a model,

which is time-consuming.

The FAMD metric is a totally different way to assess synthetic data. It is based on the similar-

ity of the area spanned by the real and synthetic scatter plot in the reduced space. FAMD makes
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this metric convenient for working with datasets composed of continuous and categorical columns.

Moreover, this metric is fast to compute. Something that could be investigated is whether it is worth

it for the training to have datasets that share the same area in the reduced space. At first sight, it

would appear not to be, because this may indicate redundant information, which is bad for training.

From Fig.31, we see correlations under the mean of the SDMetric,indicating it is not particularly

well suited to assess synthetic data for model improvement.

5.4 Optimization problem

After checking that the metrics are meaningful for assessing synthetic data quality based on model

improvement, we used them. Before this work, the metrics were aggregated by computing a mean

over all of them. We showed in Section.3.2 that doing this fails to output an informative score about

model improvement. Therefore, we built a regression model to predict improvement from the

metric score. According to Tab.8 we reached a good R2 coefficient. This can be seen as a proof

of concept that model improvement can be assessed based only on the data, without models.

To extend this, the model should be tested over more datasets and with different proportions of

synthetic and real data. We only studied cases in which there is the same amount of synthetic

and real data in the training because this is common, but the results could be different in other

situations.

5.5 Future work

The main future work of this project is to create an end-to-end pipeline from synthetic data gen-

eration to metrics computation and data assessment, thanks to the last model. This pipeline will

be user-oriented, in that the users should be able to specify which model they want to improve

according to which performance score.

Research into new metrics is still a wide open field. One could first try to improve the use of

the Shapley value notion to be less demanding computationally and more robust. OSH AP is an

interesting metric if we can classify samples in a robust way. Now that we have a model that is

very good at predicting the improvement from the metrics, an interesting idea could be to add the

output of the model as a loss term in the data generators. Thanks to this, a data generator may be

able to generate better synthetic data, at least in the sense of model improvement. The first way to

do this is by considering only one performance score (ex. AUC), adding the output of the model

in consideration, and checking its improvement at each step of the training/generation. In order

to impact the training, the adding term to the loss function should be weighted, and the weight

optimized.
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6 Conclusion

This project was a deep investigation into data assessment. Motivated by the need for data and

to improve ML models’ performances, we focused on synthetic data assessment based on model

improvement. Our final goal was, given a real and a synthetic dataset, to evaluate whether it is

worth adding the synthetic dataset to the train set to improve model performance.

To address these challenging questions, we used a large number of datasets from various fields to

generalize the application domain of this work. We sought to propose an evaluation of the data

that was as independent as possible from the size and type of dataset and the models used. To

do this, we combined existing metrics for data assessment and developed new ones. All metrics

involved presented a statistical or machine learning insight into the dataset. Analysis and review of

existing metrics have oriented research on new metrics around the implementation of multivariate

two-sample tests and ML metrics based on unexploited notions such as the Shapley value and

PCA/FAMD.

After the implementation and relevance check into the new metrics, we looked to build models

to predict improvement based on metric scores. We used all the metrics, and achieved a proof of

concept that model improvement can be assessed based only on the data.
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7 Appendix

7.1 Model Evaluation

Model evaluation for classification models is easier than for regression models because there are

only 4 different scenarios. A sample is a true positive in a test set if it has a label and the model

predicted this label. It is a false negative if the model didn’t predict the label. If the sample doesn’t

have a label, but the model predicted one, this is a false positive, while if it does not have a label

and none is predicted, this is a true negative. Those four situations are often presented as in Tab.9.

The main metrics for model evaluation are based on this table.

Actual
Postive Negative

Predicted
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 9: Confusion matrix

7.1.1 Accuracy

Accuracy is one of the more common metrics. It computes the ratio of good prediction over all

prediction as shown by Eq.20 :

Accuracy :
T P +T F

T P +F P +F N +T N
(20)

Accuracy and all the following metrics are defined between 0 and 1. For Accuracy, 0 means no

predictions are correct and 1 that all are correct.

7.1.2 Recall

Recall answers the following question: What proportion of actual
Positives are correctly classified? Eq.21 defines this metric, which is
mainly used when capturing a positive sample is what really matters –
for instance, for decease detection.

Recall :
T P

T P +F N
(21)

7.1.3 Precision

Precision answers the question: What proportion of predicted Pos-
itives are truly Positive? It’s defined by Eq.22 and is 1 when all the
predicted positives are truly positive.

Precision :
T P

T P +T N
(22)

Fig.33 illustrates the difference between Recall and Precision. Figure 33: Illustration of Recall
and Precision [26]
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7.1.4 F1 Score

The F1 Score corresponds to the harmonic mean of Precision and Recall. It is defined by Eq.23 and

can be seen as a balance between Recall and Precision.

F1 Score : 2 · Precision ·Recall

Precision+Recall
(23)

7.1.5 AUC

The ROC (receiver operating characteristic curve) is a graph showing the performance of a classifica-

tion model at all classification thresholds. It is a plot of the Recall function of the False Positive Rate,

defined as : FPR = FP
FP + TN . Lowering the classification threshold classifies more items as positive,

thus increasing both False Positives and True Positives. AUC stands for "Area under the ROC Curve."

AUC measures the entire two-dimensional area underneath the entire ROC curve.

7.2 Copula Data Generator

Sklar in [27] proposed the first definition of copula. From his theorem, any multivariate distribution

(CDF) can be written as a function of its marginal, that is to say F (x1, · · · , xn) =C (F (x1), · · · ,F (xn))

with C a copula function. A copula represents the dependencies between each of the features. The

key intuition underlying copula functions is the idea that marginal distributions can be modeled

independently from the joint distribution. Therefore, the idea behind the copula data generator is to

first fit every dataset column using univariate fitting method (Gaussian univariate) and then model

the relationship between columns with another fitting method (based on correlation between

columns, for instance). In this project we used the Copula Data Generator of SDMetrics [8].

7.3 FAMD

FAMD works as a principal component analysis (PCA) for quantitative variables and as a multiple

correspondence analysis (MCA) for qualitative variables. Both achieve dimension reduction us-

ing matrix truncation. For the PCA, let us consider Xcont a n ×m matrix containing continuous

columns. The singular value decomposition of Xcont is Xcont =UΣW T with U a n ×n matrix, Σ

a n ×m diagonal matrix containing singular values of Xcont and W a m ×m matrix. The singular

value decomposition of Xcont is Xcont =UΣW T with U a n ×n matrix, Σ a n ×m diagonal matrix

containing singular values of Xcont and W a m×m matrix. Then, to reduce the space to a dimension

L < m, the truncation matrix is defined by TL =ULΣL with UL equal to U , ΣL a n ×L matrix contain-

ing the L first column of Σ. For MCA, from [28], let us consider Xcat as a n ×p matrix containing

p categorical columns. One can first construct X a n ×k matrix containing only 0 and 1. Here

k =∑p
i=1 jk with jk as the number of category of column k. Set the sum of all entries to be b and

define Z = 1
b X , In an MCA, there are also two special vectors: first r , which contains the sums along

the rows of Z , and then c, which contains the sums along the columns of Z . Note Dr = diag(r )
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and Dc = diag(c), the diagonal matrices containing r and c respectively as diagonal. With these

notations, computing an MCA consists essentially of the singular value decomposition of the matrix

M = D
− 1

2
r (Z − r c t )D

− 1
2

c . Therefore one can write M = P∆QT as singular decomposition and to the

truncated matrix is ML = P∆L with ∆L the n ×L with the first singular values of M . Combining the

PCA and the MCA allows us to reduce the entire dataset to a given dimension L.

7.4 Extra Tree Regressor

Extra Tree Regressor is a type of Random Forest
that uses multiple Decision Tree (DT). Fig.34 gives
an example of DT in the case of a dataset with
three features (V ar1,V ar2,V ar3), a,b,c,d being
any numeric or categorical value. For a RF for
regression, the output is a numerical value and
the different possible outputs correspond to the
circles. The three must be read from the top to
the bottom. Then, a RF creates a lot of random
DT and aggregates the result between them. It
does this by bootstrapping, which is randomly
sampling subsets of a dataset over a given number
of iterations and a given number of variables. This
is done to have as uncorrelated a DT as possible. Figure 34: Example Decision Tree [29]

From [30], Extra Tree Regressor does not use bootstrapping, but the whole dataset. Another differ-

ence is the selection of cut points in order to split nodes. Random Forest chooses the optimum split

while Extra Trees chooses it randomly. These differences motivate the reduction of both bias and

variance. On one hand, using the whole original sample instead of a bootstrap replica will reduce

bias. On the other hand, randomly choosing the split point of each node will reduce variance.
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Model MAE RMSE R2

et Extra Trees Regressor 0.121 0.2065 0.6322
gbr Gradient Boosting Regressor 0.1534 0.2266 0.5775
rf Random Forest Regressor 0.1702 0.2367 0.5363

lightgbm Light Gradient Boosting Machine 0.1804 0.2466 0.5174
ada AdaBoost Regressor 0.2073 0.2615 0.4576
dt Decision Tree Regressor 0.1528 0.2645 0.3385

omp Orthogonal Matching Pursuit 0.2252 0.2996 0.2774
knn K Neighbors Regressor 0.2369 0.3073 0.2656

ridge Ridge Regression 0.2405 0.3128 0.238
br Bayesian Ridge 0.243 0.3142 0.2292
lr Linear Regression 0.2568 0.3271 0.155

lar Least Angle Regression 0.2838 0.36 -0.03
lasso Lasso Regression 0.2868 0.3796 -0.0913

en Elastic Net 0.2868 0.3796 -0.0913
llar Lasso Least Angle Regression 0.2868 0.3796 -0.0913

dummy Dummy Regressor 0.2868 0.3796 -0.0913
par Passive Aggressive Regressor 0.3025 0.38 -0.2052

Table 10: Model comparison I Accuracy

Model MAE RMSE R2

et Extra Trees Regressor 0.1169 0.1774 0.6938
rf Random Forest Regressor 0.1363 0.1835 0.6714

gbr Gradient Boosting Regressor 0.1327 0.1824 0.6682
lightgbm Light Gradient Boosting Machine 0.1445 0.1916 0.6442

ada AdaBoost Regressor 0.159 0.197 0.6223
knn K Neighbors Regressor 0.173 0.218 0.5483

ridge Ridge Regression 0.1822 0.2196 0.534
br Bayesian Ridge 0.1828 0.2201 0.5318
dt Decision Tree Regressor 0.1397 0.2124 0.4991
lr Linear Regression 0.1947 0.2385 0.4537

omp Orthogonal Matching Pursuit 0.2037 0.2502 0.4029
par Passive Aggressive Regressor 0.2007 0.2514 0.3602

lasso Lasso Regression 0.2689 0.3355 -0.0468
en Elastic Net 0.2689 0.3355 -0.0468
llar Lasso Least Angle Regression 0.2689 0.3355 -0.0468

dummy Dummy Regressor 0.2689 0.3355 -0.0468
lar Least Angle Regression 0.3845 0.4942 -1.9613

Table 11: Model Comparison I F1
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Model MAE RMSE R2
gbr Gradient Boosting Regressor 0.134 0.1869 0.62
et Extra Trees Regressor 0.1209 0.1834 0.6129
rf Random Forest Regressor 0.1423 0.1897 0.604

ada AdaBoost Regressor 0.1631 0.2 0.5796
lightgbm Light Gradient Boosting Machine 0.1435 0.1887 0.5744

ridge Ridge Regression 0.1944 0.2372 0.4289
br Bayesian Ridge 0.1948 0.238 0.4244

knn K Neighbors Regressor 0.1915 0.2435 0.3987
dt Decision Tree Regressor 0.1577 0.2405 0.3967
lr Linear Regression 0.2049 0.2504 0.319

omp Orthogonal Matching Pursuit 0.2218 0.2738 0.2206
par Passive Aggressive Regressor 0.2341 0.2865 0.1781

lasso Lasso Regression 0.2731 0.3429 -0.0582
en Elastic Net 0.2731 0.3429 -0.0582
llar Lasso Least Angle Regression 0.2731 0.3429 -0.0582

dummy Dummy Regressor 0.2731 0.3429 -0.0582
lar Least Angle Regression 0.7817 1.0134 -23.9121

Table 12: Model comparison I Precision

Model MAE MSE R2

et Extra Trees Regressor 0.2498 0.1572 0.5369
rf Random Forest Regressor 0.31 0.1697 0.4887

lightgbm Light Gradient Boosting Machine 0.3094 0.1739 0.48
gbr Gradient Boosting Regressor 0.2854 0.1706 0.4751
ada AdaBoost Regressor 0.3507 0.1884 0.436

ridge Ridge Regression 0.3569 0.2024 0.3673
br Bayesian Ridge 0.3598 0.2041 0.3642
lr Linear Regression 0.3757 0.2165 0.3108

omp Orthogonal Matching Pursuit 0.4037 0.2274 0.2917
knn K Neighbors Regressor 0.4019 0.2485 0.2354
par Passive Aggressive Regressor 0.4286 0.2749 0.1129
lar Least Angle Regression 0.4506 0.2986 0.0508
dt Decision Tree Regressor 0.3729 0.3478 -0.0604

lasso Lasso Regression 0.5244 0.3743 -0.1127
en Elastic Net 0.5244 0.3743 -0.1127
llar Lasso Least Angle Regression 0.5244 0.3743 -0.1127

dummy Dummy Regressor 0.5244 0.3743 -0.1127

Table 13: Model comparison I Recall
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Figure 35: Comparison Model/SDMetrics prediction
over the test set for the Accuracy

Figure 36: Comparison Model/SDMetrics prediction
over the test set for the Recall

Figure 37: Comparison Model/SDMetrics prediction
over the test set for the Precision

Figure 38: Comparison Model/SDMetrics prediction
over the test set for the F1
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