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Abstract

Machine learning algorithms have been used in a wide range of applications, and there
are growing concerns about the potential biases of those algorithms. While many solu-
tions have been proposed for addressing biases in predictions from an algorithm, there
is still a gap in translating predictions to a justified decision. Moreover, even a justified
and fair decision could lead to undesirable consequences when decisions create a feedback
effect. While numerous solutions have been proposed for achieving fairness in one-shot
decision-making, there is a gap in investigating the long-term effects of sequential algo-
rithmic decisions. In this thesis, we focus on studying algorithmic fairness in a sequential
decision-making setting.

We first study how to translate model predictions to fair decisions. In particular, given
predictions from black-box models (machine learning models or human experts), we pro-
pose an algorithm based on the classical learning-from-experts scheme to combine predic-
tions and generate a fair and accurate decision. Our theoretical results show that approxi-
mate equalized odds can be achieved without sacrificing much regret. We also demonstrate
the performance of the algorithm on real data sets commonly used by the fairness commu-
nity.

In the second part of the thesis, we study if enforcing static fair decisions in the sequen-
tial setting could lead to long-term equality and improvement of disadvantaged groups
under a feedback loop. In particular, we model the interaction between algorithmic de-
cisions and underlying distribution using Markov Decision Model with general transition
functions. We propose a new metric that measures the distributional impact of algorithmic
decisions as measured by the change in distribution’s center, spread and shape. This metric
categorizes the impact into within-group impact and between-group impact, where within-
group impact measures how policies impact the distribution within a group, and between-
group impact how policies impact the distributions of two population groups differently.
Our results show that there is generally a trade-off between utility and between-group im-
pact for threshold policies, and common fairness constraints could lead to "backfire effects"
where the impact on groups could be disparate.

Thesis Supervisor: Kalyan Veeramachaneni
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Notation Meaning

𝑍 Protected group attribute such as gender or race. In binary case, we will refer
to the groups as group 𝐴 and group 𝐵, where 𝐴 represents the advantaged
group and 𝐵 represents the disadvantaged group.

𝑝𝑧 P(𝑍 = 𝑧). Probability that a sampled example belongs to group 𝑧.
𝑋 Feature variables other than group attribute.
𝑓𝑋 Ground-truth function that maps from group attribute 𝑍 to features 𝑋 .
𝑌 Target variable. In the first part of the thesis the target variable is binary,

where 𝑌 ∈ {0, 1}. In the second part of the thesis the target variable is a
probability where 𝑌 ∈ [0, 1].

𝑂 Outcome variable. If the target variable a probability, 𝑂 is a realized binary
outcome sampled from the probability.

𝑓𝑌 Ground-truth function that maps from feature 𝑋 to target variable 𝑌 .
𝒟 P(𝑋, 𝑌, 𝑍). Ground-truth distribution where the dataset is sampled from.
(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧) ∼ 𝒟. An individual sampled from the distribution is a tuple of the

group attribute, feature variables, and target variable.

𝑌 Model prediction.
ℓ Loss function for measuring the loss between prediction 𝑌 and ground truth

target 𝑌 .
FPR 𝐹𝑃𝑅 = P(𝑌 = 1|𝑌 = 0). False positive rate.
FNR 𝐹𝑁𝑅 = P(𝑌 = 0|𝑌 = 1). False negative rate.
EqFPR P(𝑌 = 1|𝑌 = 0, 𝑍 = 𝐴) = P(𝑌 = 1|𝑌 = 0, 𝑍 = 𝐵). Equalized false

positive rate.
EqFNR P(𝑌 = 1|𝑌 = 0, 𝑍 = 𝐴) = P(𝑌 = 0|𝑌 = 1, 𝑍 = 𝐵). Equalized false

negative rate.
DemoPar P(𝑌 = 1|𝑍 = 𝐴) = P(𝑌 = 1|𝑍 = 𝐵). Demographic parity.
EqOdds Equalized odds requires both EqFPR and EqFNR.
𝐷 Action or decision made on an individual. This is used inreplace of 𝑌 in se-

quential decision making.
𝜏 𝐷 = 1(𝑌 ≥ 𝜏 ). Threshold on target variable at which a positive decision is

issued.
𝑇 Total number of time steps in sequential decision making.
𝑡 A single time step 𝑡.

Table 1: Notation table of the terms used throughout the thesis.
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Chapter 1

Introduction

1.1 Algorithmic Fairness

The past decade has witnessed tremendous advancements in machine learning models. In

image classification, machine learning models based on deep neural network first surpasses

human-level accuracy [He et al., 2016]. The list of advancements continues to grow, as

these models become able to perform more tasks such as text classification [Johnson et al.,

2017] and game-playing [Silver et al., 2016]. Machine learning models are able to learn

and extract patterns from much larger amounts of data than humans can. Recently, machine

learning models have been put to use in fields that are considered to be high-stakes and are

traditionally left to humans, such as predicting healthcare needs [Obermeyer et al., 2019],

accessing creditworthiness for loan applications, and predicting criminal recidivism for law

enforcement [Dressel and Farid, 2018].

Recently, there have been growing concerns about potential bias and discrimination in

these machine learning models. Models could propagate stereotypical and historical biases

reflected in the training data. For example, image searches for professions such as CEO

produce fewer images of women [Kay et al., 2015], and word embeddings used in natural

language processing could encode gender biases [Caliskan et al., 2017].

The consequences are especially alarming when machine learning models are used in

high-stakes applications. For example, Correctional Offender Management Profiling for

Alternative Sanctions (COMPAS) is a commercial algorithm used by U.S. courts to predict
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Age Age or generation
Race Caste, race, color, ethnicity, national origin
Gender Gender, gender expression, sexual orientation
Religion Religion, ideology, politic preferences, membership to guilds-unions-political

parties

Table 1.1: A list of protected attributes.

the likelihood of a defendant becoming a recidivist. While COMPAS’s overall accuracy

is similar for white and black defendants, it has been shown that black defendants were

more likely to be misclassified as being at high risk for violent recidivism [Angwin et al.,

2016]. In particular, black defendants who did not recidivate were nonetheless incorrectly

predicted to re-offend at a rate of 44.9%, while white defendants were only incorrectly

predicted to re-offend at a rate of 23.5%.

In health care, a widely used algorithm [Obermeyer et al., 2019] for predicting risk

scores of extra healthcare needs has been shown to underestimate risks for black patients.

Specifically, the algorithm assigns risk scores to patients, and patients at the 97th percentile

of the risk score are enrolled in the extra healthcare program. However, at this percentile,

black patients have 26.3% more chronic illnesses than white patients. This biased predic-

tion would lead to sick black patients not receiving the extra care they need. This happens

because the model uses health costs as a proxy for healthcare needs. Because black pa-

tients tend to spend less money than white patients at the same level of healthcare needs,

the model underestimates their health needs.

Broadly speaking, algorithmic decisions based on machine learning models shouldn’t

recommend disparate treatment or predict disparate impact based on people’s protected

attributes [Verma and Rubin, 2018], which include age, race, color, religion, national origin,

sex, marital status, and political preferences. A comprehensive list is shown in table 1.1. As

shown in the previous two examples, even when demographic information is not directly

used in the decision-making process, biases can still manifest because of proxies in the

dataset. When algorithmic decision-making is put into practice, many different factors

must be carefully considered throughout the design and deployment of a machine learning

model.
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Term Meaning

State of the world The state of the world refers to the underlying ground-truth distribu-
tion.

Sampling Sampling is the process of taking measurements from the state of
the world.

Dataset A dataset is a collections of data points sampled.
Training Training is the process of learning patterns from the dataset.
Model A model takes the training data and optimize for some objective

function.
Inference Inference is the process of using a model to make predictions on

new data points.
Prediction Prediction is some scores or labels generated by the model during

the inference process.
Decision-making Decision-making is the process of transferring model predictions to

an actionable decision.
Individual An individual is a data point where the decision is made on. In the

context of fairness, an individual refers to a person.
Feedback Feedback is the process where decisions could impact the state of

the world.

Table 1.2: A glossary of the terms used in the machine learning cycle. The bold terms are the nodes
in the cycle, and the italic terms are the edges in the cycle.

In the next section, we show that biases can manifest in any part of the typical de-

ployment cycle of machine learning models. These range from biases caused by using an

unbalanced dataset, to biases that come from spurious correlations between demographic

information and predictions in model representations to biases that occur during the process

of transforming a model prediction into a decision.

1.2 A Full Taxonomy of Biases in Machine Learning

We next showcase how biases can arise through different development stages of a machine

learning model. We use Figure 1-1 to illustrate a typical development cycle of machine

learning models, and use this to show how biases could arise and be mitigated in each

stage. The terms used in the figure are explained in Table 1.2.
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State of the World Individual

Machine Learning
Model

Dataset
Prediction

Sampling

Training Inference

Decision-making

Feedback

Figure 1-1: A typical machine learning cycle contains five stages: the state of the world describes
the true underlying distribution; data is sampled from the state of the world; a machine learning
model learns patterns from the training dataset; the model makes predictions on new instances; these
predictions are transformed into decisions about an individual; an individual could take actions and
change the state of the world.
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1.2.1 Dataset Collection Bias

Machine learning models often need to deal with large messy datasets that are not collected

under clear guidelines. As mentioned in the White House “Big Data” report, [White-House,

2016], selection bias – where data input to the model does not represent the actual popula-

tion – is a main source of discrimination.

Unbalanced Dataset First, a large dataset is not always a diverse one. In fact, widely

used machine learning datasets often suffer from a lack of diversity. For example, many fa-

cial recognition datasets have been collected through Flickr, and mostly consist of faces of

white people [Kärkkäinen and Joo, 2021]. Such datasets have been widely used in different

applications including image up-sampling, where the goal is to construct high-resolution

images from corresponding low-resolution inputs. Recently, it was discovered that an im-

age up-sampling model [Menon et al., 2020] trained on this dataset outputs a white face

when given Barack Obama’s low-resolution picture. This shows that using unbalanced data

can make the model output collapse into the majority class.

Historical and systematic biases In addition to the unbalanced dataset problem, his-

torical and systematic biases are also prevalent in collected datasets. Learning from this

data puts the model in danger of repeating those systematic biases – discrimination against

certain social groups and reinforcement of prevailing cultural stereotypes and existing de-

mographic inequalities. For example, word embedding, a popular framework to represent

text data as vectors, is often the first step in training a large language model. A recent study

shows that word embeddings trained on Google News article [Bolukbasi et al., 2016] ex-

hibit female/male gender stereotypes, such that males are more likely to be associated with

computer programmers and females are more likely to be associated with babysitters. This

shows that machine learning models can amplify historical biases that exist in data.

Much work has been done to try to address biases at this stage, and these approaches

are referred to as pre-processing techniques [Zemel et al., 2013, Louizos et al., 2016,

du Pin Calmon et al., 2017]. One possible solution is to collect more data from under-

represented groups, but this can be difficult to achieve due to self-selection biases. For in-
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stance, if certain jobs historically employ more males than females, those positions might

attract more males to apply, worsening the data bias. In some cases, it can also be diffi-

cult or unethical to collect more data from under-represented groups. There is also work

that tries to transform the dataset such that the underlying biases are removed [Bellamy

et al., 2018]. The idea is to learn a new representation of the dataset, removing information

correlated to the sensitive attribute and preserving the information of features as much as

possible.

However, in many real-world scenarios, a pre-collected large dataset might not be avail-

able. For instance, if a new company wants to recruit employees, it often needs to start with

limited data and make decisions sequentially. This requires new approaches for mitigating

biases in sequential decision-making.

1.2.2 Model Bias

After data collection is over, a machine learning model needs to digest and learn from the

collected dataset (training examples). Unfortunately, a machine learning model sees the

training examples differently than humans do. The sole goal of most machine learning

models is to learn a mapping from input to output to minimize empirical risk (training

errors). Unfortunately, minimizing training errors leads models to recklessly absorb all the

correlations found in the training data. Many of the extracted correlations are spurious, in

the sense that although they reduce the training errors, they appear completely random and

uninformative to humans.

As a thought experiment, consider the problem of classifying profile pictures of males

and females. If males are more likely to wear ties in the training data set, a naive model

would pick up this spurious correlation between gender and tie. Later, if that model en-

countered a picture of a female with a tie, the model would fail unexpectedly. As humans,

we can realize that tie-wearing does not definitionally mean a male picture, yet it would be

difficult for an algorithm to differentiate correlation from causation.

Mitigating biases during the model training stage is perhaps the most well-studied solu-

tion for addressing biases. These methods can be grouped into in processing techniques and
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post processing techniques. In processing approaches usually involve enforcing some fair-

ness constraints at model training time [Corbett-Davies et al., 2017] through constrained

optimization or modification of the objective function [Berk et al., 2017]. Though easy

to implement, these methods can lead to drops in model performance. In addition, many

machine learning models are black boxes, and it is sometimes impossible to change the

training paradigm of the models. Post-processing techniques treat the model as a black box

and adjust the model predictions to remove biases [Hardt et al., 2016].

1.2.3 Decision Bias

Even with a perfectly fair machine learning model, things can still go wrong during decision-

making time. Machine learning models only generate predictions, not actionable decisions.

In many high-stake systems with humans in the loop, there are gaps in translating a model

prediction into a justified decision in practice. For example, suppose there is a machine

learning model that predicts crime rates in a community, and police officers make deci-

sions based on these predictions. If a model predicts that certain communities are more

likely to have a higher crime rate, law enforcement in that area may tend to lower their

threshold and arrest more people.

Very few works have been proposed to address the unfairness that arises in this stage.

This gap motivates us to design algorithms that can deliver fair decisions when working

along predictions from humans or black-box models.

1.2.4 Feedback Loop

It is also important to bear in mind that delivering a fair decision is not always the end of

the story. In many cases, decisions carry big and profound consequences. Unlike common

machine learning applications such as image classification, here the data comes from peo-

ple, and people could react to decisions made about them. Decisions that affect individual

people often create a feedback loop and change the state of the world from which the data

is sampled.
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Decisions could change the population distribution First, decisions could change the

population distribution. Consider again the example of predicting crime rates in a com-

munity. If innocent people living in this community know that a model has predicted high

crime rates there, they may move out. This leads to a self-fulfilling feedback loop that

changes the future population distribution, such that the crime rate could further increase

in this area.

Decisions could change the distribution of the features and outcomes Decisions could

also change the outcome distribution. For example, say a bank takes affirmative action to

approve loans at a lower threshold for people coming from less advantaged socioeconomic

groups. And then say those people might have trouble paying back the loan later, which

decreases their credit scores and credentials in the future. In this case, even well-intended

actions may create an accidental feedback loop.

Strategic classification Algorithmic decisions could change distributions unintention-

ally. Individuals could also strategically react to the decision-making rule [Hardt et al.,

2016, Milli et al., 2019, Ghalme et al., 2021]. For instance, if applicants know which fea-

tures are used in a loan approval decision, they might be incentivized to manipulate those

features to get approved. This might lead to strategic behaviors such as holding multi-

ple credit cards or moving to a different zip code, changing their loan eligibility without

necessarily affecting their ability to repay it. Such tension between decision-makers and

individuals can be modeled in a game-theoretic setting [Zhang et al., 2022, Keswani and

Celis, 2022].

Most of the fairness solutions focus on one-shot classification or regression problems,

and there is a gap in addressing fairness in a sequential and dynamic environment. This

motivates us to address fairness concerns under the sequential dynamic environment and

investigate the long-term impact of particular solutions.
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1.3 Thesis Summary and Contribution

In many real-life situations, including job and loan applications, decision-makers must

make justified and fair real-time decisions about a person’s fitness for a particular oppor-

tunity. In this thesis, we focus on studying algorithmic fairness in sequential decision-

making settings where the data comes on the fly. Within the cycle of machine learning,

many solutions have been proposed for auditing and mitigating model unfairness in terms

of predictions. However, there is still a gap in addressing the biases that arise after the pre-

diction stage in the machine learning cycle. We focus on the last two stages of the machine

learning cycle and study fairness beyond prediction time.

We first study if it is possible to translate model predictions to fair decisions. In particu-

lar, given predictions from black-box models (machine learning models or human experts),

we propose an algorithm based on the classical learning-from-experts scheme to combine

the predictions and generate a fair and accurate decision. We measure the accuracy of the

algorithm using regret, which measures the difference in the algorithm’s accuracy com-

pared to the best expert. For fairness, we adopt the equalized odds metric, which requires

equalized false positive and false negative rates. Our theoretical results show that approx-

imate fairness can be achieved without sacrificing much regret. We also demonstrate the

performance of the algorithm on real data sets commonly used by the fairness community.

In the second part of the thesis, we investigate how decisions made on individuals could

change the state of the world. Can enforcing fair decisions in a sequential setting lead to

long-term improvement of welfare when the feedback loop is taken into account? In partic-

ular, we study the long-term impact of repeatedly enforcing different fairness constraints at

each decision time on shaping the underlying population under Markov Decision Models.

We propose a metric to measure the distributional impact of algorithmic decisions on the

target variable distributions in terms of within-group and between-group impact. Our re-

sults show that fairness constraints could lead to "backfire effects" which further entrench

distributional disparities between population groups.
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1.3.1 Summary of Contributions

In the first part of the thesis, we study how to translate model predictions into fair decisions.

We make the following contributions:

• We propose a meta-algorithm, G-FORCE (Group-Fair, Optimal, Randomized Com-

bination of Experts), which combines black-box predictions into fair and accurate

decisions in an online setting. We measure fairness using the strictest metrics based

on classification parity (equalized odds), which require both equalized false positive

and false negative rates among population groups.

• The algorithm re-weights experts based on their past performance in terms of accu-

racy and fairness. Under this framework, we show that the algorithm’s performance

on regret and fairness can be upper bounded. We demonstrate the performance of the

algorithm on real data sets commonly used by the fairness community, as well as on

synthetic datasets to test its performance under extreme scenarios.

• We also extend the theoretical analysis for the delayed setting, where the true label is

not instantly revealed at each time step. We demonstrate how the previous algorithm

can be adapted in this setting.

In the second part of the thesis, we study how decisions made on people could change the

state of the world through the feedback effect. We make the following contributions:

• We first propose a new metric that measures the distributional impact of algorithmic

decisions as measured by the change in distribution’s center, spread and shape. Un-

like previous work that has focused on the disparity of the group mean, this metric

allows us to characterize the change of target distribution shape in a more fine-grained

way. This metric categorizes the impact into within-group impact and between-group

impact, where within-group impact measures how policies impact the distribution of

a group, and between-group impact how policies impact the distributions of two pop-

ulation groups differently.

• We conduct experiments with general a set of well-used group fairness constraints on

synthetic Gaussian distribution and real-world datasets. We demonstrate that previ-
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ous work measuring disparity in group mean could be insufficient, and using a more

fine-grained metric could lead to different conclusions from the previous simulation

works. In particular, our results show that there is generally a trade-off between

utility and between- group impact for threshold policies.

This thesis is based on the following papers published:

• Towards Reducing Biases in Combining Multiple Experts Online. [Sun et al., 2021]

Preliminary version appeared at Neurips 2019 AI for Social Good. The final version

appeared at Proceedings of the 30th International Joint Conference on Artificial In-

telligence (IJCAI 21). This was joint work with Dr. Ivan Ramirez who was an equal

contributor to this work.

• The Backfire Effects of Fairness Constraints. [Sun et al., 2021] The preliminary ver-

sion appeared at ICML 2022 Responsible Decision Making in Dynamic Environment.

1.4 Thesis Outline

The thesis in organized as follows:

• In chapter 2, we introduce the background. We introduce some commonly used met-

rics for fairness and briefly introduce related work on achieving fairness in sequential

settings.

• In chapter 3, we formally describe the setting of online learning with fairness. We

then introduce our method of combining black-box classifiers’ predictions to deliver

fair decisions.

• In chapter 4, we study the long-term impacts of algorithmic decisions. In particu-

lar, we study under which scenarios would algorithmic decisions lead to a further

disparity between population groups.

• In the last chapter, we conclude with potential future directions.
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Chapter 2

Background

In this chapter, we will first introduce some preliminaries and backgrounds of fairness in

machine learning. We will also introduce some of the most well-used definitions fairness,

which will be referred throughout the thesis. We will then introduce related literature in the

context of algorithmic fairness in a sequential setting.

2.1 Preliminaries

Throughout this thesis, we assume the underlying state of the world is represented by the

joint distribution (𝑋, 𝑌, 𝑍) ∼ 𝒟, where 𝑍 ∈ {𝐴,𝐵} corresponds to the partition on sensi-

tive/protected attributes such as gender or race, 𝑋 ∈ 𝒳 corresponds to the feature vectors,

and 𝑌 ∈ 𝒴 denotes the ground-truth labels.

In supervised learning, the goal of the model is to learn a parametrized function 𝑓𝜃 that

minimizes the expected risk with respect to the loss function ℓ:

min
𝜃

E(𝑋,𝑌,𝑍)∼𝒟[ℓ(𝑓𝜃(𝑋), 𝑌 )] (2.1)

where 𝜃 is the parameter. We use 𝑌 = 𝑓𝜃(𝑋) to denote the predicted label from the

model. The original goal of the learning problem doesn’t contain the sensitive attribute in

the objective function.

When this classical risk minimization framework is applied to a dataset involving peo-
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ple, some assumptions in classical machine learning might not hold:

• Average performance: The goal of minimizing average loss incentives the model to

find the best parameters that fit the majority group well. This often leads to disparate

performances in the majority group and the minority group.

• Static data distribution: In one shot prediction problem, it is common to assume the

data distribution is independent of the predictions. However, predictions could have

the power to change the underlying distribution 𝒟 due to the feedback loop. This of-

ten leads to problems when the decision maker needs to make repetitive predictions.

The research community has come up with many ways to evaluate the biases as a result

of model predictions. In the next section, we briefly introduce a few most well-adopted

metrics for fairness that are based on model predictions.

2.2 Fairness Metrics

Fairness can be considered on an individual level or a group level. At the individual

level, fairness can be intuitively defined as "similar individuals should be treated similarly"

[Dwork et al., 2012a]. As discussed in Dwork et al. [2012a], one challenge of working

with individual fairness is that the distance metric is difficult to specify. Group fairness can

be defined as balancing some metrics across different demographic groups (such as gender

groups, racial groups, etc.).

At the group level, the definitions can be roughly grouped into three categories: (1)

statistical metrics that are solely based on the statistical relationship between the predictions

and outcome variables, (2) causal metrics that involve all variables, and (3) others that are

beyond prediction fairness. We introduce these metrics under a binary classification setting,

although extensions are often available.

2.2.1 Statistical Fairness Metrics

We will next introduce four mostly well-used statistical fairness metrics for fairness: (1)

Demographic Parity (DemoPar) requires a predictor that is independent of the sensitive
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attribute (2) Equalized Opportunity (EqOpp) [Hardt et al., 2016] requires a predictor that

is independent of the sensitive attribute given that the label is positive, and (3) Equalized

Odds (EqOdd) requires a predictor is independent of the sensitive attribute given the true

label, and(4) Calibration [Verma and Rubin, 2018] (test fairness) requires that outcomes

should be independent of protected attributes conditional on the risk score.

Demographic Parity The most intuitive definition is demographic parity, which requires

the probability of positive prediction should be equalized for different groups. In other

words, the prediction 𝑌 should be independent of the sensitive attribute 𝑍. This metric

could be achieved when the model ignores the group attribute.

Definition 2.2.1 (Demographic Parity (DemoPar)). A predictor 𝑌 satisfies demographic

parity if

P(𝑌 = 1|𝑍 = 𝐴) = P(𝑌 = 1|𝑍 = 𝐵)

One issue with demographic parity is that it ensures the acceptance rate is equal regard-

less of whether an individual is qualified or not. If the target variable 𝑌 is correlated with

group attribute 𝑍, demographic will rule out the perfect predictor 𝑌 = 𝑌 [Hardt et al.,

2016].

Equalized Error Rates Accuracy parity, or equalized error rates, improve on demo-

graphic parity by bringing the true qualification target variable 𝑌 into the definition.

Definition 2.2.2 (Equalized Error Rates (EqERR)). A predictor 𝑌 satisfies equalized error

rates if

P(𝑌 ̸= 𝑌 |𝑍 = 𝐴) = P(𝑌 ̸= 𝑌 |𝑍 = 𝐵)

However, equalized error rates don’t distinguish between the error types, and the cost

of false positives and false negatives could be very different in many applications.

Equalized Opportunity Equalized opportunity requires that the predictor 𝑌 is indepen-

dent of the group attribute 𝑍 conditional on the positive outcome 𝑌 = 1. For example,

in the loan application example, this requires that among all people who could pay back
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their loan (𝑌 = 1), they should have an equal probability of getting the loan regardless of

their group. In the context of the confusion matrix, this metric could be defined in terms of

equalized false positive rate.

Definition 2.2.3 (Equalized FPR (EqFPR)/Equalized FNR (EqFNR)). Let FPR𝑧 = P(𝑌 =

1|𝑍 = 𝑧, 𝑌 = 0) and FNR𝑧 = P(𝑌 = 0|𝑍 = 𝑧, 𝑌 = 1) be the False Positive Rate

(FPR) and the False Negative rate (FNR) for group 𝑧 respectively. A predictor/classifier is

said to satisfy Equalized FPR and Equalized FNR on group A and group B respectively if

FPR𝐴 = FPR𝐵 and FNR𝐴 = FNR𝐵.

Definition 2.2.4 (Equalized Opportunity (EqOpp)). A predictor exhibits equalized oppor-

tunity if P(𝑌 = 1|𝑍 = 𝐴, 𝑌 = 1) = P(𝑌 = 1|𝑍 = 𝐵, 𝑌 = 1). In other words, it satisfies

eqFPR.

Equalized Odds A stronger notion of fairness that is defined based on the confusion

matrix is Equalized odds. Equalized odds require that the predictor achieves both equalized

FPR and FNR.

Definition 2.2.5 (Equalized Odds (EqOdd)). A predictor exhibits equalized odds if it achieves

both an equalized FPR and an equalized FNR.

As seen from the above, equalized odds is the most strict metric among those that are

based on statistical parity of outcomes and predictions.

Definition 2.2.6 (Test Fairness). A classifier 𝑓 is perfectly calibrated if for any score 𝑠 ∈

[0, 1], P(𝑌 = 1|𝑓(𝑋) = 𝑠] = 𝑠.

Calibration is well-used in practice, which requires that when conditioning on scores or

risk estimates, the true label should be independent of the group attribute. Essentially this

requires the scores from a classifier should carry the same meaning for both groups.

First, there are often contentions and trade-offs between them. For example, previous

work has shown that equalized odds and calibration can not be achieved at the same time

[Chouldechova, 2017, Kleinberg et al., 2017]. How to synthesize or characterize the trade-

offs of these incompatible metrics in real applications remains an open research problem.
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The statistical parity metrics are often oblivious to the underlying risk distribution, and in

some cases could cause harm to the group they are trying to protect [Corbett-Davies et al.,

2017]. Another drawback of statistical definitions is that they largely ignore all attributes

of the classified subject except for the sensitive attribute Z. We next turn our attention to

causal fairness metrics, which consider the relationship between all variables.

2.2.2 Causal Fairness Metrics

Before diving into causal fairness metrics, we first briefly introduce the definition of a

causal model. A causal model is a triple (𝑈, 𝑉, 𝐹 ) such that:

• U is the set of exogenous variables determined by factors, not in the model.

• V is the set of endogenous variables {𝑉1, ...., 𝑉𝑛}.

• F is a set of functions {𝑓1, ..., 𝑓𝑛} called structural equations, one for each 𝑉𝑖 ∈ 𝑉 ,

such that 𝑉𝑖 = 𝑓𝑖(𝑝𝑎𝑖, 𝑈𝑝𝑎𝑖), 𝑝𝑎𝑖 ⊆ 𝑉 ∖ 𝑉𝑖 and 𝑈𝑝𝑎𝑖 ∈ 𝑈 , where 𝑝𝑎𝑖 refers to parents

of 𝑉𝑖 in the causal graph.

Let 𝑌𝑍←−𝑧(𝑈 = 𝑢) = 𝑦 denotes the value of 𝑌 for given 𝑈 = 𝑢 if 𝑍 had taken the value

of 𝑧.

Definition 2.2.7 (Counterfactual Fairness). Let 𝑍,𝑋, 𝑌 represent the protected attributes,

remaining attributes, and true label respectively. Predictor 𝑌 is counter-factually fair if

P(𝑌𝑍←𝑧(𝑈 = 𝑢) = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧) = P(𝑌𝑍←𝑧′(𝑈 = 𝑢) = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧)

for all 𝑦 and 𝑧.

Specifically, counterfactual fairness [Kusner et al., 2017] requires that changing the

sensitive attribute 𝑍 while holding things that are not causally dependent on 𝑍 constant

will not change the distribution of the prediction 𝑌 . In order words, a causal graph is coun-

terfactually fair if the predicted outcome 𝑌 in the graph does not depend on a descendant

of the protected attribute 𝑍.
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2.3 Related Work

2.3.1 Fairness Metrics

Individual Fairness Fairness can be considered individually or collectively. At the in-

dividual level, fairness can be defined as "similar individuals should be treated similarly"

Dwork et al. [2012a]. yet it is often challenging to specify suitable distance metrics to

measure similarity between individuals.

Group Fairness At the group level, fairness can be defined as balancing some statistical

metrics approximately across different demographic groups (such as gender groups, racial

groups, etc.). Equalized odds [Zafar et al., 2017], or "disparate mistreatment," requires

that no error type is disproportionate for any one or more groups. This could be achieved

by equalizing false positive rates, commonly referred to as equal opportunity [Hardt et al.,

2016], or equalizing classification errors. In addition to statistical parity, another line of

research focuses on defining fairness from a causal perspective. Kusner et al. [2017] first

defines counterfactual fairness as requiring a decision to be the same in the counterfactual

world where the individual belongs to a different group. For a more comprehensive list of

the fairness definitions, we refer the readers to the survey paper [Verma and Rubin, 2018].

Lastly, people have also proposed some metrics that are beyond prediction problems.

These approaches often are rooted in other domains such as economics, law, and psy-

chology. For one, Heidari et al. [2019] proposes an effort-based measure of fairness and

quantify how algorithmic policies would reshape the underlying populations.

The incompatibility of fairness metrics Despite the numerous definition of fairness,

many of them could be inherently incompatible both from a mathematical perspective and

also from a conceptual perspective. First, individual fairness and group fairness could be

conflicting where satisfying group fairness can yield harm for people belonging to those

groups [Dwork et al., 2012b, Corbett-Davies et al., 2017, Green, 2020].

Even within group fairness metrics, recent work shows that it is impossible to simul-

taneously achieve equalized odds [Chouldechova, 2017, Kleinberg et al., 2017] with other
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notions of fairness such as calibration, which requires that outcomes are independent of

protected attributes conditional on estimates. It is also generally accepted that there is often

a trade-off between predictive accuracy and fairness [Corbett-Davies et al., 2017]. Kearns

et al. [2018] argue that statistical parity constraints could lead to fairness gerrymandering,

where a classifier that satisfies fairness in each group could violate the constraint on groups

that are combined with combinations of protected attribute values.

2.3.2 Biases mitigation in machine learning

Fair classification Classification is an important task in supervised machine learning and

is used in various applications that directly impact humans such as loan applications and

college admission. As we talked about in the last chapter, biases for classification prob-

lems can be addressed during model training (in-processing) or after model training (post-

processing). Zafar et al. [2017] incorporate equalized odds as a constraint while solving

optimization problems, while Hardt et al. [2016] remove discrimination at post-processing

steps.

Fairness from a causal perspective There are also some concurrent works studying

long-term fairness from a causal inference perspective. Chiappa [2019] consider the case

where a sensitive attribute affects the decision through both fair and unfair pathways. They

propose to use the latent inference-projection method to disregard effects along the unfair

pathways. Creager et al. [2020] frame the dynamic process as a changing causal struc-

tural model to evaluate different policies. Algorithmic recourse [Karimi et al., 2021] uses

counterfactual analysis to propose the set of actions resulting in the desired output from the

model. A recent line of work [Karimi et al., 2021] explores providing favorable outcomes

to individuals from the disadvantaged group through minimal intervention on the features.

2.3.3 Fairness in Sequential Decision Making

Fairness in online learning setting There has been recent interest in studying fairness

in an online setting, particularly the bandit setting. Gillen et al. [2018] consider a bandit
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setting that learns from the feedback of a fairness oracle and returns all pairs of individu-

als for which the individual fairness constraint is violated. Joseph et al. [2016] study fair

online classification in the contextual bandit setting, where fairness is defined as a worse

candidate is never favored over a better candidate by the algorithm. Liu et al. [2017] con-

sider satisfying calibrated fairness in a bandit setting. Bechavod et al. [2019] consider the

problem of enforcing the equalized opportunity constraint at every round under a partial

feedback stochastic setting where only true labels of positively classified instances are ob-

served. Blum et al. [2018] specifically shows that it is impossible to achieve equalized

odds under an adversarial setting when an adaptive adversary can choose the label for an

instance.

Long-term fairness in interactive and dynamic environment Several works have stud-

ied the dynamics between algorithmic decisions and long-term population qualifications.

One of the first works that touch on this topic is Liu et al. [2018], which considers the

one-step feedback model and shows that enforcing common static fairness metrics in con-

strained optimization does not in general promote average group scores. Later, D’Amour

et al. [2020a] extends the previous one-step analysis to multiple-step using simulation and

argues that long-term dynamics may lead to different conclusions from the one-step anal-

ysis. Mouzannar et al. [2019] study whether enforcing demographic parity could lead to

equality of qualifications. Wen et al. [2021] model the feedback effects as Markov decision

process and proposes learning fair decision-making policies through cross-entropy opti-

mization. There are also some works studying fairness in multi-agent systems [Jiang and

Lu, 2019].

Most related to our work, Zhang et al. [2020] study the problem under a partially ob-

served Markov decision problem setting and characterize the impacts of fairness constraints

can have on the equilibrium of group qualification rates. One thing that has been missing

from previous work is that the analysis only focuses on the average qualifications of groups,

yet an algorithm or policy could have a more profound impact on the shape of the popu-

lation beyond the group mean. In addition, the simulation setting is often too stylish and

often ignores the nuances in the data generation process such as causal relationships, con-
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founders, etc. They also focus on studying the dynamic system’s equilibrium behavior but

do not support counterfactual inference.
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Chapter 3

G-FORCE : Achieving Fairness in

Online Decision Making

In this section, we investigate how to combine predictions from models to produce fair

decisions for individuals. This chapter will be structured as follows: we first use college

admission as a motivating example to describe the our setting. We then introduce unique

properties of this problem setting and notations. We then map this setting to the mathemat-

ical framework of online classification with fairness constraints. Next, we briefly introduce

the current progress and the motivation for our work. In the next section, we present our

algorithm, G-FORCE , and its theoretical guarantees. Finally we present G-FORCE ’s

performances on synthetic and real datasets.

State of the World IndividualModelData Collection Prediction

Figure 3-1: From predictions to fair decisions.

We first use an example on college admissions to illustrate the nuances in sequential

decision making with fairness concerns. Suppose a college is trying to admit students for

a program on a rolling basis where the admission committee has to make decisions as

they go. In addition to the applicant’s qualification, the admission committee also aims
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Figure 3-2: An example on college admission with experts.

to making the decision process fair to people of different races, genders, socioeconomic

groups. Specifically, for all the applicants that are qualified, the committee should offer

admissions to the same percentage of people regardless of their population groups. In

figure 3-2, we illustrate the process and demonstrate how it fits into the machine learning

cycle..

State of the world The state of the world consists of a joint distribution over group

attribute 𝑍 (race, gender etc) and observed features 𝑋 (SAT score, GPA, etc). In particular,

students coming from different groups might have a different distribution of features.

Sampled Student At each round, a student sampled from the population applied for the

program. For this motivating example, we assume the population can be split into group A

(orange) and group B (blue).

Committee Predictions For each incoming applicant, each member on the admission

committee will evaluate this person’s qualification, and predict whether the applicant will

succeed in the first semester of study. We will call the prediction of committee member 𝑖

on applicant 1 as 𝑌 1
𝑖 .

Decision (Admit/Not admit) Admission decision is made based on committee member’s

predictions. In order to aggregate predictions from admission officers with different expe-

rience levels, the head of the admission committee need an aggregation algorithm . The
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algorithm should deliver a accurate and fair decision 𝐷1 (admit/not admit) to applicant 1.

Observe Feedback After applicant 1 has been admitted, the true label 𝑌 1 (whether this

applicant succeed in the first semester of study) would be revealed at the end of the aca-

demic semester. Meanwhile, the admission committee needs to keep evaluating the next

applicant.

This is a typical setup for many human-in-the-loop decision making process. While

many fairness solutions attempt to optimize a classifier, the goal here is to find a fair and

accurate algorithm to combine the decisions from multiple experts or classifiers.

3.1 Online Binary Classification

3.1.1 Unique properties about the problem setting

online setting In this problem, we study the online setting where examples arrive sequen-

tially. This is in contrast to batch learning setting where the entire dataset is available all

at one. The online setting is useful when decision makers need to make decisions when

data becomes available in a sequential order. The algorithms in online setting are usually

adaptive to new data points and is usually for making decisions based on limited amount of

data.

black box experts We assume access to a set of black box experts, which could either

be machine learning models or human experts. Many applications with fairness concerns

are high-stakes, and usually have human decision makers in the loop. The assumption

of black box experts allows us to deliver fair decisions without any assumptions on the

performances of the black box experts.

aggregation algorithm In this setting, we study online binary classification where the

black box experts makes binary predictions on the example. In the case that the predictions

from black box experts are continuous, an additional threshold might be learned to convert

the continuous predictions to a binary prediction, and could be left as an interesting future
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Notation Meaning

𝒟 Underlying distribution where the dataset is sampled from
𝑍 Protected group attribute such as gender or race
𝑋 Feature attributes the other than protected attribute
𝑌 Ground truth target variable
𝑆 State 𝑆 consists of (𝑍,𝑋, 𝑌 )
𝑂 𝑂 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌 ). An instantiation of the target variable.
(𝑧, 𝑥, 𝑦) An individual sampled from the distribution is a tuple of the protected at-

tribute, feature attribute, and ground-truth label
𝑌 The CDF distribution of target variable 𝑌 .

𝒢 A DAG representing the dependency between state variables
𝑓𝑣(·) Structural equations for node 𝑣
∇𝑓𝑣(𝑥) Derivative of structural equations 𝑓𝑣 evaluated at 𝑥
𝑆𝑡 State at time 𝑡 consists of (𝑍,𝑋 𝑡, 𝑌 𝑡)
𝐷𝑡 Decision at time 𝑡
𝒰 𝑡 Utility for the decision maker at time 𝑡
𝜋𝑧 Policy function for group 𝑧
𝜏 𝑡𝑧 Threshold used for group 𝑧 at time 𝑡

𝑥𝑡𝑝 Feature value increase for a true positive
𝑥𝑓𝑝 Feature value decrease for a false positive
𝑥𝑡𝑛 Feature value increase for a true negative
𝑥𝑓𝑛 Feature value decrease for a false negative
𝑢𝑡𝑝 Utility increase for a true positive
𝑢𝑓𝑝 Utility decrease for a false positive
𝑢𝑡𝑛 Utility increase for a true negative
𝑢𝑓𝑛 Utility decrease for a false negative
𝑔 Distance metric
𝛿𝑡𝑧 Within-group impact for group 𝑧 at time 𝑡
Δ𝑡

𝐴𝐵 Between-group impact of group A and B at time 𝑡

Table 3.1: Notation table for the terms used in this chapter.
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Setting Description Examples

online setting An online setting where data
becomes available sequen-
tially.

Admit students on rolling
basis.

black box experts black box experts where the
function that generates pre-
dictions cannot be modified.

Committee Members.

aggregation algorithm An algorithm that combines
predictions from black box
experts

Head of the committee.

Table 3.2: Unique properties of the setting.

work. In this section, we focus on designing an aggregation algorithm that combines the

binary predictions from black box experts in order to produce a fair and accurate decision.

3.1.2 Notations

We start with binary classification problems, with a positive and a negative class, i.e., 𝑌 ∈

{+,−}. Each example (also referred to as individual) in the data set consists a pair (𝑥, 𝑧) ∈

R𝑛, where 𝑥 ∈ 𝑋 is a vector of features attributes and 𝑧 ∈ 𝑍 is the group attribute . We

also assume that the group attribute is binary can be partitioned into 𝑍 ∈ {𝐴,𝐵}. Let

ℱ = {𝑓1, . . . , 𝑓𝑑} be a finite set of black box experts; and let 𝑦 = 𝑓(𝑥, 𝑧) be the prediction

of an expert on an example (𝑥, 𝑧). We denote the group rate 𝑝𝑧 as the probability that

an individual comes from group attribute 𝑧, where 𝑝𝑧 = P(𝑍 = 𝑧). We denote the base

rate 𝜇𝑧,𝑦 as the probability that an example comes from group attribute 𝑧 has label 𝑦,where

𝜇𝑧,+ = P(𝑌 = 𝑦|𝑍 = 𝑧).

We use superscript 𝑡 to denote the time index or round 𝑡; for instance, 𝑦𝑡 is the true

label associated to the individual arrives at round 𝑡, i.e. (𝑥𝑡, 𝑧𝑡). Superscript * denotes

optimality; for instance 𝑓 *(𝑧, 𝑦) represents the best expert on group attribute 𝑧 with label

class 𝑦.

Throughout this thesis, it is often necessary refer to an expert 𝑓 , to the group attribute 𝑧,

to the true label 𝑦 or a combination of them. We indicate such a combination with a list of

subscripts at the right of the variable. Thus, for instance, 𝑤𝑓,𝑧 denotes the weight associ-
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ated to a given expert, restricted to samples from group 𝑧, while ℓ𝑓,𝑧,𝑦 represents the loss

function with the same information as before but also restricted to samples from label class

𝑦. These subscripts are substituted with a specific value when needed. For instance, ℓ𝑓,𝑧,−

represents the same as before but specifying that all samples with negative labels. The lack

of subscripts represents the generic variable.

In this section, we formally describe the setting in the language of online binary clas-

sification. As in the typical online learning setting, the algorithm runs through round 𝑡 =

1, . . . , 𝑇 . We assume access to a set of black box experts ℱ = {𝑓1, . . . , 𝑓𝑑}, which could

be human experts or machine learning algorithms. At each round 𝑡, one expert 𝑓 𝑡 ∈ ℱ is

selected to estimate the label for the input example, 𝑦𝑡 = 𝑓 𝑡(𝑥𝑡, 𝑧𝑡). Then, at the end of the

round, the true label 𝑦𝑡 is observed, producing a loss ℓ(𝑦𝑡, 𝑦𝑡).

Instant Feedback We first assume that we can instantly observe the true label after a

decision has been made. In the college admission example, this means that whether a

student would succeed in the first semester is instantly known after the student is admitted.

Below, we relax this assumption and try to tackle the problem where the feedback of the

true labels is delayed. The decision making process runs through rounds 𝑡 = 1, . . . , 𝑇 . At

each round 𝑡:

• A single individual (𝑥𝑡, 𝑧𝑡) ∈ R𝑛 arrives, where 𝑥𝑡 ∈ 𝒳 is a set of features and

𝑧𝑡 ∈ 𝒵 is the group attribute .

• Each expert 𝑖 makes a prediction 𝑦𝑡𝑖 = 𝑓𝑖(𝑥
𝑡, 𝑧𝑡). According to the aggregation

algorithm , a final decision 𝑦𝑡 = 𝑓 𝑡(𝑥𝑡, 𝑧𝑡) is assigned to the individual .

• The true label 𝑦𝑡 is revealed after the decision is made.

The goal here is to find an algorithm that combines the experts’ predictions accurately and

fairly.

Delayed Feedback Next we also formally describe the setting when the feedback is de-

layed: As before, the decision making process runs through rounds 𝑡 = 1, . . . , 𝑇 . At each

round 𝑡:

• A single individual (𝑥𝑡, 𝑧𝑡) ∈ R𝑛 arrives, where 𝑥𝑡 ∈ 𝒳 is a set of features and
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Figure 3-3: A figure depicting the online learning process.

𝑧𝑡 ∈ 𝒵 is the group attribute .

• Each expert 𝑖 makes a prediction 𝑦𝑡𝑖 = 𝑓𝑖(𝑥
𝑡, 𝑧𝑡). According to the aggregation

algorithm , a final decision 𝑦𝑡 = 𝑓 𝑡(𝑥𝑡, 𝑧𝑡) is assigned to the individual .

• At time 𝑡, a set of labels 𝒟𝑡
𝑧,𝑦 = {𝑦𝑡

′
: 𝑡′+ 𝜏𝑧,𝑦 = 𝑡} is revealed, where 𝜏𝑧,𝑦 > 0 is the

delay duration for an individual from group 𝑧 with label 𝑦. Here the examples arrive

at time 𝑡′ will be revealed at time 𝑡, where 𝑡 = 𝑡′ + 𝜏𝑧,𝑦.

3.1.3 Metric for evaluating accuracy

A frequent performance metric in online learning is Regret, which compares the perfor-

mance of the algorithm with respect to the best fixed expert in hindsight.

Definition 3.1.1 (Regret). After 𝑇 rounds, regret is formally expressed as

Regret(𝑇 ) =
𝑇∑︁
𝑡=1

ℓ(𝑓 𝑡(𝑥𝑡, 𝑧𝑡), 𝑦𝑡)− inf
𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑓(𝑥𝑡, 𝑧𝑡), 𝑦𝑡) (3.1)

The typical goal of online learning is to design a training algorithm that achieves sub-

linear regret compared with the best fixed experts in hindsight over the 𝑇 rounds; i.e.
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Figure 3-4: A figure depicting online learning with constant delay with 𝜏𝐴 = 2 and 𝜏𝐵 = 1.

lim
𝑇→∞

Regret(𝑇 )/𝑇 = 0. This means that as round goes on, the average regret goes to

zero and the algorithm converges to the best expert in hindsight.

3.1.4 Metrics for evaluating fairness

In addition to regret, we also evaluate the fairness on the online algorithm. We introduce

two metrics: Equalized error rates (EqERR ) and Equalized Odds (EqOdds).

Definition 3.1.2 (EqERR and 𝜖-ERR). A randomized algorithm satisfies EqERR if:

E[𝑌 ̸= 𝑌 |𝑍 = 𝐴] = E[𝑌 ̸= 𝑌 |𝑍 = 𝐵]

A randomized algorithm satisfies 𝜖-ERR if:

|E[𝑌 ̸= 𝑌 |𝑍 = 𝐴]− E[𝑌 ̸= 𝑌 |𝑍 = 𝐵]| ≤ 𝜖

EqERR requires that the algorithm makes equal percentage of errors (equal accuracy

rate) for all groups. In this metric, different types of errors (false positives and false nega-

tives) are not distinguished.
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Definition 3.1.3 (EqOdds). Let FPR𝑧 = P(𝑌 = 1|𝑍 = 𝑧, 𝑌 = 0) and FNR𝑧 = P(𝑌 =

0|𝑍 = 𝑧, 𝑌 = 1) be the False Positive Rate (FPR) and the False Negative rate (FNR)

for group 𝑧 respectively. An algorithm is said to satisfy Equalized FPR (EqFPR) and

Equalized FNR (EqFNR) on group A and group B respectively if FPR𝐴 = FPR𝐵 and

FNR𝐴 = FNR𝐵. A randomized algorithm satisfies EqOdds if it satisfies EqFPR and

EqFNR.

In EqOdds metric, the algorithm requires the algorithm has equal false positive and

false negative rates for all groups.

3.2 Online Algorithms

3.2.1 Multiplicative weights algorithm (MW)

The Multiplicative Weights (MW), proposed by Arora et al. [2012], is a frequently used

aggregation algorithm for achieving sub-linear regret. In the MW algorithm, a decision

maker has a choice of 𝑑 experts. The main idea is that the algorithm maintains weights 𝑤𝑡
𝑓

on the an expert 𝑓 based on its performance up to the current round 𝑡.

• Prediction step: At prediction step, expert 𝑓 is selected with probability 𝜋𝑡
𝑓 =

𝑤𝑡
𝑓∑︀

𝑓 𝑤𝑡
𝑓

and it’s prediction is adopted for this round.

• Update Step: At update step, suppose an expert 𝑓 incurs loss 𝑙𝑡𝑓 . The weight of each

expert according to exponential rule:

𝑤𝑡+1
𝑓 = 𝑤𝑡

𝑓 (1− 𝜂)𝑙
𝑡
𝑓

The original MW algorithm (Arora et al. [2012]) provides a bound for the total expected

loss of the algorithm by the total loss of the best experts with the following theorem:

Theorem 1. MW Regret Bound ([Arora et al., 2012] Assume that the loss ℓ𝑡𝑓 is bounded in
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[0,1] and 𝜂 < 1
2
. Then after 𝑇 rounds, for any expert 𝑓 among the 𝑑 experts we have:

𝑇∑︁
𝑡=1

𝜋𝑡ℓ𝑡 ≤ (1 + 𝜂)
𝑇∑︁
𝑡=1

ℓ𝑡𝑓 +
ln 𝑑

𝜂
,

Regret(𝑇 ) ≤ 𝑂(
√
𝑇 ln 𝑑) if 𝜂 =

√︂
ln 𝑑

𝑇

where 𝜋𝑡 is the selection distribution over the set of experts at time 𝑡.

This first equation shows that the expected cumulative loss achieved by the MW algo-

rithm is upper bounded by the cumulative loss of the best fixed expert in hindsight plus a

constant term ln 𝑑
𝜂

. The constant term scales with the number of experts 𝑑. If we set 𝜂 to be√︁
ln 𝑑
𝑇

, the first equation can be rearranged into 𝑅𝑒𝑔𝑟𝑒𝑡(𝑇 ) =
∑︀𝑇

𝑡=1 𝜋
𝑡ℓ𝑡−(1+𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓 ≤

𝑂(
√
𝑇 ln 𝑑). In other words, this powerful theorem shows that MW algorithm achieves

sub-linear regret.

3.2.2 Group-aware MW algorithm

Blum et al. [2018] first proposed a group-aware version of the MW algorithm for achieving

fairness in online adversarial setting, where the examples are not i.i.d sampled from the

distribution. The fairness metric they use is equalized error rates. The idea is to maintain

separate set of weights for each group attribute 𝑧. They demonstrated that this is necessary

to achieve equalized error rates across groups.

They presented the regret and equalized error rate achieved by the algorithm.

Theorem 2. GroupAware Regret Bound ([Blum et al., 2018])

Assume that the loss ℓ𝑡𝑓 is bounded in [0,1] and 𝜂 < 1
2
.

𝑇∑︁
𝑡=1

𝜋𝑡ℓ𝑡 ≤ (1 + 𝜂)
𝑇∑︁
𝑡=1

ℓ𝑡𝑓 + 2
ln 𝑑

𝜂

where 𝜋𝑡 is the selection distribution over the set of experts at time 𝑡.

The regret of the group-aware version of the MW is almost the same as the original

regret bound, except for a multiplier of 2 on the constant term ln 𝑑
𝜂

.
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Theorem 3. GroupAware Equalized Error Rate (EqERR ) ([Blum et al., 2018])

Let 𝐸𝑅𝑅𝑧 be the error rates on group 𝑧, and 𝑧* be the group with the lowest error rates.

Let 𝜂 < 1/2,

|𝐸𝑅𝑅𝐴 − 𝐸𝑅𝑅𝐵| ≤ 5𝜂𝐸𝑅𝑅𝑓*(𝑧*) +
ln 𝑑

𝜂

where 𝑓 *(𝑔*) is the best expert on the group with the lowest error rate.

The above theorem shows that the equalized error rates of the algorithm is also upper

bounded by the equalized error rates of the best expert.

3.3 Motivation for our work

3.3.1 Need to use distinguish error types

One potential drawback of the group-aware algorithm is that it only bounds the perfor-

mance of the overall algorithm errors for each group, without a guarantee of how the errors

will distribute across the label classes. In many real life applications, false positive rates

and false negative rates could have very different implications and costs. In the COMPAS

example Angwin et al. [2016] shown in the first chapter, the algorithm has approximate

the same accuracy (error rates) for black and white defendants. The algorithm is biased

towards black defendants since it has a much higher false positive rate for black defen-

dants where they could be mis-classified as being high risk and arrested. This showcases

that equalized error rates is not a suitable metric to measure fairness if FPR and FNR have

different implications. In this work, we use equalized odds as the fairness metric, which

balances both FPR and FNR across groups.

3.3.2 Need to care about label imbalance

Beyond the scope of fairness, unbalanced label class is a fairly common phenomenon in

many machine learning applications. For a highly imbalanced distribution, even if the

aggregation algorithm performs badly on the minority label class, and the regret or accuracy
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Figure 3-5: An example of predicting one example in G-FORCE .

might still look decent and this concerning problem gets swept under the rug. It’s important

for the aggregation algorithm to perform well on both label classes.

3.3.3 Need to consider delayed feedback

In many real world applications, true labels or outcomes are not instantly revealed and

an algorithm often needs to work with delayed feedback. One example of constant delay

is college admission process we described. During the rolling admissions process, the

performance of a student is generally evaluated at the end of the semester, while colleges

typically need to offer admission in a rolling basis. There is a constant gap between decision

time (college offers admission) and feedback time (the admitted students’ performances are

evaluated).

3.4 G-FORCE algorithm

We propose a novel randomized MW algorithm that achieves EqOdds in an online stochas-

tic setting. In order to satisfy EqOdds, we also need a provable bound on the number of

false positives and false negatives made by the algorithm on each group. The idea is to

run separate MW instances not only for groups but also for label classes, where each MW

instance has a separate set of weights for the experts. Throughout the chapter, we uses tuple

(𝑧, 𝑦) to refer to a MW instance trained for subset of data with group 𝑧 and label 𝑦. Each
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MW instance associates a weight to a classifier 𝑓 for group 𝑧 and label 𝑦; e.g. the weight

of classifier 𝑓 for group 𝐴 and negative label examples is denoted as 𝑤𝑓,𝐴,−.

In figure-3-5, we illustrate how G-FORCE selects a MW instance to use. For an exam-

ple from group 𝐴, G-FORCE follows the path 𝑍 = 𝐴 and goes to the right branch. At this

point, the label is not known but G-FORCE needs to select between (𝐴,+) and (𝐴,−). For

this purpose, G-FORCE constructs a meta selection probability 𝑞, which it uses to select

instance (𝑧, 𝑦) with probability 𝑞𝑧,𝑦 at each round . The figure illustrates the case where

(𝐴,−) gets selected.

We show that it is possible to bound regret, FPR and FNR as a function of the meta

selection probability 𝑞. Moreover, the bounds can be further optimized by choosing the op-

timal meta selection probability that balance between regret, FPR and FNR. For the sake of

clarity, the rest of the proposal we consider binary classification with two sensitive groups,

though the algorithm can be easily extended to multi-group and multi-class problems.

3.4.1 G-FORCE mechanism

We use an example to illustrate the mechanism of G-FORCE for one round. The mech-

anism of G-FORCE is explained in Figure 3-6. At each round, G-FORCE takes in an

example (𝑥, 𝑧). G-FORCE works in three steps: optimization step, prediction step and

the update step. The pseudo code for the algorithm is presented in 1.

Optimization Step G-FORCE first selects an appropriate MW instance to use. While

group attribute 𝑧 is known, at this point G-FORCE doesn’t know the label yet, and has to

choose between instance (𝑧,+) and instance (𝑧,−). G-FORCE constructs a meta selection

probability 𝑞 to select between the two instances, where 𝑞𝑧,+ and 𝑞𝑧,− are the probability of

selecting (𝑧,+), and (𝑧,−) respectively.

In the case that G-FORCE selects the wrong instance (for example, true label is − but

(𝑧,+) is selected), we refer to the additional losses as cross-instances cost 𝛼𝑧,+ (formal

definition in next section). This meta selection probability allows us to explicitly construct

a upper bound on regret, FPR, and FNR as three functions of 𝑞. We later show 𝑞𝑧,+ and 𝑞𝑧,−

can be explicitly set to tighten this bound by solving an optimization problem that balances

55



Algorithm 1 GFORCE Algorithm

Initialize 𝑤1
𝑓,𝑧,𝑦 = 1 for each 𝑓 ∈ ℱ , 𝑧 ∈ {𝐴,𝐵}, 𝑦 ∈ {+,−}.

Initialize 𝑞1𝑧,𝑦 =
1
2

for each 𝑧 ∈ {𝐴,𝐵}, 𝑦 ∈ {+,−}.
Initialize 𝜂 < 1

2
.

for 𝑡← 1, ..., 𝑇 do
A new example (𝑥𝑡, 𝑧𝑡) comes in

Obtain 𝑦𝑡𝑓 = 𝑓(𝑥𝑡, 𝑧𝑡), for each 𝑓 ∈ ℱ

Optimization step:

Obtain the optimal meta selection probability q*

Selection step:

Select expert 𝑓 with 𝜋𝑡
𝑓,𝑧 =

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑡
𝑓,𝑧,+ =

𝑤𝑡
𝑓,𝑧,+∑︀

𝑓∈ℱ
𝑤𝑡

𝑓,𝑧,+
with probability 𝑞𝑧,+

𝜋𝑡
𝑓,𝑧,− =

𝑤𝑡
𝑓,𝑧,−∑︀

𝑓∈ℱ
𝑤𝑡

𝑓,𝑧,−
with probability 𝑞𝑧,−

Obtain loss ℓ𝑡𝑓 = ℓ(𝑦𝑡𝑓 , 𝑦
𝑡) for each classifier 𝑓 ∈ ℱ

Update step: Update the weights table according to the exponential rule:

𝑤𝑡+1
𝑓,𝑧,𝑦 = 𝑤𝑡

𝑓,𝑧,𝑦(1− 𝜂)ℓ
𝑡
𝑓1{𝑍=𝑧}1{𝑌=𝑦}

end for

the three functions. The parameters of the three functions depend on statistics 𝑝𝑧, 𝜇𝑧,𝑦, 𝛼𝑧,𝑦,

which can all be estimated on the fly. We refer to these statistics as G-FORCE Statistics,

and the optimal solution of the optimization problem as q*.

Prediction Step Suppose instance (𝑧,+) is selected, G-FORCE uses normalized weights

𝜋𝑓,𝑧,+ =
𝑤𝑓,𝑧,+∑︀
𝑓 𝑤𝑓,𝑧,+

to sample an expert 𝑓 , and adopts 𝑓 ’s prediction for this round.

Update Step After the prediction, the true label 𝑦 is observed and each expert 𝑓 produces

loss ℓ𝑡𝑓,𝑧,𝑦 = ℓ(𝑓(𝑥, 𝑧), 𝑦). G-FORCE only updates the weights for instance (𝑧, 𝑦) with the

exponential rule

𝑤𝑡+1
𝑓,𝑧,𝑦 = 𝑤𝑡

𝑓,𝑧,𝑦 (1− 𝜂)ℓ
𝑡
𝑓,𝑧,𝑦 .
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G-FORCE Statistics
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Figure 3-6: This figure shows how G-FORCE process an input pair (𝑥, 𝑧), where 𝑧 assumed to
be B. In the optimization step, G-FORCE samples from PMF [𝑞𝐵,+, 𝑞𝐵,−] constructed from G-
FORCE statistics and selects MW instance (B,+) to use. In prediction step, instance (B,+) samples
a classifier 𝑓1 to predict. In the update stage, the true label revealed to be −, indicating that G-
FORCE selected the wrong instance to use in the first stage. G-FORCE only updates the weights
for the correct instance (B,-), as well as the G-FORCE statistics.

Multiplicative Weights
∑︀𝑇

𝑡=1 𝜋
𝑡ℓ𝑡 ≤ (1 + 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓* + ln 𝑑

𝜂

GroupAware
∑︀𝑇

𝑡=1 𝜋
𝑡ℓ𝑡 ≤ (1 + 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓* + 2 ln 𝑑

𝜂

G-FORCE
∑︀𝑇

𝑡=1 𝜋
𝑡ℓ𝑡 ≤ (1 + 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓* + 4 ln 𝑑

𝜂
+ ℎ𝑅𝐸𝐺(q)

G-FORCE (delayed)
∑︀𝑇

𝑡=1 𝜋
𝑡ℓ𝑡 ≤ (1 + 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓* + 4 ln 𝑑

𝜂
+𝐷𝑚𝑎𝑥ℎ𝑅𝐸𝐺(q)

Table 3.3: Comparison on regret bound for the three algorithms.

where 𝜂 can be interpreted as the learning rate. When 𝜂 is large, the weight decay is

faster. In addition, we also update the G-FORCE statistics used to compute q*. Note that

although we recalculate q* at early rounds since the estimation of G-FORCE statistics has

not converged, As time goes on, the estimation of G-FORCE statistics converge to the true

value, and q* would also converge.

3.4.2 Theoretical Analysis of G-FORCE

One key contribution of this thesis is to show that: (1) the fairness loss in G-FORCE can be

asymptotically upper bounded as a function of 𝑞𝑧,+ and 𝑞𝑧,−,and (2) the function values can

be reduced to zeros by solving for 𝑞𝑧,+ and 𝑞𝑧,−, which further minimizes the upper bound.
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Let q = [𝑞𝐴,−, 𝑞𝐵,−, 𝑞𝐴,+, 𝑞𝐵,+]
𝑇 be the vector of meta selection probability . Specifically,

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵| ≤ |𝑐𝐹𝑃𝑅 + ℎ𝐹𝑃𝑅(q)|

|𝐹𝑁𝑅𝐴 − 𝐹𝑁𝑅𝐵| ≤ |𝑐𝐹𝑁𝑅 + ℎ𝐹𝑁𝑅(q)|

where 𝑐𝐹𝑃𝑅, 𝑐𝐹𝑁𝑅 are constants that depend on the factors intrinsic to the problem (data

distribution and the underlying metrics of the experts), and ℎ𝐹𝑃𝑅, ℎ𝐹𝑁𝑅 are functions of

meta selection probability q. A formal version of the theorem is stated in Theorem- 6.

In this section, we aim to develop an upper bound on EqOdds for G-FORCE . We start

by first providing an upper bound on regret for the worst cases scenarios, as well as a lower

bound on regret for the best case scenarios (we leave the proof to the appendix).

Since there is randomness involved in the selection of MW instances, we define the

costs of using a sub-optimal instance as cross-instances cost.

Definition 3.4.1 (Cross-instances cost). Let 𝜋𝑡
𝑓,𝑧,𝑦 =

𝑤𝑡
𝑓,𝑧,𝑦∑︀

𝑓 𝑤𝑡
𝑓,𝑧,𝑦

denote the probability of

choosing expert 𝑓 when using instance (z,y). We define the cross-instances cost at round t

as the difference in expected loss between selecting right instance (𝑧, 𝑦) and wrong instance

(𝑧, 𝑦′):

𝛼𝑡
𝑧,𝑦′ =

∑︁
𝑓∈ℱ

𝜋𝑡
𝑓,𝑧,𝑦′ · ℓ𝑡𝑓,𝑧,𝑦⏟  ⏞  

expected losses with wrong instance (z,y’)

−
∑︁
𝑓∈ℱ

𝜋𝑡
𝑓,𝑧,𝑦 · ℓ𝑡𝑓,𝑧,𝑦⏟  ⏞  

expected losses with instances (z,y)

For example, 𝛼𝑧,− is the cross-instances cost of selecting the wrong MW instance (𝑧,−)

when the actual example has 𝑦 = +. The cross-instances cost is non-negative since the

expected losses using the wrong instance would be larger than the expected losses using

the correct instance. The cross-instances cost is larger when the weight vector learned by

the wrong MW instance and the weight vector learned by the right MW instance are more

disparate.
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Implication of cross-instances cost Note that how large cross-instances cost is depends

on the performance of black box experts and is not known in advance. In practice, since

G-FORCE keeps track of weights 𝜋𝑓,𝑧,𝑦, cross-instances cost can be estimated on the fly. At

the end of each round, the true label is revealed and the weights are updated. The estimation

for 𝛼 is updated at each round after the MW weights are updated. Let us rearrange the terms

of cross-instances cost as following:

𝛼𝑡
𝑧,𝑦′ =

∑︁
𝑓∈ℱ

(𝜋𝑡
𝑓,𝑧,𝑦′ − 𝜋𝑡

𝑓,𝑧,𝑦) · ℓ𝑡𝑓,𝑧,𝑦

This rearrangement enables us to analyze this cross-instances cost in detail. Here we

explain each component in the definition of cross-instances cost :

• For a single expert 𝑓 , (𝜋𝑡
𝑓,𝑧,𝑦′ − 𝜋𝑡

𝑓,𝑧,𝑦) is the difference in probability, where the first

term is the probability of choosing the expert 𝑓 when algorithm picks the wrong

instance (𝑧, 𝑦′) and the second term is the probability when the algorithm picks the

correct instance (𝑧, 𝑦). After revelation of the label at the end of the round 𝑡 this can

be calculated. We calculate this after updating the weights.

• ℓ𝑡𝑓,𝑧,𝑦 = ℓ𝑡𝑓1{𝑍𝑡 = 𝑧}1{𝑌 𝑡 = 𝑦} is the loss of an expert 𝑓 at round 𝑡 when the

example comes from group 𝑧 with label 𝑦. If expert 𝑓 is a good expert for instance

(𝑧, 𝑦), 𝑙𝑓,𝑧,𝑦 would be small (equal to zero in binary classification). On the other hand,

if the expert 𝑓 is a bad expert for instance (𝑧, 𝑦), 𝑙𝑓,𝑧,𝑦 would be large (equal to one

for binary classification).

3.4.2.1 Regret Bound

Since we have a separate MW instance for each combination of group and label class

(𝑧, 𝑦), we can first develop regret bound for each MW instance separately. We use E[𝐿𝑧,𝑦]

to indicate G-FORCE ’s cumulative expected loss on MW instance (𝑧, 𝑦).
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Theorem 4 (Regret Upper Bound). Let 𝑓 * be the best expert in hindsight.

E[𝐿𝑧,𝑦] ≤ (1 + 𝜂)𝐿𝑓*,𝑧,𝑦 +
ln 𝑑

𝜂
+
∑︁
𝑡

𝑞𝑡𝑧,𝑦 · 𝛼𝑡
𝑧,𝑦 (3.2)

The overall cumulative expected loss E[𝐿] of G-FORCE can be bounded by:

E[𝐿] ≤ (1 + 𝜂)𝐿𝑓* + 4
ln 𝑑

𝜂
+ ℎ𝑅𝐸𝐺(q) (3.3)

where ℎ𝑅𝐸𝐺(q) =
∑︁

𝑧∈{𝐴,𝐵},𝑦∈{+,−}

∑︁
𝑡

𝑞𝑡𝑧,𝑦 · 𝛼𝑡
𝑧,𝑦.

Implication of the regret bound This upper bound shows that the expected cumulative

loss is upper bounded by the summation of three terms: (1) the cumulative loss of the best

expert in hindsight, (2) the constant term 4 ln 𝑑
𝜂

, (3) the function ℎ𝑅𝐸𝐺 of meta selection

probability 𝑞. Here we breakdown the components in the function ℎ𝑅𝐸𝐺:

• The cross-instances cost at round 𝑡 is the difference in expected loss between select-

ing right instance (𝑧, 𝑦) and wrong instance (𝑧, 𝑦′). For MW instance (𝑧, 𝑦), 𝑞𝑡𝑧,𝑦𝛼
𝑡
𝑧,𝑦

is the cross-instances cost of instance (𝑧, 𝑦) weighted by the meta selection probabil-

ity of choosing instance (𝑧, 𝑦).

• The function ℎ𝑅𝐸𝐺 is the cross-instances cost summed over all MW instances. The

value of ℎ𝑅𝐸𝐺 can be minimized by choosing proper values of meta selection prob-

ability 𝑞. For instance with higher cross-instances cost , we might want to assign a

lower meta selection probability 𝑞.

In order to show the bound for differences in FPR across groups (i.e. for EqOdds), we

also provide a lower bound on the expected cumulative loss of G-FORCE.

Lemma 5 (Lower Bound). Let 𝑓 * be the best expert in hindsight. Then, G-FORCE’s ex-

pected cumulative loss is lower bounded by:

E[𝐿] ≥ 𝛾(𝜂) · 𝐿𝑓* + ℎ𝑅𝐸𝐺(q). (3.4)
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where 𝛾(𝜂) is defined as 𝛾(𝜂) =
ln(1− 𝜂)

ln (1− 𝜂(1 + 𝜂))
.

3.4.2.2 Fairness bound

For the bound on fairness, we assume each expert 𝑓 ∈ ℱ satisfies 𝜖-EqOdds with respect

to data distribution P𝑥,𝑦,𝑧 for some unknown 𝜖, i.e., for 𝑦 ∈ {+,−};⃒⃒⃒⃒
E𝑥,𝑦,𝑧

[︂
𝐿𝑓,𝐴,𝑦

𝐶𝐴,𝑦

]︂
− E𝑥,𝑦,𝑧

[︂
𝐿𝑓,𝐵,𝑦

𝐶𝐵,𝑦

]︂⃒⃒⃒⃒
≤ 𝜖, (3.5)

where 𝐶𝑧,𝑦 is the cardinality of group 𝑧 and label 𝑦. Here 𝜖 represents the maximum abso-

lute difference of FPR and FNR between two groups, and we don’t put restriction on the

value of 𝜖.

Theorem 6 (Fairness Bound). Let 𝑧* be the group that with the lowest FPR (FNR), and let

𝑓 *(𝑧*) be the expert with lowest FPR (FNR) for group 𝑧*, where group 𝑧* is the group with

lower FPR (FNR). For G-FORCE , and for q = [𝑞𝐴,−, 𝑞𝐵,−, 𝑞𝐴,+, 𝑞𝐵,+]
𝑇 , we have:

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵| ≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓*(𝑧*) + 𝜖(1 + 𝜂)⏟  ⏞  
𝑐𝐹𝑃𝑅

+
𝛼𝐴,−𝑞𝐴,−

𝑝𝐴𝜇𝐴,−𝑇
− 𝛼𝐵,−𝑞𝐵,−

𝑝𝐵𝜇𝐵,−𝑇⏟  ⏞  
ℎ𝐹𝑃𝑅(q)

|

(3.6)

|𝐹𝑁𝑅𝐴 − 𝐹𝑁𝑅𝐵| ≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑁𝑅𝑓*(𝑧*) + 𝜖(1 + 𝜂)⏟  ⏞  
𝑐𝐹𝑁𝑅

+
−𝛼𝐴,+𝑞𝐴,+

𝑝𝐴𝜇𝐴,+𝑇
+

𝛼𝐵,+𝑞𝐵,+

𝑝𝐵𝜇𝐵,+𝑇⏟  ⏞  
ℎ𝐹𝑁𝑅(q)

|

(3.7)

Implication of fairness bound The absolute difference in FPR (|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵|) can

be upper bounded by the summation of three term: (1) The FPR of the best expert for the

best group; (2) constant term 𝑐𝐹𝑃𝑅; (3) and a function ℎ𝐹𝑃𝑅(𝑞) of meta selection probabil-

ity 𝑞. The same analogy applies to the FNR bound (|𝐹𝑁𝑅𝐴 − 𝐹𝑁𝑅𝐵|). Here we give an

explanation for the individual terms in the bound:

• The first term in FPR bound depends on the best expert 𝑓 *, where best is defined as

the expert that achieves the lowest FPR over all groups. This is similar to the regret
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bound in the sense that the bound depends on the expert with lowest FPR, which is

equivalent to the best expert on instance (𝑧,−).

• The second term 𝑐𝐹𝑃𝑅 is a constant that depends on the maximum difference of

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵| for an individual expert (𝜖) and 𝜂. We don’t put any assumption

on the value of 𝜖 and treat it like a property of the black-box experts.

• The last term is a function ℎ𝐹𝑃𝑅(q) of 𝑞. The numerator 𝛼𝐴,−𝑞𝐴,− is expected cross-

instances cost for instance (𝐴,−), and the denominator 𝑝𝐴𝜇𝐴,−𝑇 is the expected

number of examples from group 𝐴 with − label. This ratio can be interpreted as the

additional expected error rate for instance (𝐴,−) due to selecting a wrong instance

of MW. Since errors made on instance (𝐴,−) are false positives for group A, this

is equivalent to the additional FPR for group A due to selecting a wrong instance

of MW. Thus ℎ𝐹𝑃𝑅(q) is the difference in FPR for group A and group B due to

selecting a wrong instance of MW. Since 𝛼𝐴,−, 𝑝𝐴, 𝜇𝐴,−𝑇 and 𝛼𝐵,−, 𝑝𝐵, 𝜇𝐵,−𝑇 can

all be estimated on the fly, the value of function ℎ𝐹𝑃𝑅(q) can be set to zero by

choosing 𝑞𝐴,− and 𝑞𝐵,−.

3.4.3 Implication of the theoretical result

The fairness bound shows the asymptotic result that after the optimization step converges,

the absolute difference of FPR/FNR between groups can be bounded by constants 𝑐𝐹𝑃𝑅 and

𝑐𝐹𝑁𝑅 . In appendix, we show that these constants depend on factors intrinsic to the prob-

lem: properties of the distribution and the fairness of the base expert (𝜖,𝐹𝑃𝑅𝑓* ,𝐹𝑁𝑅𝑓*).

In the appendix, we also compare the theoretical bound of EqOdds with the achieved value

of EqOdds in experiments to get a sense of the tightness of the bound under different dis-

tributions.
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3.4.3.1 Optimal balance between regret and fairness

In this section, we show that ℎ𝐹𝑃𝑅 and ℎ𝐹𝑁𝑅 can be set to zeros by solving the following

set of functions:

[︂ ∑︀
𝑡 𝛼

𝑡
𝐴,−

𝑝𝐴 · 𝜇𝐴,− · 𝑇
−
∑︀

𝑡 𝛼
𝑡
𝐵,−

𝑝𝐵 · 𝜇𝐵,− · 𝑇

]︂⎡⎣𝑞𝐴,−

𝑞𝐵,−

⎤⎦ = 0, (3.8)

[︂ −∑︀𝑡 𝛼
𝑡
𝐴,+

𝑝𝐴 · 𝜇𝐴,+ · 𝑇

∑︀
𝑡 𝛼

𝑡
𝐵,+

𝑝𝐵 · 𝜇𝐵,+ · 𝑇

]︂⎡⎣𝑞𝐴,+

𝑞𝐵,+

⎤⎦ = 0. (3.9)

In addition, the upper bound for regret in Eq. (4) can also be tighten by adding the

following constraint:

[︁∑︀
𝑡 𝛼

𝑡
𝐴,−

∑︀
𝑡 𝛼

𝑡
𝐵,−

∑︀
𝑡 𝛼

𝑡
𝐴,+

∑︀
𝑡 𝛼

𝑡
𝐵,+

]︁
⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝐴,−

𝑞𝐵,−

𝑞𝐴,+

𝑞𝐵,+

⎤⎥⎥⎥⎥⎥⎥⎦ = 0, (3.10)

Given all these equations, constraints and inequalities we can define the following op-

timization step.

Optimization step At each round, we are led to solve three functions of q where function

parameters are determined by the equations (3.8), (3.9) and (3.10) defined above.

q* = 𝜆1ℎ𝑅𝐸𝐺(q) + 𝜆2ℎ𝐹𝑃𝑅(q) + 𝜆3ℎ𝐹𝑁𝑅(q) (3.11)

where 𝜆 = [𝜆1, 𝜆2, 𝜆3] is a vector balancing the importance of regret, equalized FPR,

equalized FNR that can be provided on a case-by-case basis for different applications. In

our experiments, we solve (3.11) by using a Sequential Least Squares Programming method

(SLSQP) and setting 𝜆1 = 𝜆2 = 𝜆3 = 1.

In practice, G-FORCE can accommodate different use cases by setting different 𝜆 at
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each round. For example, during the early rounds, since the algorithm hasn’t converged

yet, we might want to set 𝜆 for equalized FPR and equalized FNR to be smaller to penalize

the algorithm less for unfairness. Another scenario is a shifting distribution, where G-

FORCE can be adaptive to the distribution with different 𝜆.

3.5 G-FORCE for delayed feedback

In many real world applications, true labels are not instantly revealed and an algorithm often

needs to work with delayed feedback. For example, during the college admissions process,

the performance of a student is generally evaluated at the end of each term, while colleges

typically offer admission decisions in mid-year. Similarly, when an individual applies for a

loan, the bank often needs to wait for some time to know whether the applicant will default

or not. The duration of the delay could be a constant, a random variable, or a function of

time.

In the constant delay setting, we assume that the delay duration is a constant determined

by the sensitive attribute and the true label. Therefore, for a example of group 𝑧 and label

𝑦 arrives at time 𝑡, the algorithm will make a prediction at time 𝑡, but the true label will be

only revealed at the end of time 𝑡+ 𝜏𝑧,𝑦 (where 𝜏𝑧,𝑦 is some delay duration). For simplicity,

we assume 𝑡 + 𝜏𝑧,𝑦 < 𝑇 . Thus the indices of feedback at time t is a set 𝒟𝑡
𝑧,𝑦 = {𝑡′ : 𝑡′ <

𝑡, 𝑡′+ 𝜏𝑧,𝑦 = 𝑡}. In contrast, for the non-delayed setting, the indices of feedback at time t is

a singleton 𝒟𝑡
𝑧,𝑦 = {𝑡}.

We next present how G-FORCE ’s theoretical bound changes when the feedback is

delayed.

3.5.1 Theoretical Result Under Delayed Feedback

Under the construction of the G-FORCE , both regret and fairness bound are a small mod-

ification of the original theoretical result. We leave the details of the proof to appendix.

Theorem 7 (Regret Bound). Let 𝑓 * be the best expert in hindsight. Let 𝐷𝑚𝑎𝑥 = max𝑡,𝑧,𝑦 |𝒟𝑡
𝑧,𝑦|

be the maximum cardinality of the feedback set of all MW instances.The cumulative ex-
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pected loss E[𝐿] of G-FORCE can be bounded by:

E[𝐿] ≤ (1 + 𝜂)𝐿𝑓* + 4
ln 𝑑

𝜂
+𝐷𝑚𝑎𝑥ℎ𝑅𝐸𝐺(q), (3.12)

where ℎ𝑅𝐸𝐺(q) =
∑︁

𝑧∈{𝐴,𝐵},𝑦∈{+,−}

∑︁
𝑡

𝑞𝑡𝑧,𝑦 · 𝛼𝑡
𝑧,𝑦.

This upper bound shows that the expected cumulative loss has an additional multi-

plicative factor of 𝐷𝑚𝑎𝑥 on the function ℎ𝑅𝐸𝐺(q) compared to the non-delayed setting.

Nevertheless, the order of regret is still the same. This result is consistent with Joulani

et al. [2013], in the sense that delay feedback normally increases regret in an additive way

for stochastic setting.

Theorem 8 (Fairness Bound). Let 𝐹𝑃𝑅𝑓*(𝐹𝑁𝑅𝑓*) be the classifier achieving lowest ex-

pected cumulative loss on subset {𝑧,−}({𝑧,+}), ∀𝑧 ∈ {𝐴,𝐵}. For G-FORCE , we have:

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵|

≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓* + 𝜖(1 + 𝜂)+(︂
𝐷𝑚𝑎𝑥

𝐴,− 𝑞𝐴,− ·
∑︀

𝑡 𝛼
𝑡
𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−

𝐷𝑚𝑎𝑥
𝐵,− 𝑞𝐵,− ·

∑︀
𝑡 𝛼

𝑡
𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︂
|⏟  ⏞  

ℎ𝐹𝑃𝑅_𝑑𝑒𝑙𝑎𝑦(q)

(3.13)

where 𝐷𝑚𝑎𝑥
𝐴,− = 𝑚𝑎𝑥𝑡|𝒟𝑡

𝐴,−| and 𝐷𝑚𝑎𝑥
𝐵,− = 𝑚𝑎𝑥𝑡|𝒟𝑡

𝐵,−|

For the fairness bound, compared to the original G-FORCE ’s bound, the function ℎ𝐹𝑃𝑅

also depends on the maximum feedback cardinality 𝐷𝑚𝑎𝑥
𝐴,− , 𝐷

𝑚𝑎𝑥
𝐵,− .

3.6 Empirical evaluation of G-FORCE

In this section we present G-FORCE ’s performance on real and synthetic datasets. G-

FORCE keeps three statistics that are necessary to compute parameters for functions ℎ𝐹𝑃𝑅

and ℎ𝐹𝑁𝑅: (i) the probability of a sample coming from group 𝑧, denoted by 𝑝𝑧, (ii) the base

rates of outcomes, denoted by 𝜇𝑧,𝑦, and (iii) the cross-instance costs 𝛼, which is estimated

as differences of expected loss between using a right instance and a wrong instance. All

65



three statistics above are estimated with Bayesian and Dirichlet Prior. We use 𝜂 = 0.35 in

experiments.

3.6.1 Case study: Synthetic Datasets

It is important to test what can be achieved for both algorithms under extreme scenarios.

Datasets We create a synthetic data framework that allows us to control the distributions

and experts with certain properties. The balance between group attribute and labels is

controlled by setting parameters 𝑝𝐴, 𝜇𝐴,+, 𝜇𝐵,+. For this purpose, we create one synthetic

dataset with imbalanced setting one with balanced setting. The first one is imbalanced

setting where group A is the majority group with higher percentage positive labels, and

group B is the minority group also with lower percentage positive labels. In particular, we

have 𝑝𝐴 = 0.9, 𝜇𝐴,+ = 0.7, 𝜇𝐵,+ = 0.3. The second one is the balanced setting where

each group-label combination has the equal number of examples. We visualize these two

settings in figure-3-7.

Creating Black-box Experts It is also important to test the efficacy of our approach

when experts have disparate performances or are extremely biased towards different groups.

For binary classification with two groups, we create four extreme expert, where each is per-

fect (100% accurate) for one of the group-label subsets ({𝐴,+}, {𝐴,−}, {𝐵,+}, {𝐵,−}),

and random (50% accurate) for the other three. Thus for each group-label subset, there is

at least one perfect expert/classifier.

A,+
A,-

B,+ B,-

(a) Imbalanced Setting.

A,+

A,-

B,+

B,-

(b) Balanced Setting.

Figure 3-7: The size of each color block is proportional to the number of examples in that group-
label subset. Imbalanced setting is created with 𝑝𝐴 = 0.9, 𝜇𝐴,+ = 0.7, 𝜇𝐵,+ = 0.3 and balanced
setting is created with 𝑝𝐴 = 0.5, 𝜇𝐴,+ = 0.5, 𝜇𝐵,+ = 0.5.
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Results For each dataset, we repeat the experiments 100 times, each with 10000 sam-

ples from a specific distribution setting. For imbalanced setting, the results in Figure 3-8a

shows that for GroupAware algorithm, the larger subsets {𝐴,+} and {𝐵,−} have nearly

100% accuracy while {𝐴,−} and {𝐵,+} have around 50% accuracy. The GroupAware al-

gorithm, which runs only one MW instance per group attribute 𝑧, promotes selecting the

perfect classifier for the larger group-label subset within each protected group. This leads

to high error rates on the remaining subsets since their associated perfect classifiers are

unlikely to be picked.

FPR - FPR =0.53A B

FNR - FNR =0.52A B FPR - FPR =0.13A B

FNR - FNR =0.17A B

(a) Imbalanced Setting.

FPR - FPR =0.17A B

FNR - FNR =0.15A B

FPR - FPR =0.0A B

FNR - FNR =0.02A B

(b) Balanced Setting.

Figure 3-8: The achieved accuracy on group-label subsets for imbalanced setting (𝑝𝐴 = 0.9, 𝜇𝐴,+ =
0.7, 𝜇𝐵,+ = 0.3) and balanced Setting (𝑝𝐴 = 0.5, 𝜇𝐴,+ = 0.5, 𝜇𝐵,+ = 0.5). Left: GroupAware.
Right: G-FORCE . The vertical black line denotes the standard deviation. The red dashed line is the
overall accuracy.

Even for the perfectly balanced setting, G-FORCE achieves a more balanced accuracy

in each subset and a more stable behavior compared to GroupAware as in Figure 3-8b.
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Group A Group B Positive label # of rounds 𝑝𝐴 𝜇𝐴,+ 𝜇𝐵,+

Adult White non-White income exceeds 50k/yr 24421 0.851 0.26 0.16
German Male Female good credit score 300 0.853 0.73 0.50
COMPAS White non-White low risk for recidivism 1584 0.398 0.54 0.39

Table 3.4: Summary statistics of datasets. Here 𝑝𝐴 is the percentage of group A, 𝜇𝐴,+ is the
percentage of positive labels in group A, and 𝜇𝐵,+ is the percentage of positive labels in group B.

Since the label distribution is balanced, {𝐴,−} and {𝐴,+} have the same accuracy when

classifying an example from group A. GroupAware arbitrarily chooses between perfect

classifier for {𝐴,+} or {𝐴,−} when classifying examples from group A, which leads to

large deviations when considering errors on each more fine-grained subset (same analogy

for group B). On the contrary, in both settings, G-FORCE is able to track the performance

of the EqOdds on each group-label subset and compensate their differences in terms of

accuracy. In the plot, the red dashed line represents the overall error rates of the algorithms.

As shown in the theoretical results, compared to GroupAware G-FORCE has a slightly

increase in regret, and is reflected as the slight increase error rates in the experiment.

3.6.2 Case study: Real Data sets

Datasets We use the Adult, German Credit and COMPAS datasets, all of which are

commonly used by the fairness community. Adult consists of individuals’ annual income

measurements based on different factors, and the goal is to predict whether someone’s in-

come exceeds 50𝑘/yr based on census data. The group attribute is race, and the two groups

are White (Group A) and non-White (Group B). In the German dataset, people applying

for credit from a bank are classified as “good” or “bad” credit based on their attributes. The

group attribute is gender, where the two groups are male (Group A) and female (Group B).

COMPAS provides a likelihood of recidivism based on a criminal defendant’s history. The

group attribute is again race, where the two groups are White (Group A) and non-White

(Group B).

Creating Black-box Experts The set of black box expertsℱ that form the black-box

experts are: Logistic Regression (LR), Linear SVM (L SVM), RBF SVM, Decision Tree
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(DT) and Multi-Layer Perceptron (MLP). These classifiers are trained using 70% of the

data set. The remaining 30% of the dataset is set aside to simulate the online arrival of

individuals. We compare our G-FORCE algorithm with the GroupAware in terms of regret

and fairness. We repeated the experiments 1000 times for German and COMPAS, as well

as 10 times for Adult, by randomizing the arrival sequence of individuals.

Individual Experts Combined Experts

L SVM RBF SVM DT MLP LR Group-Aware G-FORCE

FPR 0.022 0.046 0.043 0.047 0.047 0.052 0.035

Adult FNR 0.026 0.199 0.200 0.214 0.214 0.163 0.083

EER 0.058 0.062 0.062 0.061 0.061 0.074 0.069

FPR 0.00 0.371 0.471 0.421 0.050 0.373 0.329

German FNR 0.000 0.320 0.770 0.680 0.650 0.207 0.181

EER 0.090 0.090 0.208 0.210 0.280 0.093 0.098

FPR 0.190 0.150 0.160 0.158 0.240 0.191 0.184

COMPAS FNR 0.256 0.240 0.260 0.240 0.340 0.264 0.249

EER 0.019 0.010 0.010 0.010 0.010 0.016 0.019

Table 3.5: 𝜖-Fairness of base experts, GroupAware and G-FORCE .

Results in Table-3.6 show a general improvement in fairness over the GroupAware al-

gorithm, both in terms of equalized FPR and FNR, along with a small increase in regret.

For Adult data set, we plot the performance of the algorithm over time (Figure 3-9).

Although German and COMPAS have fewer examples, and thus the standard deviation is

higher to make a conclusion, there is still a slight improvement over fairness with slight

increase in regret.

Adult Compas German
FPR FNR Regret FPR FNR Regret FPR FNR Regret

GroupAware 0.05± 0.01 0.17± 0.02 0.00± 0.00 0.20± 0.04 0.27± 0.04 0.01± 0.00 0.40± 0.13 0.21± 0.08 0.01± 0.01
G-FORCE 0.04± 0.01 0.08± 0.01 0.01± 0.00 0.18± 0.03 0.25± 0.04 0.01± 0.01 0.32± 0.15 0.18± 0.01 0.01± 0.01

Table 3.6: Equalized FPR, equalized FNR and regret on real datasets. Lower numbers are better.
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Figure 3-9: G-FORCE shows a clear improvement over GroupAware on both equalized FPR (bot-
tom left) and equalized FNR (bottom right) on adult dataset.

We also report the error rates and associated 𝜖-fairness of each classifier in the ap-

pendix. The base classifiers expose similar and more mild behaviors (compared with in

real datasets) which makes the task of the algorithm easier, and thus the results are less

significant compared to the real dataset.

3.7 Conclusion

Many real world applications require decision makers to make decisions in a sequential set-

ting. Multiplicative weights algorithm is a classical no-regret algorithm used in sequential
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learning. In the case the samples come from population groups, could we adapt the MW

algorithm to guarantee fairness as well? Blum et al. [2018] first proposed to adapt MW

algorithm for online learning with fairness guarantees. The idea is to run separate instances

of the MW for each group in order to equalize the error rates among groups.

However, equalized error rates is a very simplified notion of fairness. In many real

world applications, the impact or cost of false positives and false negatives could be very

different. For example, as discussed in the first chapter, in the COMPAS example, the

model satisfies approximate equalized error rates on white and black defendants, but the

model has a much higher false positive rates for black defendants. In this paper, we in-

troduce G-FORCE , a randomized algorithm achieving approximate EqOdds, which guar-

antees that both false positive rate and false negative rate are equalized. We achieve this

by keeping separate instances of MW instance for each sensitive group-label combination

(𝑧, 𝑦). This allows us to provide an upper bound for the number of false positives and

negatives for each group. We show that, given a set of black box experts, it is possible to

obtain an optimal meta selection probability for choosing between different MW instances

that, in turn, will balance regret and fairness. We also show that the algorithm can work in

the delayed feedback setting, where the true label is not revealed instantly after a decision

is made.

G-FORCE can be applied to a wide range of applications as it could work alongside

with human decision makers and correct potential biases. A user could choose the hyper-

parameter 𝜆 to set a desirable trade-off between fairness and accuracy. We are also deploy-

ing the algorithm to a real world application.
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Chapter 4

Study of Fairness with Feedback Loop
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4.1 Introduction

The first part of this thesis considers whether it is possible to produce fair decisions from

black-box predictions in an online setting. One important assumption in this study is that

a past decision will not impact future distributions of features. As we saw in the first

chapter, decisions could create a feedback loop that nudges feature distributions of different

groups in different ways. The change in feature distributions will in turn change the target

variable distribution. In classical machine learning settings, the goal is to create a model

that minimizes empirical risk with respect to a dataset. In this setting, fairness constraints

can be enforced through a constrained optimization. However, these predictions could lead

to consequential decisions, because the predictions of the model could have long-lasting

effects on target variable distribution beyond a single step.

In this chapter, we study whether enforcing fair decisions closes the gap of target vari-

able distribution between advantaged and disadvantaged groups. The chapter is structured

as follows:

• In section-4.2, we first use an example of loan application to showcase how fair

decisions could shape underlying distribution undesirably.

• In section-4.3, we present our setting for modeling interactions between decision-

makers and underlying distribution as Markov Decision Process. We focus on thresh-

old policies, i.e. policies which assign positive decisions when features or target

variable is above some threshold.

• In section-4.4, we first formally propose a metric to measure the distributional im-

pact of algorithmic decisions on the target variable distributions. We identify the

backfire effect – i.e. when policies result in a disproportionate impact on a protected

group over the long term. Specifically, we can categorize the backfire effect into two

scenarios: (1) within-group impact measures how a sequence of decisions shifts the

distribution of the target variable of a group, and (2) between-group impact measures

the absolute difference between two groups’ within-group impact.

• In section-4.5, we investigate the impact of fair threshold policies, which are derived
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from one-step constrained optimization subject to some fairness constraints. We in-

vestigate whether these fair policies could have a disparate impact on shaping the

target variable distributions of different population groups.

• Lastly, in section-4.6, we conclude with key takeaways and considerations in design-

ing policies that align with long-term fairness.

4.1.1 Related Work

Recently, a few works have studied the dynamics of algorithmic decisions and the un-

derlying distributions [Liu et al., 2017, D’Amour et al., 2020a, Zhang et al., 2020]. Liu

et al. [2017] first use loan application as an example to study how the variable of interests

(credit scores) change as a result of decisions in a simple one-step feedback model. They

demonstrate theoretically that under the one-step model, unconstrained optimization never

decreases group-wise average credit scores while common fairness criteria could lead to a

decrease in the group-wise average credit scores.

Later, D’Amour et al. [2020a] extends the one-step theoretical model to multi-step sim-

ulation using MDP. They show that multi-step simulation gives qualitatively different con-

clusions compared to the previous one-step analysis because of edge effects. In particular,

constrained optimization could decrease group-wise average credit scores when there is a

maximum cap on credit scores.

Most recently, [Zhang et al., 2020] models the dynamics under the partially observed

Markov decision process (POMDP) where the hidden variable represents the binary quali-

fication state. They study the equilibrium of qualification rates in the long term. However,

in many real-world applications, the target variable could be continuous. For example, the

target variable could be the probability of repayment for a loan application or the prob-

ability of re-offense in recidivism prediction. In this type of setting, the dynamics of the

distribution target variable are more complex and cannot be simply captured by equilibrium

analysis on the qualification rate.

In this chapter, we propose a setting that is more realistic and suitable for real-world

applications. Our setting is different from the previous work in the following ways:
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Name Target Variable Framework

Liu et al. [2018] Continuous MDP with linear transition function
D’Amour et al. [2020a] Discrete MDP with linear transition function

Zhang et al. [2020] Binary POMDP
Ours Continuous MDP with general transition functions

Table 4.1: Setting of the four frameworks.

• General transition functions: We provide a framework to model dependency between

random variables using structural equations. This allows the dependency between

features and variables to be a general function.

• Distributional change: In our work, we model the target variable as a continuous

variable that measures the qualification probability of each individual. In this case,

we can characterize the distributional change of the target variable beyond the mean.

• Metrics for disparate impact across groups: All three previous works provide an

analysis of the group-wise outcome change separately. There is a lack of a clear

metric to measure the disparity of outcome change between groups. We provide a

new metric

4.2 Motivating Example

We next use a loan lending example to show how algorithmic decisions could further seg-

regate distributions of different population groups. Loan lending is a classical example

that has been widely used to study fairness Liu et al. [2018]. The Equal Credit Opportunity

Act, a United States law enacted in 1974, makes it unlawful for any creditor to discriminate

against any applicant on the basis of race, color, religion, national origin, sex, marital sta-

tus, or age. Suppose a bank predicts whether approving or rejecting loan applications from

a stream of applicants. To simplify the process, the only observed features are sensitive

attribute and credit score. Each applicant has a group attribute 𝑍 ∈ {𝐴,𝐵} and a discrete

credit score 𝑐 ∈ [1, 10].
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Figure 4-1: An overview of the feedback loop in the loan application example.

We first use figure-4-1 to illustrate the different components in the loan lending process

as a causal graph.

• State of the World The state of world consists of a tuple (𝑋, 𝑌, 𝑍).

– Sensitive Attribute (𝑍): Each individual comes with a sensitive attribute 𝑍 ∈

{𝐴,𝐵}, such as race, gender etc. The sensitive attribute is time invariant.

– Credit Score (𝑋): Initially, each individual starts with a credit score 𝑋 that

depends on group attribute 𝑍.

– Repaying Probability (𝑌 ): The repaying probability 𝑌 is a function of the credit

score 𝑌 = 𝑋/10.

• Model: A model takes the state of the world and generates a prediction for the re-

paying probability. The process is indicated by the purple link.

• Loan Approval Decision : Based on the prediction, a binary loan approval deci-

sion 𝐴 is issued, which could potentially depend both on an applicant’s credit score

𝑋 and the sensitive attribute 𝑍.

• Feedback: A decision will have a feedback effect (indicated by the red link) on the

credit scores. In particular, if an applicant successfully repays a loan, the new credit

score 𝑋 ′ (or 𝑋 𝑡+1 in a multi-step process) will increase by 1 and the bank’s utility
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will increase by 1. If an applicant defaults, the new credit score will be decreased

by 1 and the bank’s utility will be decreased by 1. When an applicant’s credit score

decreases, so does the repaying probability.

We now illustrate what will happen in a one-step feedback loop for banks using the

following policies: max profit, demographic parity, and equalized odds. Assuming there

are 10 applicants, 5 from group A, and 5 from the group B, and 𝑐𝑚𝑎𝑥 = 10. The initial

credit scores 𝑋 of the applicants are shown in Figure 4-2, which depends on the group

membership.

Group A

Group B

Credit Score
3 4 5 6 7 82 9

Figure 4-2: Initial credit scores distribution of group A (advantaged group) and group B (disadvan-
taged group).

The mean score of group A is 𝜇𝐴 = 6.4, and the mean score of group B is 𝜇𝐵 = 4.2,

with their difference Δ = 2.2. We refer to the group with higher initial mean as the

advantaged group (group A).

We keep track of two metrics: the bank’s utility and the group welfare disparity.

• Bank’s utility: The bank’s profit will be increased by 1 if an applicant repays, and

will be decreased by 1 if an applicant defaults.

• Group disparity: We measure disparity as the absolute difference of group means of

credit scores, i.e., Δ = |𝜇𝐴 − 𝜇𝐵|.

Max Profit The first bank issues loans based on a fixed threshold on credit score regard-

less of group. Specially, an applicant will be approved if the credit score 𝑐 ≥ 5 since this is

a break-even point for the bank. When an applicant has a credit score of 5, there are 50/50

chance that the applicant will default and the expected profit of the bank is 0.
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Group A Group B

Applicant 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 Mean 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 Mean
Credit Score X 4 5 6 8 9 6.4 2 3 4 5 7 4.2

Decision 0 1 1 1 1 0.8 0 0 0 1 1 0.2
New Expected X’ 4 5 6.2 8.6 9.8 6.72 2 3 4 5 7.4 4.28

Table 4.2: Outcome when using a policy that has the same threshold regardless of group.

Group A

Group B

Credit Score
3 4 5 6 7 8

threshold

2

Group A

Group B

Credit Score
4 5 6 7 82 9

Figure 4-3: Outcome when using a policy that has the same threshold regardless of group.

In table-4.2, we computed the new average credit scores for the two groups. Both

groups ameliorate with higher average credit scores, though the new score differences be-

tween the two groups Δ′ = 2.44 is slightly higher than the initial Δ = 2.2.

Demographic Parity The second bank uses demographic parity as a fairness metric,

which requires the bank to issue loans to the same percentage of people in both groups.

Thus, if 4 out of 5 applicants are qualified for the loan in group A, the bank will also give

out loans to 4 out 5 applicants in group B.

Group A

Group B

3 4 5 6 7 8

threshold

2

Group A

Group B

4 5 6 7 82 9

Figure 4-4: Outcome when using a demographic parity policy that issue loans to the same percent-
age of people in both groups.
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Group A Group B

Applicant 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 Mean 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 Mean
Credit Score X 4 5 6 8 9 6.4 2 3 4 5 7 4.2

Decision 0 1 1 1 1 0.8 0 1 1 1 1 0.8
New Expected X’ 4 5 6.2 8.6 9.8 6.72 2 2.6 3.8 5 7.4 4.16

Table 4.3: Outcome when using a demographic parity policy. The bank issues loans to the same
fraction of people (80%) in both group.

In table-4.3, the expected average score of group B will be decreased to 𝜇𝐵 = 4.16, and

the difference of averages between the two groups are increased to Δ′ = 2.56. Although

the second bank tries to be fair, it actually further make group B’s average credit scores

worse and further segregates the two groups’ credit score distributions.

Equalized Opportunity The third bank adopts a more constrained fairness metric called

equalized opportunity. This metric requires that among those who can payback the loans,

the bank should issue loans to the same percentage of people (Equalized false negative

rate). For all applicants with credit score 𝑋 ≥ 5, their repaying probability is 𝑌 ≥ 0.5.

We call this set the qualified applicants, and this includes 4 individuals in group A and 2

individuals in group B. The bank decides to issue to the top 50% of qualified applicants,

which will be 𝑎4, 𝑎5 and 𝑏5.

Group A

Group B

3 4 5 6 7 8

threshold

2

Group A

Group B

4 5 7 82 9

Figure 4-5: Outcome when using equalized opportunity policy.

As shown in Table-4.4, the difference between the two groups is again Δ′ = 2.4, which

is the same as the first bank that only maximizes profit. Recall that the initial group disparity

is Δ = 2.2, and again the equalized opportunity bank makes the average credit scores of

the two groups more disparate.
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Group A Group B

Applicant 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 Mean 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 Mean
Credit Score X 4 5 6 8 9 6.4 2 3 4 5 7 4.2
Decision 0 0 0 1 1 0.4 0 0 0 0 1 0.2
New Expected X’ 4 5 6 8.6 9.8 6.68 2 3 4 5 7.4 4.28

Table 4.4: Outcome when using an equalized opportunity policy. The bank issues loans to the same
fraction of qualified applicants (50%) in both groups.

Notation Meaning

𝒟 Underlying distribution where the dataset is sampled from
𝑍 Protected group attribute such as gender or race
𝑋 Feature attributes the other than protected attribute
𝑌 Ground truth target variable
𝑆 State 𝑆 consists of (𝑍,𝑋, 𝑌 )
𝑂 𝑂 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌 ). An instantiation of the target variable.
(𝑧, 𝑥, 𝑦) An individual sampled from the distribution is a tuple of the protected at-

tribute, feature attribute, and ground-truth label
𝑃𝑌 The CDF distribution of target variable 𝑌 .

𝒢 A DAG representing the dependency between state variables
𝑓𝑣(·) Structural equations for node 𝑣
∇𝑓𝑣(𝑥) Derivative of structural equations 𝑓𝑣 evaluated at 𝑥
𝑆𝑡 State at time 𝑡 consists of (𝑍,𝑋 𝑡, 𝑌 𝑡)
𝐷𝑡 Decision at time 𝑡
𝒰 𝑡 Utility for the decision maker at time 𝑡
𝜋𝑧 Policy function for group 𝑧
𝜏 𝑡𝑧 Threshold used for group 𝑧 at time 𝑡

𝑥𝑡𝑝 Feature value increase for a true positive
𝑥𝑓𝑝 Feature value decrease for a false positive
𝑥𝑡𝑛 Feature value increase for a true negative
𝑥𝑓𝑛 Feature value decrease for a false negative
𝑢𝑡𝑝 Utility increase for a true positive
𝑢𝑓𝑝 Utility decrease for a false positive
𝑢𝑡𝑛 Utility increase for a true negative
𝑢𝑓𝑛 Utility decrease for a false negative
𝑔 Distance metric
𝛿𝑡𝑧 Within-group impact for group 𝑧 at time 𝑡
Δ𝑡

𝐴𝐵 Between-group impact of group A and B at time 𝑡

Table 4.5: Notation table for the terms used in this chapter.
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Policy Feedback

States of the world

Group
Attributes

Features

Target
Variable

Decision

Z0

X0 πZ

Y0

X1

Y1

D Z0

X2

Y2

D Z1

X3

Y3

D Z2

Figure 4-6: The dynamic data generation process unrolled by time. 𝑍 is the sensitive attribute, 𝑋
is the features, 𝑌 is the target variable, and 𝐷 is the decision applied by the agent. The purple
arrow indicates a policy function that maps from the features 𝑋𝑡 to a decision 𝐷𝑡, and the red arrow
indicates the feedback effect from decision 𝐷𝑡 to features 𝑋𝑡+1.

4.3 Formulation and setting

The previous motivating example showcases one-step feedback of decisions on underlying

distributions. In this section, we formulate the long-term feedback of decisions through the

lens of the Markov Decision Process (MDP).

4.3.1 Background: Markov decision process

We assume the target variable is a function of the features, and the target variable is a func-

tion of the features. MDP can be leveraged to characterize long-term inter-dependencies

of features, the target variable, and the decisions as a graphical model. It characterizes

the dependencies between variables at each state and also models the temporal transition

of the underlying distribution. Although the ground truth dependencies are rarely known

in real life, knowledge of the causal dependencies that generate the data could be useful

when comparing different policies. This framework also naturally constructs a computa-

tion graph, where gradient flow over a long horizon can be easily computed.
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Markov Decision Process A Markov decision process (MDP) is a tuple (𝒮,𝒜, 𝑃, 𝑅) in

which 𝒮 is a finite set of states,𝒜 is a finite set of actions, P is a transition function defined

as 𝑃 : 𝒮 ×𝒜× 𝒮 −→ [0, 1], and 𝑅 is a reward function defined as 𝑅 : 𝒮 × 𝐴 −→ R.

4.3.2 Modeling the feedback loop as MDP

In this section, we show that the feedback loop of algorithmic decisions can be modeled

using MDP. At each time step, the state contains three variables: 𝑆 = (𝑋, 𝑌, 𝑍), where

𝑋 ∈ R𝑑 is a set of features, 𝑍 ∈ {0, 1} is the time-invariant group attribute such as race

or gender, and 𝑌 ∈ [0, 1] is the target variable representing the probability of a positive

outcome.

• Initialization: The process is initialized with a time-invariant group attribute 𝑍, a

set of observed features 𝑋 𝑡, and the target variable 𝑌 𝑡. The initial group distribution

is time-invariant and sampled from 𝑍 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝0) where 𝑝0 = P(𝑍 = 0)

is the probability that an individual comes from group 𝑍 = 0. The initial feature

distribution 𝑋0 is sampled from the initial distribution P(𝑋0|𝑍).

• Decision and Outcome: The target variable 𝑌 𝑡 is a function of the features 𝑋 𝑡, i.e.,

𝑌 𝑡 = 𝑓𝑌 (𝑋
𝑡). At time step 𝑡, a binary decision 𝐷𝑡 ∈ {0, 1} is generated from a

policy function 𝜋 based on state 𝑆𝑡, i.e, 𝐷𝑡 = 𝜋(𝑆𝑡). After applying the decision, a

binary outcome is observed. We use an auxiliary variable 𝑂𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌 𝑡) to

indicate the outcome variable, which is sampled from a Bernoulli distribution with

𝑌 𝑡 as the parameter.

• Transition: Based on the realized outcome 𝑂𝑡, the features 𝑋 𝑡 for each individual

will be updated based on the decision and the outcome, where 𝑋 𝑡+1 = 𝑓𝑋(𝑋
𝑡, 𝐷𝑡, 𝑂𝑡).

The target variable 𝑌 𝑡 will be updated accordingly.

• Utility: The decision maker’s utility is a function of the decision and the realized

outcome, i.e., 𝒰 𝑡 = 𝑓𝒰(𝑂
𝑡, 𝐷𝑡).

In Figure 4-6, we illustrate the dynamic environment unrolled by time, where the purple
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Figure 4-7: Parameters defined in terms of the confusion matrix.

arrow indicates a policy function that generates the decision, and the red arrow indicates

the feedback effect of the decision.

We restrict our attention to linear utility functions and feature updates. Based on the

realized outcome 𝑂𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌 ) and decision 𝐷𝑡, we can construct a confusion ma-

trix containing true positive (TP), false positive (FP), true negative (TN), and false negative

(FN).

Specifically, if a qualified (𝑂 = 1) candidate is accepted (𝐷 = 1), the decision-maker

gains utility 𝑢𝑡𝑝 > 0 and the individual’s feature is increased by 𝑋𝑡𝑝; if an unqualified

(𝑂 = 0) candidate is accepted (𝐷 = 1) , the decision-maker’s utility is decreased by

𝑢𝑓𝑝 > 0 and the individual’s feature is decreased by 𝑋𝑓𝑝 > 0. If an unqualified (𝑂 = 0)

candidate is rejected (𝐷 = 0), the decision-maker gains utility 𝑢𝑡𝑛 > 0 and the individual’s

feature is increased by 𝑋𝑡𝑛; if a qualified (𝑂 = 1) candidate is rejected (𝐷 = 0), the

decision-maker’s utility is decreased by 𝑢𝑓𝑛 > 0 and the individual’s feature is decreased

by 𝑋𝑓𝑛 ≥ 0. In many cases, the utility and features won’t change upon a negative action,

and 𝑢𝑡𝑛 = 𝑢𝑓𝑛 = 𝑋𝑡𝑛 = 𝑋𝑓𝑛 = 0 could be set to 0.

4.3.3 Threshold policies

One of the most common solutions in fair machine learning is constrained optimization,

where the goal is to learn a model that minimizes the expected loss with respect to loss
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Notations used in MDP literature Notations used in this framework

State 𝑆 A state 𝑆 contains (𝑍,𝑋, 𝑌 )
Set of actions 𝒜 Binary decisions 𝐷 = {0, 1}
Transition function 𝑃 Structure equation for feature update 𝑓𝑋
Reward function 𝑅 Utility function 𝒰

Table 4.6: A mapping between notations in the literature and notations used in our framework.

Notation Meaning

𝑌 𝑡 = 𝑓𝑌 (𝑋
𝑡) Function links features 𝑋 to target variable 𝑌 .

𝐷𝑡 = 𝜋(𝑆𝑡) Function links state 𝑆 to decision 𝐷.
𝑋 𝑡+1 = 𝑓𝑋(𝑋

𝑡, 𝐷𝑡, 𝑂𝑡) Feature update function that links features new feature 𝑋 𝑡+1 to
old feature 𝑋 𝑡, decision 𝐷𝑡, and outcome 𝑂𝑡

𝒰 = 𝑓𝒰(𝑂
𝑡, 𝐷𝑡) Function links utility to outcome and decision.

Table 4.7: Set of structural equations and their purpose.

function ℒ and subject to some fairness constraints [Donini et al., 2018]. For example, the

following constraint ensures demographic parity:

min
𝜃

E(𝑋,𝑌,𝑍)∼𝒟[ℒ(𝑓𝜃(𝑋,𝑍), 𝑌 )]

𝑠.𝑡. E(𝑋,𝑌,𝑍)∼𝒟[𝑓𝜃(𝑋,𝑍)] = E(𝑋,𝑌,𝑍)∼𝒟[𝑓𝜃(𝑋,𝑍)]

In sequential decision making, the decision maker uses a policy function 𝜋 as guidance for

sequential decisions, where decisions are repeatedly sampled from this function.

Definition 4.3.1. A policy 𝜋 : 𝒮 → [0, 1] is a function that maps from states 𝑆 ∈ 𝒮 to the

probability distribution over decision 𝑑, i.e., 𝜋(𝑑|𝑠) = P(𝐷𝑡 = 𝑑|𝑆𝑡 = 𝑠).

In sequential decision making, a decision-maker repeatedly maximizes the utility sub-

ject to the fairness constraints as in the one-step optimization. If the probability of an

individual coming from group 𝑧 is 𝑝𝑧, we can decompose the utility with respect to the

group distribution:

max
𝜋=(𝜋𝐴,𝜋𝐵)

𝑝𝐴E𝐷𝑡∼𝜋𝐴(𝑆𝑡)[𝒰(𝐷𝑡, 𝑌 𝑡)] + 𝑝𝐵E𝐷𝑡∼𝜋𝐵(𝑆𝑡)[𝒰(𝐷𝑡, 𝑌 𝑡)]

𝑠.𝑡. E𝑆𝑡∼𝒟𝒞
𝐴
[𝜋𝐴(𝑆

𝑡)] = E𝑆𝑡∼𝒟𝒞
𝐵
[𝜋𝐵(𝑆

𝑡)]

(4.1)
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where 𝒟 is the underlying distribution and 𝒟𝒞𝑧 is the distribution constrained by some

fairness metric 𝒞 for group 𝑧, and 𝜋𝐴, 𝜋𝐵 are group-specific policies for group A and group

B respectively.

In the rest of this chapter, we restrict our attention to threshold policy, where the policy

function is a threshold function on the target variable 𝑌 . In real applications, the policy

function should put a threshold on features based on implicitly learned mapping from the

features to the target variable. The reason that we directly put a threshold on the target

variable is to eliminate the effect of complications on learning the policy function.

Definition 4.3.2. A threshold policy assigns positive action when 𝑌 𝑡 ≥ 𝜏 for some thresh-

old 𝜏 , i.e., 𝜋𝑧(𝐷
𝑡 = 1|𝑌 𝑡) = P(𝑌 𝑡 ≥ 𝜏 |𝑍 = 𝑧).

We list a few threshold policies that are based on commonly used fairness constraints

and show that they can be reduced in this form:

• A Maximum Utility (MaxUtil) policy maximizes the expected utility without con-

straint.

• A Demographic Parity (DemoPar) policy maximizes the expected utility subject to

the demographic parity constraints, which requires that both groups have equalized

positive rates on decisions, i.e., E[𝐷𝑡 = 1|𝑍 = 𝐴] = E[𝐷𝑡 = 1|𝑍 = 𝐵]. This is

equivalent to E𝑍=𝐴[𝜋𝐴(𝑌
𝑡)] = E𝑍=𝐵[𝜋𝐵(𝑌

𝑡)].

• An Equalized Opportunity (EqOpp) policy maximizes the expected utility subject to

the equalized opportunity constraints, which requires that both groups have equalized

false positive rates,i.e., E[𝐷𝑡 = 1|𝑌 𝑡 = 0, 𝑍 = 𝐴] = E[𝐷𝑡 = 1|𝑌 𝑡 = 0, 𝑍 = 𝐵].

This is equivalent to E𝑌 𝑡=0,𝑍=𝐴[𝜋𝐴(𝑌
𝑡)] = E𝑌 𝑡=0,𝑍=𝐵[𝜋𝐵(𝑌

𝑡)].

As specified by the order in the list, each policy requires finding optimal thresholds

within a smaller search space specified by more restricted constraints. In generally

we would expect 𝒰MaxUtil ≥ 𝒰DemoPar ≥ 𝒰EqOpp.
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4.4 Measuring the Long-term Impact of Decisions

In this section, we propose a new metric for measuring fairness through the long-term

impact of decisions. We first discuss the shortcomings of current fairness metrics in a

sequential decision-making environment. These gaps motivate us to design better metrics

to assess the fairness of decisions in sequential and dynamic environments.

4.4.1 Filling in the gaps for long-term fairness metrics

Decision Fairness vs Outcome Fairness Existing fairness metrics are defined for de-

cision fairness, which ensures the decisions satisfy classification parity (accuracy, false

positive rates [Hardt et al., 2016] etc.) at the time of decision-making. However, under the

feedback loop, even fair decisions can potentially impact outcomes or the target variable

unfairly.

Average Fairness vs Distributional Fairness In many real-world scenarios, such as with

loan applications, the target variable distribution is often skewed or heavy-tailed. Conclu-

sions drawn from decisions made using only metrics defined as oblivious to the distribu-

tions could be insufficient.

4.4.2 The distributional impact of algorithmic decisions

We introduce a novel fairness metric for measuring the impact of algorithmic decisions on

the distribution of the target variable. We first categorize the impact as within-group impact

and between-group impact:

• Within-Group Impact(WGI): Within-group impact measures how a sequence of al-

gorithmic decisions shifts the distribution of the target variable of the group. Within-

group disparity happens when decisions following a policy lead to a negative impact

on the group, such as further increases in inequality or dichotomy within a population

group.
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Figure 4-8: An illustration of the backfire effects of a policy. 𝛿𝑧=𝐴 and 𝛿𝑧=𝐵 measures the impact
of decisions on the orange group (group A) and blue group (group B) respectively. Here group B is
the disadvantaged group since its target variable distribution lies on the lower spectrum. Compared
to the initial distribution at time 𝑡 = 0, decisions lead to backfire effects in terms of WGI for group
B (the center is decreased and spread is increased. Decisions also lead to backfire effects in terms
of BGI where group A and group B’s distributions are further apart.

• Between-group Impact(BGI): Between-group impact measures the absolute differ-

ence between two groups’ within-group impact. Between-group disparity captures

whether the within-group impact is different among different groups.

Definition 4.4.1 (Within-group impact (g-WGI)). Let 𝑌 𝑡
𝑧 be the group 𝑧’s target variable at

time 𝑡 and 𝑃𝑌 𝑡
𝑧

be the distribution of 𝑌 𝑡
𝑧 . The within-group impact is defined as the change

in the distribution as characterized by a function of the distribution with respect to 𝑡 = 0

for group 𝑧, i.e,

𝛿𝑡𝑧 = 𝑔(𝑃𝑌 𝑡
𝑧
, 𝑃𝑌 0

𝑧
) (4.2)

where 𝑔(·) is some distance metric.

The choice of the distance metric Previous works studying the long-term impact of fair-

ness decisions [D’Amour et al., 2020b][Mouzannar et al., 2019][Zhang et al., 2020] have

focused on how decisions change the outcome in the average sense, where 𝑔 is the abso-

lute difference of the mean. Here we allow 𝑔 to stand for general functions that measure
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the shift from distribution 𝑌 0 to distribution 𝑌 𝑡 to capture the distribution in a more fine-

grained way. Here we categorize the possible functions into three categories: (1) functions

that measure the shift of the center of a distribution; (2) functions that measures the shift

of the spread of a distribution; (3) functions that measure the shift of the shape of a distri-

bution.

• Center shift: Center shift measures the change of the target variable for a typical

individual in the distribution.

– Difference in mean of target variable distribution (Mean-WGI):

𝑔(𝑃𝑌 𝑡
𝑧
, 𝑃𝑌 0

𝑧
) = E[𝑌 𝑡

𝑧 ]− E[𝑌 0
𝑧 ]

– Difference in quantiles (Quantile-WGI):

𝑔(𝑃𝑌 𝑡
𝑧
, 𝑃𝑌 0

𝑧
) = 𝑄𝑘(𝑌

𝑡
𝑧 )−𝑄𝑘(𝑌

0
𝑧 )

where 𝑄𝑘 is the k-quantile function. When 𝑘 = 2, this is equivalent to the

median of the distribution, which quantifies the change for a median individual

in the distribution.

• Spread shift: Spread shift measures the change of variability of a distribution.

– Difference in variance of target variable distribution (var-WGI):

𝑔(𝑃𝑌 𝑡
𝑧
, 𝑃𝑌 0

𝑧
) = 𝑣𝑎𝑟[𝑌 𝑡

𝑧 ]− 𝑣𝑎𝑟[𝑌 0
𝑧 ]

– Application inspired metric: One interesting choice with real-world implica-

tions is the Gini coefficient, which measures income inequality within a popu-

lation group.

• Shape shift: Shape shift measures the distributional change of cumulative density

functions.
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– Wasserstein-1 distance (W1-WGI):

𝑔(𝑃𝑌 𝑡
𝑧
, 𝑃𝑌 0

𝑧
) =

∫︁ 1

0

|𝐹 𝑡
𝑌𝑧
(𝑦)− 𝐹 0

𝑌𝑧
(𝑦)|𝑑𝑦

where 𝐹 𝑡
𝑌𝑧

is the CDF function of distribution 𝑃𝑌 𝑡
𝑧
.

Next, we define between-group impact, which captures how decisions shift distributions

of two population groups differently.

Definition 4.4.2 (Between-group impact (BGI)). We define the between-group impact at

time step 𝑡 as

Δ𝑡
𝐴𝐵 = |𝛿𝑡𝑧=𝐴 − 𝛿𝑡𝑧=𝐵| (4.3)

The backfire effect appears when algorithmic decisions shape the group-wise distribu-

tions in different ways that further increase the disparity between them.

Definition 4.4.3 (Backfire effect). We say that a policy has a backfire effect if:

• g-WGI<0 if g measures center or shape of distribution; or g-WGI<0 if g measures

spread of a distribution.

• BGI is increased compared to the initial distribution, i.e., Δ𝑇 ≥ Δ0.

We use Figure 4-8 to illustrate the backfire effect in terms of within-group impact and

between-group impact.

4.4.3 Disparity in a broader context

While disparity could be defined statistically, it is important to understand the implications

of disparity and segregation in a broader context. We draw insights from closely related

concepts in sociology and economics regarding inequality and discuss how these concepts

can be adapted to quantify the inequality introduced by algorithmic decisions.

Social Segregation Racial segregation is a well-studied phenomenon in sociology, where

population groups are separated geographically. In the context of machine learning, we can
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measure the geometric segregation in the feature space of population groups after applying

algorithmic decisions [Heidari et al., 2019].

Economic inequality In economics, the Gini coefficient [Yitzhaki, 1979] is the statistical

dispersion metric that measures the inequality of income within a social group. We use 𝑥𝑗

to indicate the the income for an individual 𝑗 and �̄� to indicate the average income, and

𝑟𝑗 =
𝑥𝑗

�̄�
to indicate the inequality ratio for individual 𝑗. Perfect equality is achieved when

the inequality ratio 𝑟𝑗 =
𝑥𝑗

�̄�
equals 1 for everyone, which happens when everyone’s income

is equal to the average income. A more general measure of inequality can be defined as:

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
∑︁
𝑗

𝑝𝑗ℎ(𝑟𝑗)

where 𝑝𝑗 is the weight of the population, and ℎ(𝑟𝑗) is a function of the deviation of each

individual’s 𝑟𝑗 from the point of equality. The Gini coefficient is a useful metric for mea-

suring within-group impact as a result of algorithmic decisions.

4.5 Case Studies

Next, we use two case studies to empirically illustrate the impacts of threshold policies. In

both cases, the group distribution is time-invariant and sampled from 𝑍 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐴)

where 𝑝𝐴 is the probability that an individual comes from group 𝐴.

Loan Application Example The loan application example was first proposed by Liu

et al. [2018] to study the one-step feedback effect of fairness constraints. We first frame the

loan application example in the format of a dynamic SCM. The variables in the SCM are

as follows: 𝑍 ∈ {0, 1} is the binary sensitive attribute, 𝑋 ∈ [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥] is the credit score

, 𝐷 ∈ {0, 1} is the binary loan approval/rejection decision, and 𝑌 ∈ [0, 1] is the probability

of repaying. The initial feature distribution 𝑓𝑋0 and the repay probability 𝑓𝑌 are estimated

from the dataset.

Since the data is not sequential in nature, we use a synthetic structural equation for the

feature update function 𝑓𝑋 , where we experiment different feature update parameters 𝑋𝑡𝑝
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and 𝑋𝑓𝑝.

𝑍 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐴)

𝑋0 = 𝑓𝑋0(𝑍)

𝑌 𝑡 = 𝑓𝑌 (𝑋
𝑡)

𝑂𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌 𝑡)

𝑋 𝑡+1 =

⎧⎪⎨⎪⎩min{𝑋 𝑡 +𝑋𝑡𝑝, 𝑐𝑚𝑎𝑥} if 𝑂𝑡 = 1, 𝐷𝑡 = 1

max{𝑐𝑚𝑖𝑛, 𝑋
𝑡 −𝑋𝑓𝑝} if 𝑂𝑡 = 0, 𝐷𝑡 = 1

Synthetic Gaussian In the second example, we extend a previous loan application where

the feature variable has only 1-dim. The initial feature distribution 𝑋0 is sampled from a

group-specific 2-dim Gaussian distribution. The target variable is the sigmoid of a linear

transformation of the feature vectors with weight vector 𝑀 . The 𝑖-th feature positively

contributes to the target variable ([∇𝑓𝑌 (𝑋)]𝑖 > 0) if the i-th component in 𝑀 is positive.

𝑍 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐴)

𝑋0 ∼ 𝒩𝑑(𝜇𝑧,Σ𝑧)

𝑌 𝑡 =
1

1 + 𝑒−𝑋𝑡·𝑀

𝑋 𝑡+1 =

⎧⎪⎨⎪⎩𝑋 𝑡 +𝑋𝑡𝑝 if 𝑂𝑡 = 1, 𝐷𝑡 = 1

𝑋 𝑡 −𝑋𝑓𝑝 if 𝑂𝑡 = 0, 𝐷𝑡 = 1

4.5.1 Simulation Environment

4.5.1.1 Simulation environment setup

In this part, we briefly outline how the simulation environment using the causal Markov

decision process is set up. The state consists of a state vector (𝑋, 𝑌, 𝑍) and a set of struc-
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tural equations 𝑓𝑣 governing the dependencies between variables. The structural equations

implicitly specify the directed edges in the DAG. When we update a state, we first do a

topological sort of all the nodes within the graph, and then update with respect to the topo-

logical orders. In this case, parent nodes always get updated before child nodes, and the

causal structure is preserved.

Algorithm 2 Simulation using causal Markov decision process
Given DAG 𝒢 and structural equations 𝑓𝑣
Given initial state 𝑠0 = (𝑥0, 𝑦0, 𝑧0)
Given fairness constraint 𝒞
for 𝑡 = 1, ..., 𝑇 do

𝑑𝑡 ← 𝑔𝑒𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑠𝑡, 𝒞) ◁ Find optimal decisions by solving Eq-4.1 through PGD
𝑟𝑡 ← 𝑔𝑒𝑡_𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡, 𝑑𝑡) ◁ Get reward
for 𝑣 ∈ topological_sort(𝒢) do ◁ Update according to the causal mechanism

𝑠𝑡+1[𝑣] = 𝑓𝑣(𝑠
𝑡, 𝑑𝑡)

end for
end for

Solving the constrained optimization The sequential decision making process modeled

by graphical model provides a natural computation graph. Instead of resolving Eq-4.1 at

each time step, we use take projected gradient descent steps at each time step based on

previous step’s optimal solution. Specifically,

𝜏 𝑡+1 = Proj𝒞(𝜏
𝑡 − 𝛼𝑡∇𝒰(𝜏 𝑡))

where Proj𝒞 is the projection onto constraint set 𝒞 specified by a fairness constraint, and 𝛼𝑡

is the learning rate.

4.5.1.2 Evaluation Metrics

Throughout the experiment section, we used different metrics to measure the impact of

threshold policies. Each evaluation metric is averaged over 10 simulation runs. In each

simulation run, we sample 50000 individuals from the distribution and run 200 steps. The

evaluations metrics are:
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• Utility: Utility is averaged over a decision maker’s utility 𝑢𝑖 for making a decision

on an individual 𝑖. The higher the utility, the better.

• Within-group impact (g-WGI): Within-group impact is measured using equation-4.2

with respect to different 𝑔 function. For all the WGI metrics on center or shape, a

higher number indicates a better WGI. For all the WGI metrics on spread, a higher

number indicates a worse WGI.

• Between-group impact (g-BGI): Between-group impact is measured using equation-

4.3. For between group impact, the lower the better.

We listed the evaluation metrics and their meanings in the following table.

Metrics Expression Range

Utility 1
𝑛

∑︀𝑛
𝑖=1 𝑢𝑖 [0, 1]

Mean-WGI 1
𝑛

∑︀𝑛
𝑖=1 𝑦

𝑡
𝑖 − 1

𝑛

∑︀𝑛
𝑖=1 𝑦

0
𝑖 [−1, 1]

Med-WGI 1
𝑛

∑︀𝑛
𝑖=1 𝑦

𝑡
𝑖 − 1

𝑛

∑︀𝑛
𝑖=1 𝑦

0
𝑖 [−1, 1]

var-WGI 1
𝑛

∑︀𝑛
𝑖=1(𝑦

𝑡
𝑖 − 𝑦𝑡)2 − 1

𝑛

∑︀𝑛
𝑖=1(𝑦

0
𝑖 − 𝑦0)2 [−1, 1]

Gini-WGI 𝐺𝑡 −𝐺0, 𝐺𝑡 =
∑︀𝑛

𝑖=1

∑︀𝑛
𝑗=1 |𝑦𝑡𝑖−𝑦𝑡𝑗 |

2𝑛2𝑦𝑡
[−1, 1]

g-BGI |𝛿𝑡𝐴 − 𝛿0𝐵| [0, 1]

Table 4.8: Evaluation Metrics.

4.5.2 Simulation result: Loan application

4.5.2.1 Simulation setup

The initial group distributions 𝑍0, initial credit score distributions 𝑋0, and initial repay

probability 𝑌 0 are estimated from the FICO score dataset. In this experiment, we set 𝑢𝑡𝑝 =

𝑢𝑓𝑝 = 1 and 𝑐𝑚𝑖𝑛 = 300, 𝑐𝑚𝑎𝑥 = 850. We also set the feature value change and utility

change when not issuing a loan as 0 (𝑢𝑡𝑛 = 𝑢𝑓𝑛 = 𝑋𝑡𝑛 = 𝑋𝑓𝑛 = 0). The initial distribution

of 𝑍0, 𝑋0, 𝑌 0 is shown below. The groups are White (Group A) and Black (Group B), and

we refer to group A (White) as the disadvantaged group.
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Figure 4-9: The initial distribution for the FICO score dataset. Left: The initial distribution for
the group ratio. Middle: The initial distribution for the features (credit score). Right: The initial
distribution for the target variable (repay probability).

We categorize the simulation settings into three regimes based on the relative value of

the 𝑋𝑡𝑝 and 𝑋𝑓𝑝. In this case 𝑋𝑡𝑛 = 𝑋𝑓𝑛 = 0, and the cost ratio 𝑞 =
𝑋𝑓𝑝

𝑋𝑡𝑝+𝑋𝑓𝑝
. Cost ratio

specifies the feature change value for a false positive relative to the full feature value range.

If 𝑋𝑓𝑝 is greater, the cost ratio will also be greater. The cost ratio can be interpreted as the

relative impact of a false positive on features.

• Forgiving setting : 𝑋𝑡𝑝 = 150, 𝑋𝑓𝑝 = 75;

• Neutral setting: 𝑋𝑡𝑝 = 𝑋𝑓𝑝 = 75;

• Harsh setting: 𝑋𝑡𝑝 = 75, 𝑋𝑓𝑝 = 150.

4.5.2.2 Fixed threshold policies

In this section, we discuss the impact of repeatedly employing a fixed threshold policy on

the center and spread of the target variable distribution. Center and spread are two impor-

tant summary statistics to describe a distribution. Center describes a typical value of the

distribution, and spread describes the variation of the data. We use mean-WGI to measure

the impact on the center of the distribution, and var-WGI to measure the impact on the

spread of the distribution. We show how the utility and impact change under different fixed

thresholds across different simulation settings (forgiving, neutral, and harsh). We show the

experiments for one-step simulation as well as multiple-step simulation. In the multi-step

simulation, we run the simulation for 200 steps. The multi-step simulation captures the

long-term dynamics between the thresholds and the target variable.
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Center In figure-4-10, we plot the mean-WGI for one-step simulation. The red dashed

line indicates the threshold for MaxUtil, which maximizes utility without any constraint

and is achieved at 𝜏𝑀𝑎𝑥𝑈𝑡𝑖𝑙 =
𝑢𝑓𝑝

𝑢𝑡𝑝+𝑢𝑓𝑝
.

The mean-WGI metric measures how the center of the target variable distribution changes

compared to the initial distribution for each group respectively. A positive mean-WGI in-

dicates the policy exerts a positive impact on the center of the distribution. Across different

cost ratio settings, the sign of mean-WGI changes as we switch from the forgiving setting to

the harsh setting. Specifically, mean-WGI is positive for the forgiving setting and negative

for the harsh setting. On the other hand, as the threshold value increases, the magnitude

of mean-WGI decreases. This implies that the sign of the mean-WGI depends on the cost

ratio, yet lower thresholds increase the magnitude of the mean-WGI. When the cost ratio is

lower (as in the forgiving setting), a lower threshold amplifies the positive impact. On the

other hand, when the cost ratio is higher (as in the harsh setting), using a lower threshold

will amplify the negative impact.

Mean-BGI measures how a policy shifts the center of the two distributions differently

and is represented by the gap between the two group-wise mean-WGI lines. As shown

in the figure, as the threshold increases, the mean-BGI decreases. This suggests that for

a lower cost ratio setting, there is a trade-off: a higher threshold leads to lower positive

mean-WGI respectively, but also lower mean-BGI. On the other hand, for a higher cost

ratio setting, a higher threshold is always more desirable (lower negative mean-WGI, lower

mean-BGI).

In figure-4-11, we plot the mean-WGI for one-step simulation. Multi-step simulation

generally shows the same trend for mean-WGI as in one-step simulation, but with an am-

plification effect on the magnitude for mean-WGI. However, the threshold for MaxUtil,

which maximizes average utility, appears at the lower spectrum of threshold values at

around 𝜏 = 0.15. This implies that for long-term simulation, there is a trade-off between

utility and mean-BGI. Lower thresholds lead to higher average utility but also a higher

disparity between the two groups as measured by the mean of the target variable.
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Figure 4-10: One-step simulation on mean-WGI under different fixed threshold values for the for-
giving (left), neutral (middle), and harsh settings (right) respectively. The red dashed line indicates
optimal threshold for MaxUtil.
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Figure 4-11: Multi-step simulation on mean-WGI under different fixed threshold values for the
forgiving (left), neutral (middle), and harsh settings (right) respectively. Here the utility is the
average utility over the simulation steps.

Spread In figure-4-12, we plot the var-WGI for one-step simulation. Var-WGI measures

how the threshold policies change the variance of the target variable distribution changes.

A positive var-WGI indicates the policy increases the spread of the target distribution. In

the loan application example, this indicates the inequality of the repaying probability dis-

tribution within a group is increased. Contrary to mean-WGI, the relationship between cost

ratio setting and var-WGI is not linear. This is reflected as the neutral setting leads to lower

var-WGI than either the forgiving setting or the harsh setting. For a fixed cost ratio, a higher

threshold is always more desirable as it leads to lower var-WGI. As shown in figure 4-12,

all threshold policies lead to a non-negative var-WGI.

Var-BGI measures how the threshold policies shift the variance of the two distributions

differently. For each setting, as the threshold increases, var-BGI decreases. This suggests

that for var-BGI, a lower threshold is always more desirable. Across different simulation

settings, as the cost ratio increases, the gap between var-WGI (var-WBI) decreases.

In figure-4-13, we plot the var-WGI for multi-step simulation. Multi-step simulation

generally shows the same trend for var-WGI as in one-step simulation, and also with an

amplification effect on the magnitude of var-WGI. The same trade-off for mean-WGI ap-
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plies here as well: lower thresholds lead to higher average utility but also a higher disparity

between the two groups as measured by the variance of the target variable.
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Figure 4-12: One-step simulation on var-WGI under different fixed threshold values for the forgiv-
ing (left), neutral (middle), and harsh settings (right) respectively. The red dashed line indicates
𝜏𝑀𝑎𝑥𝑈𝑡𝑖𝑙 for each setting.Here the utility is the average utility over the simulation steps.
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Figure 4-13: Multi-step simulation on var-WGI under different fixed threshold values for the for-
giving (left), neutral (middle), and harsh settings (right) respectively.

4.5.2.3 Fair policies lead to backfire effects

In this section, we compare policies that maximize utility subject to fairness constraints

(DemoPar, EqOpp) with policy that only maximizes utility (MaxUtil). Besides MaxUtil pol-

icy, all other policies use a different threshold at each time step based on the solution from

the optimization problem in eq-4.1. This adds complexity in quantitatively characterizing

the backfire effects of fair policies. Instead, we use the simulation results to provide some

insights on enforcing fair policies. In this section, we investigate the impact of fair policies

on mean of variance of the target variable distribution.

Impact of fair policies on mean In Figure 4-14, we plot mean-WGI and mean-BGI as

a function of the cost ratio. As shown in the theoretical result, mean-WGI monotonically

decreases as the cost ratio increases. This is showcased in figure-4-14: as the cost ratio

increases, all policies exhibit negative impacts on both groups.
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Figure 4-14: Mean-WGI and mean-BGI for different fairness policies.The dashed line indicates the
advantaged group, and the solid line indicates the disadvantaged group.

Across different cost ratios, MaxUtil always exerts a more positive WGI for the ad-

vantaged group compared to the disadvantaged group. On the other hand, the relative WGI

for the groups for DemoPar and EqOpp swaps when shifting from a low-cost ratio to a

high-cost ratio regime. Under a low-cost ratio regime, both policies have more positive

impacts on the disadvantaged group; and under a high-cost ratio setting, both policies have

more positive impacts on the advantaged group. Comparing the three policies, while the

WGI is fairly similar for the advantaged group, MaxUtil exhibits the least negative impact

and DemoPar exhibits the most negative impact on the disadvantaged group.

The mean-BGI metric measures how the average change in the target variable differs

between two groups. A high mean-BGI indicates a policy increase in the disparity of the

target variable between two groups in the average sense. In terms of mean-BGI, EqOpp

results in the highest mean-BGI when the cost ratio 𝑞 is lower, and DemoPar results in the

highest mean-BGI when the cost ratio is higher.

Impact of fair policies on variance In Figure 4-15, we plot mean-WGI and mean-BGI

as a function of the cost ratio. As shown with the theoretical result, the direction of var-

WGI doesn’t monotonically increase as cost ratio increases. This is illustrated empirically

in figure-4-15. As cost ratio increases, var-WGI increases for disadvantaged group and

decreases for advantaged group.

For var-BGI, MaxUtil leads to higher var-BGI for high cost ratio settings, and fair

policies (DemoPar and EqOpp ) leads to higher var-BGI for low cost ratio settings.
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Figure 4-15: Mean-WGI and mean-BGI for different fairness policies. The dashed line indicates
the advantaged group, and the solid line indicates the disadvantaged group.

4.5.2.4 The hidden story behind average outcome

In Figure 4-16, we plot the final distributions of the target variable under three different

settings. Compared to the initial distributions, repeatedly enforcing a policy changes the

shape of the final distributions in a way that cannot not be captured simply by the group

mean. In particular, all policies create dichotomies and the Matthew effect [Perc, 2014] on

the target variable distribution such that "the rich get richer and the poor get poorer."

This phenomenon is further showcased in Figure 4-17, where we plot the gini-WGI

and gini-BGI as a function of the cost ratio 𝑞 using the Gini coefficient as the 𝑔 function.

A positive gini-WGI indicates that the policy increases the inequality of target variable

distribution within a group. On the other hand, a negative gini-WGI indicates the policy

decreases the inequality within a group. As shown in the left plot, as the cost ratio increases,

the gini-WGI increases for all three policies. The dynamics on the advantaged group are

fairly similar among the three policies. For the disadvantaged group, MaxUtil is the only

policy that doesn’t increase the gini-WGI, while gini-WGI decreases drastically with the

cost ratio for the other two policies.

As for between-group impact, DemoPar leads to the highest gini-BGI consistently. In

general, as the cost ratio increases, the gini-BGI also increases for the fair policies.

In general, the comparison of WGI and BGI between different policies highly depends

on the simulation setting and metric 𝑔. In table 4.9, we evaluate g-BGI using different 𝑔

function. Depending on the simulation setting parameter and the metric 𝑔, we may get dif-
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Figure 4-16: Histogram for the final distribution for repaying probability after different policies.
The unfilled bars indicate the initial distribution and the filled bars indicate the final distribution.
Top row: forgiving setting. Middle row: neutral setting. Bottom row: harsh setting.
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Figure 4-17: Gini-WGI and Gini-BGI for different fairness policies. The dashed line indicates the
advantaged group, and the solid line indicates the disadvantaged group.

MaxUtil DemoPar EqOpp

Mean-BGI 0.011 0.005 0.024
Median-BGI 0.057 0.192 0.159
Var-BGI 0.014 0.094 0.090
Gini-BGI 0.031 0.107 0.063
W1-BGI 0.002 0.092 0.087

Table 4.9: Between-group impact (g-BGI) when measured using different 𝑔 function (forgiving
setting). The bold number indicates the policy that results in the biggest g-BGI. Using different
metrics 𝑔 leads to different conclusions.

ferent conclusions on which policy leads to the biggest backfire effect. This raises the con-

cern that using an average metric (such as groupwise average outcome) to evaluate fairness

could lead to an unfair comparison between policies, and comprehensive characterization

of the distributional impact of decisions is essential.

4.5.3 Simulation results: synthetic gaussian (2d)

We use the synthetic gaussian dataset to study the effects when the features are multi-

dimensional. This allows us to create a more realistic dependency between features and the

target variable, where the structural equation 𝑓𝑌 is more complex.

4.5.3.1 Simulation setup

The initial features for the two groups are sampled from 𝒩 (𝜇0, 𝐼) and 𝒩 (𝜇1, 𝐼) respec-

tively, where 𝜇0 = [0, 0]𝑇 and 𝜇1 = [1, 1]𝑇 . The initial feature distributions are shown on
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Figure 4-18: Initial distribution for the Gaussian 2d. Left: initial feature distribution. Right: initial
target variable distribution.

the right. The feature update is 𝑋𝑡𝑝 = [0.02, 0.01] and 𝑋𝑓𝑝 = [0.01, 0.02]). We simulate

with two feature contribution matrices 𝑀1 = [1, 1] and 𝑀2 = [1,−1], where the first or

second feature is a "bad" feature (negatively impacts the target variable) respectively. In

Figure 4-18, we plot the initial features and target variable distribution.

Feature segregation In Figure 4-19, we plot the final distribution of the features under

different structural equations 𝑓𝑌 . In the top row, both features positively contribute to the

target variable (𝑓𝑌 (𝑋) > 0). In the middle row, the first feature negatively contributes to

the target variable; and in the third row, the second feature negatively contributes to the

target variable. This shapes the feature spaces differently even though the feature tran-

sition equation 𝑋 𝑡+1 = 𝑓𝑋(𝑋
𝑡) is the same. Even when the target distribution is close

enough, certain features could be segregated more than is desired for the groups. In real-

world applications, the structural equation between features and target variable 𝑓𝑌 (𝑋) is

rarely known and is in fact what most machine learning models are trying to predict. This

interplay between features and target variables adds more complexity to the analysis.

4.6 Conclusion and key takeaways

In this chapter, we model the interactions between decision-makers and individuals using

MDP where the transitions could be general structural equations. This allows us to analyze
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the distributional impact of algorithmic decisions on the target variable. In particular, we

characterize the long-term impact on the center and spread of the target variable distribution

as a result of threshold policies. The theoretical results provide useful guidance on choosing

the best threshold policies when balancing different considerations.

Better metrics for long-term fairness Fairness constraints ensure that the decisions as-

signed satisfy some statistical parity in a myopic way that is oblivious to dynamics, yet

these decisions could impact features and target variables in an undesired way. In practice,

there are often trade-offs between myopic decision fairness and long-term fairness.

In addition, the fairness constraints we discussed are all defined in terms of error metrics

that are based on the average outcome and are thus ignorant of the distributions. When risk

distributions differ, these error metrics could be poor indicators of inequality. Decisions

based on classification parity metrics could lead to dichotomies on the target distribution

even when the average outcome remains the same. The within-group and between-group

impacts are useful metrics for measuring the dynamic and distributional impacts of algo-

rithmic decisions.

Mitigating the backfire effects Designing fair policies requires careful consideration

of interactions between the decisions and the underlying distributions. In this work, we

characterize the optimal threshold for maximizing utility, maximizing within-group impact,

and minimizing between-group impact.

Our simulation results suggest that there is generally a trade-off between utility and

between-group impact. A higher between-group impact indicates the policy leads to a

higher disparity between two groups as measured by some metrics. In specific, a lower

threshold generally leads to higher utility, but also higher between-group impact as mea-

sured both by the mean and variance of the target variable. This trade-off suggests that

mitigating backfire effects requires careful consideration and balance between different

desiderata. For fairness policies that are computed based on constrained optimization, a

different threshold could be used at each round. This further increases the complexity of

comparing pros and cons of different fairness policies. In practice, it could be more desir-
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able to use some dynamics policies rather than a fixed policy designed for a single fairness

constraint.
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Figure 4-19: Synthetic Gaussian Example. Top: 𝑀1 = [1, 1]. Middle: 𝑀2 = [1,−1]. Bottom:
𝑀3 = [−1, 1].
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, we study the fairness of machine learning algorithms in a sequential decision-

making setting. When considering fairness in machine learning, many complexities arise

because the data comes from people, and decisions are applied to people. This often creates

a feedback loop that involves interactions between the predictions/decisions and the state

of the world. While many solutions have been proposed for addressing biases in model

predictions, in this thesis we focus on addressing fairness concerns after model predictions.

In this thesis, we study two problems: (1) first, how can we translate black-box model

predictions into fair decisions? (2) and second, how do fair decisions impact the underlying

distributions when there is a feedback loop?

For the first problem, we propose a meta-algorithm that combines black-box predictions

in a way that balances different error metrics (FPR and FNR) between groups. For the

second problem, we showed that there are often trade-offs between fairness and accuracy

in the short term and that fair decisions could also lead to backfire effects in the long term.

We argue that applying algorithmic decisions to people requires careful evaluation of the

different components that come into play.

In this section, we also discuss how the problems discussed in this thesis can be re-

lated to a broad research area beyond fairness. We think that many of these problems and

approaches are closely related, opening the door for exciting future work.
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Figure 5-1: Different types of distributional shifts in sequential decision making.

5.2 Connections to machine learning models in a sequen-

tial setting

One of the common and essential assumptions in machine learning models is that the train-

ing distribution and the distribution on which the model is deployed are the same. Yet

much recent work has shown that this assumption is often violated in real-world applica-

tions [Perdomo et al., 2020]. Predictions and consequential decisions can lead to changes

in distribution, especially when there are humans in the loop. The interplay between pre-

dictive models and underlying distributions occurs in many applications. Recommendation

systems predict users’ preferences and provide suggestions, and these suggestions could

shift users’ preferences in turn. In traffic prediction, the predicted best route might attract

more vehicles, making that very route less desirable. Here we list a taxonomy of scenarios

under which the training and testing distribution could be disparate.

Distribution Shift Distribution shift is a general phenomenon in which an underlying

distribution changes over time. The cause of this shift could be an exogenous factor or fac-

tors unrelated to the decision, such as a change in the weather. It could also be endogenous

factors that arise as an artifact of model predictions and consequential decisions.
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Performative Prediction The concept of a performative prediction was first proposed by

Perdomo et al. [2020], which describes scenarios in which predictive model-based deci-

sions may influence the outcome that the model tries to predict. In this sense, the machine

learning model is not only predictive of the target but is also performative of the target.

It’s reasonable to assume in this case that the distributional shift is benign or at least pre-

dictable. The backfire effects of fairness constraints we discussed previously provide an

example of performative feedback.

Strategic Classification When model predictions are converted to decisions made about

people and applied downstream, the distributional shift could be strategic or even adversar-

ial. After decisions informed by models are applied to people, individuals could strategi-

cally react to the models by nudging their features [Hardt et al., 2016][Milli et al., 2019].

For example, an attacker of a machine learning system can adversarially alter an image

[Madry et al., 2018][Kurakin et al., 2017] to intentionally cause the model to predict a

wrong label.

5.3 Future Work

Unified framework of studying the interaction between models and humans

• As we discussed above, there are many different ways that an underlying distribution

could change over time, and many solutions have been proposed for each of them.

Could there be a unified framework for studying interactions between models and

humans and their fairness implications?

• Can we design effective interventions that make the interactions between models and

humans fairer?

Efficient ways of finding optimal policy When a machine learning model needs to be

repeatedly deployed, one common practice is to frequently retrain the model on a new

dataset. This is certainly not ideal and leaves room for a lot of interesting future work:
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• When we know that the distribution shift is purely caused by the model’s decisions

(as is assumed to be the case in backfire effects), can we create a more efficient

algorithm where frequently retraining and re-balancing different fairness constraints

is not necessary?
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Appendix
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6.1 Appendix for Chapter 3: Fairness in Sequential Deci-

sion Making

6.1.1 Additional Experiment Results

6.1.1.1 Additional Experiment Results on Synthetic Dataset

Pareto Curve on Synthetic Dataset To clearly illustrate the trade-off that can be achieved

in the optimization step, we plot the pareto front by varying 𝜆 defined in the optimization

step 3.11. The Pareto curve is in 6-1.

Figure 6-1: Pareto Curve for the synthetic dataset with imbalanced setting. x-axis is the re-
gret and y-axis is the average value of Equalized FPR and Equalized FNR. The pair indicates
(𝜆𝑟𝑒𝑔𝑟𝑒𝑡,𝜆𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠) where 𝜆𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = 𝜆𝐹𝑃𝑅 = 𝜆𝐹𝑁𝑅.

Different simulation distributions We summarize the experiments for Synthetic

data in Tables 6.1 and 6.2, where we fix 𝑝𝐴 = 0.9, 𝑝𝐵 = 0.1, 𝜇𝐴,+ = 0.7 and varies

𝜇𝐵,+.
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𝜇𝐵,+ MW GroupAware G-FORCE

0.1 0.016± 0.013 0.494± 0.009 0.305± 0.020
0.3 0.018± 0.013 0.487± 0.012 0.182± 0.014
0.4 0.026± 0.011 0.475± 0.019 0.148± 0.032
0.5 0.024± 0.018 0.283± 0.162 0.110± 0.030
0.6 0.011± 0.008 0.019± 0.022 0.032± 0.017

Table 6.1: Equalized FPR by fixing 𝑝𝐴 = 0.9, 𝑝𝐵 = 0.1, 𝜇𝐴,+ = 0.7

𝜇𝐵,+ MW GroupAware G-FORCE

0.1 0.473± 0.060 0.509± 0.055 0.304± 0.028
0.3 0.490± 0.031 0.486± 0.022 0.194± 0.018
0.4 0.508± 0.018 0.488± 0.019 0.146± 0.018
0.5 0.488± 0.013 0.296± 0.162 0.111 ± 0.030
0.6 0.495± 0.020 0.022± 0.019 0.046± 0.010

Table 6.2: Equalized FNR by fixing 𝑝𝐴 = 0.9, 𝑝𝐵 = 0.1, 𝜇𝐴,+ = 0.7

6.1.1.2 Additional Experiment Results on Real Dataset

# of rounds 𝑝𝐴 𝜇𝐴,+ 𝜇𝐵,+

Adult 24421 0.851 0.26 0.16

German Credit 300 0.853 0.73 0.50

COMPAS 1584 0.398 0.54 0.39

Summary statistics of real data sets

6.1.2 Proofs for Non-delayed Case

We define the cumulative loss of classifier 𝑓 on group 𝑧 as 𝐿𝑓,𝑧 =
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧. The cumu-

lative false positive of 𝑓 on group 𝑧 is the cumulative loss made on the negative examples;

and its expression is 𝐿𝑓,𝑧,− =
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧1{𝑦 = −}. Similarly, we defined the expected loss

on group 𝑧 as E[𝐿𝑧] =
∑︀𝑇

𝑡=1

∑︀
𝑓∈ℱ 𝜋

𝑡
𝑓ℓ

𝑡
𝑓,𝑧 and the expected false positive on group 𝑧 is

E[𝐿𝑧,−] =
∑︀𝑇

𝑡=1

∑︀
𝑓∈ℱ 𝜋

𝑡
𝑓ℓ

𝑡
𝑓,𝑧1{𝑦 = −}.
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6.1.2.1 Proof of Lemma 1

Let Φ𝑡
𝑧,+ =

∑︀
𝑓∈ℱ 𝑤

𝑡
𝑓,𝑧,+. We start computing the expected loss on group 𝑧,+:

E[ℓ𝑡𝑧,+] =
∑︁
𝑓∈ℱ

𝜋𝑡
𝑓,𝑧 · ℓ𝑡𝑓,𝑧1{𝑦 = +}

=
∑︁
𝑓∈ℱ

⎛⎜⎜⎝𝑞𝑡𝑧,+ ·
𝑤𝑓,𝑧,+∑︁

𝑓∈ℱ

𝑤𝑓,𝑧,+

+ 𝑞𝑡𝑧,− ·
𝑤𝑓,𝑧,−∑︁

𝑓∈ℱ

𝑤𝑓,𝑧,−

⎞⎟⎟⎠ · ℓ𝑡𝑓,𝑧1{𝑦 = +}

= 𝑞𝑡𝑧,+ ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧1{𝑦 = +}+ 𝑞𝑡𝑧,− ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧1{𝑦 = +}

= 𝑞𝑡𝑧,+ ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝑞𝑡𝑧,− ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+ (6.1)

The overall expected loss is composed by two terms: the former, which is the expected loss

on group 𝑧,+ when their associated weights 𝑤𝑓,𝑧,+ are selected, and the later, when the

wrong weights 𝑤𝑓,𝑧,− are selected. Both terms are weighted by their respective estimated

rates 𝑞𝑡𝑧,+ and 𝑞𝑡𝑧,−.

Then, we have the following inequality:

Φ𝑡+1
𝑧,+ =

∑︁
𝑓∈ℱ

𝑤𝑡+1
𝑓,𝑧,+

=
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+(1− 𝜂)ℓ

𝑡
𝑓,𝑧1{𝑦=+}

≤
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+(1− 𝜂ℓ𝑡𝑓,𝑧1{𝑦 = +})

=
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+ − 𝜂

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+ℓ

𝑡
𝑓,𝑧,+

= Φ𝑡
𝑧,+(1− 𝜂

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+)
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Thus by the recursive function, we have

Φ𝑇+1
𝑧,+ ≤ Φ1

𝑧,+

𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+)

= 𝑑

𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+). (6.2)

Following the updating rule of the MW algorithm, we have

𝑤𝑇+1
𝑓,𝑧,+ = 𝑤1

𝑓,𝑧,+(1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧 ·1{𝑦=+}

= (1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧,+ (6.3)

where 𝑤𝑡
𝑓,𝑧,+ = 1, as all the weights are initialized.

Using 6.23 and 6.24,

𝑤𝑇+1
𝑓,𝑧,+ = (1− 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓,𝑧,+ ≤ Φ𝑇+1

𝑧,+ ≤ 𝑑
𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+) (6.4)

and taking the logarithm of both sides, we have

ln(1− 𝜂)𝐿𝑓,𝑧,+ ≤ ln 𝑑+
𝑇∑︁
𝑡=1

ln(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+)

ln(1− 𝜂)𝐿𝑓,𝑧,+ ≤ ln 𝑑− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ (6.5)

𝑇∑︁
𝑡=1

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ ≤ (1 + 𝜂)𝐿𝑓,𝑧,+ +
ln 𝑑

𝜂
(6.6)

Equation 6.26 follows because if 𝜂 < 1/2, we can use the inequality ln(1− 𝜂) < −𝜂. This

is intuitive as if we always choose weights for positive examples, it reduces to the same

bound as in the original MW algorithm.

We now assume that the expected error on group 𝑧,+ when wrong weights 𝑤𝑓,𝑧,− are
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selected is bounded as:

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+ ≤

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝛼𝑡
𝑧,− (6.7)

where 𝛼𝑡
𝑧,− < 1 is the difference of loss in expectation made when using the incorrect

weights of the MW algorithm on group 𝑧,+ (Cross-Instance Cost). Then

E[𝐿𝑧,+] =
𝑇∑︁
𝑡=1

(︃
𝑞𝑡𝑧,+ ·

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝑞𝑡𝑧,− ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+

)︃
(6.8)

E[𝐿𝑧,+] ≤
𝑇∑︁
𝑡=1

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ +
∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,− (6.9)

where using 6.27, we finally obtain:

E[𝐿𝑧,+] ≤ (1 + 𝜂)𝐿𝑓,𝑧,+ +
ln 𝑑

𝜂
+
∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,− (6.10)

Similarly,

E[𝐿𝑧,−] ≤ (1 + 𝜂)𝐿𝑓,𝑧,− +
ln 𝑑

𝜂
+
∑︁
𝑡

𝑞𝑡𝑧,+ · 𝛼𝑡
𝑧,+. (6.11)

The expected total errors on group 𝑧 is, adding the two equations above:

E[𝐿𝑧] ≤ (1 + 𝜂)𝐿𝑓,𝑧 + 2
ln 𝑑

𝜂
+ (
∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,− +

∑︁
𝑡

𝑞𝑡𝑧,+ · 𝛼𝑡
𝑧,+)

.

In the same way, the expected total errors (considering 𝑧 = 𝐴,𝐵) is:

E[𝐿] ≤ (1 + 𝜂)𝐿𝑓 + 4
ln 𝑑

𝜂
+ 𝛼 (6.12)

where all the Cross-Instance Costs are condensed in:

𝛼 =
∑︁

𝑧∈{𝐴,𝐵},𝑦∈{−,+}

𝑞𝑧,𝑦
∑︁
𝑡

𝛼𝑡
𝑧,𝑦.
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6.1.2.2 Proof of Lemma 2

Using the same process as for the upper bound, we have:

Φ𝑡+1
𝑧,+ =

∑︁
𝑓∈ℱ

𝑤𝑡+1
𝑓,𝑧,+

=
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+(1− 𝜂)ℓ

𝑡
𝑓,𝑧1{𝑦=+}

≥
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+(1− 𝜂(1 + 𝜂)ℓ𝑡𝑓,𝑧1{𝑦 = +}

=
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+ − 𝜂(1 + 𝜂)

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+ℓ

𝑡
𝑓,𝑧,+

= Φ𝑡
𝑧,+(1− 𝜂(1 + 𝜂)

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+).

Thus, by the recursive function, we have

Φ𝑇+1
𝑧,+ ≥ Φ1

𝑧,+

𝑇∏︁
𝑡=1

(1− 𝜂(1 + 𝜂)
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

𝜑𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+)

= 𝑑

𝑇∏︁
𝑡=1

(1− 𝜂(1 + 𝜂)
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+)

.

Let 𝑓 * be the best expert in hindsight in terms of achieving lowest false positives, we
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have

Φ𝑡
𝑧,+ =

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

≤ 𝑑 ·max
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

= 𝑑 · 𝑤𝑡
𝑓*,𝑧,+

= 𝑑 ·max
𝑓∈ℱ

(1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧 ·1{𝑦=+}

= 𝑑 · (1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓*,𝑧 ·1{𝑦=+}.

Therefore we have:

𝑑 · (1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓*,𝑧 ·1{𝑦=1} ≥ Φ𝑡

𝑧,+ ≥ 𝑑 ·
𝑇∏︁
𝑡=1

[1− 𝜂(1 + 𝜂)
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+]

Taking the log of both sides:

ln(1− 𝜂)𝐿𝑓*,𝑧,+ ≥
𝑇∑︁
𝑡=1

ln

(︃
1− 𝜂(1 + 𝜂)

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+

)︃
(6.13)

ln(1− 𝜂)𝐿𝑓*,𝑧,+ ≥ ln (1− 𝜂(1 + 𝜂))
𝑇∑︁
𝑡=1

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ (6.14)

𝑇∑︁
𝑡=1

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ ≥ 𝛾(𝜂)𝐿𝑓*,𝑧,+ (6.15)

where 𝛾(𝜂) is defined as:

𝛾(𝜂) =
ln(1− 𝜂)

ln (1− 𝜂(1 + 𝜂))

using that 𝑙𝑛(1 − 𝜂(1 + 𝜂)𝑥) ≥ 𝑙𝑛(1 − 𝜂(1 + 𝜂))𝑥 for all 𝑥 ∈ [0, 1] and 𝜂 ∈ (0, 𝜂𝑚𝑎𝑥),

where 𝜂𝑚𝑎𝑥 = −1+
√
5

2
which does not restrict the range of 𝜂 ∈ (0, 0.5).
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Thus, using 6.29, we have:

E[𝐿𝑧,+] =
𝑇∑︁
𝑡=1

(𝑞𝑡𝑧,+
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝑞𝑡𝑧,−
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+

≥ 𝛾(𝜂)𝐿𝑓*,𝑧,+ +
∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,−.

and,

E[𝐿𝑧] ≥ 𝛾(𝜂)𝐿𝑓*,𝑧 + (
∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,− +

∑︁
𝑡

𝑞𝑡𝑧,+ · 𝛼𝑡
𝑧,+).

Finally, the total expected error is lower bounded by:

E[𝐿] ≥ 𝛾(𝜂)𝐿𝑓* + 𝛼. (6.16)

6.1.2.3 Fairness Bound

Proof We assume group A arrives with probability p, group B arrives with probability

1-p, that is, P(𝑧 = 𝐴) = 𝑝. The expected mean label of group A is defined as 𝜇𝐴,+ =

P(𝑦 = +|𝑧 = 𝐴) and mean label of group B is defined as 𝜇𝐵,+ = P(𝑦 = +|𝑧 = 𝐵). Each

individual classifier is 𝜖-fair, thus:

|E𝑥,𝑦,𝑧

[︃
𝐿𝑓,𝐴,−∑︀𝑇

𝑡=1 1{𝑦 = −}1{𝑧 = 𝐴}

]︃
− E𝑥,𝑦,𝑧

[︃
𝐿𝑓,𝐵,−∑︀𝑇

𝑡=1 1{𝑦 = −}1{𝑧 = 𝐵}

]︃
| ≤ 𝜖, ∀𝑓

(6.17)

which represents the cardinality of the selected subset of samples.

The absolute difference of FPR between group A and group B is:

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵| = |E𝑥,𝑦,𝑧

[︃
𝐿𝐴,−∑︀𝑇

𝑡=1 1{𝑧 = 𝐴}{𝑦 = −}
− 𝐿𝐵,−∑︀𝑇

𝑡=1 1{𝑧 = 𝐵}{𝑦 = −}

]︃
|

(6.18)
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For the sake of notation we define

𝐶𝐴,− =
𝑇∑︁
𝑡=1

1{𝑦 = −}1{𝑧 = 𝐴} and 𝐶𝐵,− =
𝑇∑︁
𝑡=1

1{𝑧 = 𝐵}{𝑦 = −}.

Using Lemmas 1 and 2, we have:

|E𝑥,𝑦,𝑧

[︂
𝐿𝐴,−

𝐶𝐴,−
− 𝐿𝐵,−

𝐶𝐵,−

]︂
|

≤ |E𝑥,𝑦,𝑧

[︃
(1 + 𝜂)𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−
+

ln 𝑑
𝜂

𝐶𝐴,−
+

∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝐶𝐴,−
−

𝛾(𝜂)𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−

]︃
|

= |(1 + 𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−

]︂
− 𝛾(𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+(︃∑︁

𝑡

𝑞𝑡𝐴,− · 𝛼𝑡
𝐴,−

𝐶𝐴,−
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−

)︃
+ E𝑥,𝑦,𝑧

[︂
ln 𝑑

𝜂𝐶𝐴,−

]︂
| (6.19)

Using equation 6.37, we have:

|E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐴,−

𝐶𝐴,−

]︂
− E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
| ≤ 𝜖

Moreover, without loss of generality we assume that 𝑓 * makes the smallest average loss on

group B. This is,

E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−

]︂
≤ E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐴,−

𝐶𝐴,−

]︂
≤ E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖.
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Thus, equation 6.19 becomes:

≤ |(1 + 𝜂)

(︂
E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖

)︂
− 𝛾(𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+(︂∑︀

𝑡 𝑞
𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝐶𝐴,−
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−

)︂
+ E𝑥,𝑦,𝑧

[︂
ln 𝑑

𝜂𝐶𝐴,−

]︂
|

≤ | (1 + 𝜂 − 𝛾(𝜂))E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖(1 + 𝜂)+(︂∑︀

𝑡 𝑞
𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝐶𝐴,−
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−

)︂
+ E𝑥,𝑦,𝑧

[︂
ln 𝑑

𝜂𝐶𝐴,−

]︂
|

≤ | (1 + 𝜂 − 𝛾(𝜂))E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖(1 + 𝜂)+(︂∑︀

𝑡 𝑞
𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︂
+

ln 𝑑

𝜂𝑝(1− 𝜇𝐴,+)𝑇
|

≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓* + 𝜖(1 + 𝜂) +

(︂∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︂
+

ln 𝑑

𝜂𝑝(1− 𝜇𝐴,+)𝑇
|

≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓* + 𝜖(1 + 𝜂) +

(︂∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︂
|

where 𝐹𝑃𝑅𝑓* is the FPR of the best classifier 𝑓 * on the best sensitive group 𝑧*. In the

fourth line, when 𝑇 → ∞, the inequality follows from the fact that the last term goes to

zero since its numerator is a constant .

Let 𝑞𝐴,− and 𝑞𝐵,− indicates the converged true value 𝑞𝑡𝐴,− and 𝑞𝑡𝐵,− respectively, where

𝑞𝐴,− = lim𝑡→∞ 𝑞𝑡𝐴,− and 𝑞𝐵,− = lim𝑡→∞ 𝑞𝑡𝐵,−. Let 𝛿𝑡𝐴,− = 𝑞𝑡𝐴,− − 𝑞𝐴,− and 𝛿𝑡𝐵,− =

𝑞𝑡𝐵,− − 𝑞𝐵,− be the estimation errors at round t. By the classical central limit theory, the

estimation errors converge at the rate of 𝑂( 1√
𝑡
). Therefore,

∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

=

∑︀
𝑡(𝑞

𝑡
𝐴,− − 𝑞𝐴,−) · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡(𝑞
𝑡
𝐵,− − 𝑞𝐵,−) · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇
+

𝑞𝐴,−
∑︀

𝑡 ·𝛼𝑡
𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−

𝑞𝐵,−
∑︀

𝑡 ·𝛼𝑡
𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇⏟  ⏞  
𝑄𝐹𝑃𝑅

=

∑︀
𝑡 𝛿

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−
∑︀

𝑡 𝛿
𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇
+𝑄𝐹𝑃𝑅

=

∑︀
𝑡 𝑂( 1√

𝑡
)

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−

∑︀
𝑡 𝑂( 1√

𝑡
)

𝑝𝐵(1− 𝜇𝐵,+)𝑇
+𝑄𝐹𝑃𝑅
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where the last inequality follows the fact that 𝛼𝑡
𝐴,− < 1. Since

∑︀
𝑡 𝑂( 1√

𝑡
)

𝑝𝐴(1−𝜇𝐴,+)𝑇
< 𝑂(2

√
𝑇 )

𝑝𝐴(1−𝜇𝐴,+)𝑇
.

When 𝑇 →∞, the estimation errors are sub-linear and thus go to zero. Therefore,

|E𝑥,𝑦,𝑧

[︂
𝐿𝐴,−

𝐶𝐴,−
− 𝐿𝐵,−

𝐶𝐵,−

]︂
| ≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓*+𝜖(1+𝜂)+

(︂
𝑞𝐴,− ·

∑︀
𝑡 𝛼

𝑡
𝐴,−

𝑝𝐴(1− 𝜇𝐴,+)𝑇
−

𝑞𝐵,− ·
∑︀

𝑡 𝛼
𝑡
𝐵,−

𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︂
⏟  ⏞  

𝑄𝐹𝑃𝑅

|

(6.20)

Similarly, for the absolute difference of FNR between group A and group B, we have:

|E𝑥,𝑦,𝑧

[︂
𝐿𝐴,+

𝐶𝐴,+

− 𝐿𝐵,+

𝐶𝐵,+

]︂
| ≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑁𝑅𝑓*+𝜖(1+𝜂)+

(︂
𝑞𝐴,+ ·

∑︀
𝑡 𝛼

𝑡
𝐴,+

𝑝𝐴𝜇𝐴,+𝑇
−

𝑞𝐵,+ ·
∑︀

𝑡 𝛼
𝑡
𝐵,+

𝑝𝐵𝜇𝐵,+𝑇

)︂
⏟  ⏞  

𝑄𝐹𝑁𝑅

|

(6.21)

where 𝐹𝑃𝑅𝑓*(𝐹𝑁𝑅𝑓*) is the FPR(FNR) of the best classifier 𝑓 * on the best sensitive

group 𝑧*.

6.1.3 Proofs for Delayed Case

6.1.3.1 Proof of Lemma 1

Let Φ𝑡
𝑧,+ =

∑︀
𝑓∈ℱ 𝑤

𝑡
𝑓,𝑧,+. Note that in the delayed feedback setting, the weight updated

will incur a delay, but the loss will still be updated every round. Thus the expected loss on

group 𝑧,+ at each round is the same as before:

E[ℓ𝑡𝑧,+] = 𝑞𝑡𝑧,+ ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝑞𝑡𝑧,− ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+ (6.22)

Then, the weight transition would be different, where multiple update step could happen

in each round. On the other hand, if 𝐷𝑡 is a empty set, there will be no update for round 𝑡.
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Φ𝑡+1
𝑧,+ =

∑︁
𝑓∈ℱ

𝑤𝑡+1
𝑓,𝑧,+

=
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+(1− 𝜂)

∑︀
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧1{𝑦=+}

= Φ𝑡
𝑧,+(1− 𝜂

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+)

Thus by the recursive function, we have

Φ𝑇+1
𝑧,+ ≤ Φ1

𝑧,+

𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+)

= 𝑑
𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+). (6.23)

Although the weight update uses a different schedule, there will still be T updates after

T rounds. Thus the same MW update rule applies:

𝑤𝑇+1
𝑓,𝑧,+ = 𝑤1

𝑓,𝑧,+(1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧 ·1{𝑦=+}

= (1− 𝜂)
∑︀𝑇

𝑡=1 ℓ
𝑡
𝑓,𝑧,+ (6.24)

where 𝑤𝑡
𝑓,𝑧,+ = 1, as all the weights are initialized.

Using 6.23 and 6.24,

𝑤𝑇+1
𝑓,𝑧,+ = (1− 𝜂)

∑︀𝑇
𝑡=1 ℓ

𝑡
𝑓,𝑧,+ ≤ Φ𝑇+1

𝑧,+ ≤ 𝑑

𝑇∏︁
𝑡=1

(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+) (6.25)
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and taking the logarithm of both sides, we have

ln(1− 𝜂)𝐿𝑓,𝑧,+ ≤ ln 𝑑+
𝑇∑︁
𝑡=1

ln(1− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+)

ln(1− 𝜂)𝐿𝑓,𝑧,+ ≤ ln 𝑑− 𝜂
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ (6.26)

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ ≤ (1 + 𝜂)𝐿𝑓,𝑧,+ +
ln 𝑑

𝜂
(6.27)

Equation 6.26 follows because if 𝜂 < 1/2, we can use the inequality ln(1− 𝜂) < −𝜂. This

is intuitive as if we always choose weights for positive examples, it reduces to the same

bound as in the original MW algorithm.

As before, we assume that the expected error on group 𝑧,+ when wrong weights 𝑤𝑓,𝑧,−

are selected is bounded as:

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
· ℓ𝑡𝑓,𝑧,+ ≤

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

· ℓ𝑡𝑓,𝑧,+ + 𝛼𝑡
𝑧,− (6.28)

Let 𝐷𝑚𝑎𝑥
𝑧,+ = max𝑡 |𝒟𝑡| be the maximum cardinality of feedback set, we have:

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ ≤
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ +
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+𝛼
𝑡
𝑧,− (6.29)

where 𝛼𝑡
𝑧,− < 1 is the difference of loss in expectation made when using the incorrect

weights of the MW algorithm on group 𝑧,+ (Cross-Instance Cost). Then

E[𝐿𝑧,+] =
𝑇∑︁
𝑡=1

(︃
𝑞𝑡𝑧,+ ·

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ + 𝑞𝑡𝑧,− ·
∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,−

Φ𝑡
𝑧,−
·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+

)︃
(6.30)

E[𝐿𝑧,+] ≤
𝑇∑︁
𝑡=1

∑︁
𝑓∈ℱ

𝑤𝑡
𝑓,𝑧,+

Φ𝑡
𝑧,+

·
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+ +
𝑇∑︁
𝑡=1

𝑞𝑡𝑧,−
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+𝛼
𝑡
𝑧,− (6.31)
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where using 6.27, we finally obtain:

E[𝐿𝑧,+] ≤ (1 + 𝜂)𝐿𝑓,𝑧,+ +
ln 𝑑

𝜂
+

𝑇∑︁
𝑡=1

𝑞𝑡𝑧,−
∑︁
𝜏∈𝐷𝑡

ℓ𝜏𝑓,𝑧,+𝛼
𝑡
𝑧,− (6.32)

≤ (1 + 𝜂)𝐿𝑓,𝑧,+ +
ln 𝑑

𝜂
+𝐷𝑚𝑎𝑥

𝑧,+

𝑇∑︁
𝑡=1

𝑞𝑡𝑧,−𝛼
𝑡
𝑧,− (6.33)

Similarly,

E[𝐿𝑧,−] ≤ (1 + 𝜂)𝐿𝑓,𝑧,− +
ln 𝑑

𝜂
+𝐷𝑚𝑎𝑥

𝑧,−

∑︁
𝑡

𝑞𝑡𝑧,+ · 𝛼𝑡
𝑧,+. (6.34)

The expected total errors on group 𝑧 is, adding the two equations above:

E[𝐿𝑧] ≤ (1 + 𝜂)𝐿𝑓,𝑧 + 2
ln 𝑑

𝜂
+ (𝐷𝑚𝑎𝑥

𝑧,+

∑︁
𝑡

𝑞𝑡𝑧,− · 𝛼𝑡
𝑧,− +𝐷𝑚𝑎𝑥

𝑧,−

∑︁
𝑡

𝑞𝑡𝑧,+ · 𝛼𝑡
𝑧,+)

. Let 𝐷𝑚𝑎𝑥 = max𝑡,𝑧,𝑦 𝐷
𝑚𝑎𝑥
𝑧,𝑦 In the same way, the expected total errors (considering 𝑧 =

𝐴,𝐵) is:

E[𝐿] ≤ (1 + 𝜂)𝐿𝑓 + 4
ln 𝑑

𝜂
+ 𝛼𝐷𝑚𝑎𝑥 (6.35)

where all the Cross-Instance Costs are condensed in:

𝛼 =
∑︁

𝑧∈{𝐴,𝐵},𝑦∈{−,+}

𝑞𝑧,𝑦
∑︁
𝑡

𝛼𝑡
𝑧,𝑦.

6.1.3.2 Proof of Lemma 2

The proof of the lower bound for the loss is largely the same as the non-delayed case, and

therefore we only present the final result here:

E[𝐿] ≥ 𝛾(𝜂)𝐿𝑓* + 𝛼𝐷𝑚𝑎𝑥. (6.36)
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6.1.3.3 Fairness Bound

Proof We assume group A arrives with probability p, group B arrives with probability

1-p, that is, P(𝑧 = 𝐴) = 𝑝. The expected mean label of group A is defined as 𝜇𝐴,+ =

P(𝑦 = +|𝑧 = 𝐴) and mean label of group B is defined as 𝜇𝐵,+ = P(𝑦 = +|𝑧 = 𝐵). Each

individual classifier is 𝜖-fair, thus:

|E𝑥,𝑦,𝑧

[︃
𝐿𝑓,𝐴,−∑︀𝑇

𝑡=1 1{𝑦 = −}1{𝑧 = 𝐴}

]︃
− E𝑥,𝑦,𝑧

[︃
𝐿𝑓,𝐵,−∑︀𝑇

𝑡=1 1{𝑦 = −}1{𝑧 = 𝐵}

]︃
| ≤ 𝜖, ∀𝑓

(6.37)

which represents the cardinality of the selected subset of samples.

The absolute difference of FPR between group A and group B is:

|𝐹𝑃𝑅𝐴 − 𝐹𝑃𝑅𝐵| = |E𝑥,𝑦,𝑧

[︃
𝐿𝐴,−∑︀𝑇

𝑡=1 1{𝑧 = 𝐴}{𝑦 = −}
− 𝐿𝐵,−∑︀𝑇

𝑡=1 1{𝑧 = 𝐵}{𝑦 = −}

]︃
|

(6.38)

For the sake of notation we define

𝐶𝐴,− =
𝑇∑︁
𝑡=1

1{𝑦 = −}1{𝑧 = 𝐴} and 𝐶𝐵,− =
𝑇∑︁
𝑡=1

1{𝑧 = 𝐵}{𝑦 = −}.

Using Lemmas 1 and 2, we have:
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|E𝑥,𝑦,𝑧

[︂
𝐿𝐴,−

𝐶𝐴,−
− 𝐿𝐵,−

𝐶𝐵,−

]︂
|

≤ |E𝑥,𝑦,𝑧[
(1 + 𝜂)𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−
+

ln 𝑑
𝜂

𝐶𝐴,−
+

𝐷𝑚𝑎𝑥
𝐴,−

∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝐶𝐴,−

−
𝛾(𝜂)𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−
−

𝐷𝑚𝑎𝑥
𝐵,−

∑︀
𝑡 𝑞

𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−
]|

= |(1 + 𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−

]︂
− 𝛾(𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+(︂

𝐷𝑚𝑎𝑥
𝐴,−

∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−

𝐶𝐴,−
−

𝐷𝑚𝑎𝑥
𝐵,−

∑︀
𝑡 𝑞

𝑡
𝐵,− · 𝛼𝑡

𝐵,−

𝐶𝐵,−

)︂
+ E𝑥,𝑦,𝑧

[︂
ln 𝑑

𝜂𝐶𝐴,−

]︂
|

Using equation 6.37, we have:

E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐴,−

𝐶𝐴,−

]︂
− E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
| ≤ 𝜖

Moreover, without loss of generality we assume that 𝑓 * makes the smallest average loss on

group B. This is,

E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐴,−),𝐴,−

𝐶𝐴,−

]︂
≤ E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐴,−

𝐶𝐴,−

]︂
≤ E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖.

Thus, equation 6.19 becomes:

≤ |(1 + 𝜂)

(︂
E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+ 𝜖

)︂
− 𝛾(𝜂)E𝑥,𝑦,𝑧

[︂
𝐿𝑓*(𝐵,−),𝐵,−

𝐶𝐵,−

]︂
+(︃

𝐷𝑚𝑎𝑥
𝐴,−

∑︀
𝑡 𝑞

𝑡
𝐴,− · 𝛼𝑡

𝐴,−
𝐶𝐴,−

−
𝐷𝑚𝑎𝑥

𝐵,−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−
𝐶𝐵,−

)︃
+ E𝑥,𝑦,𝑧

[︂
ln 𝑑

𝜂𝐶𝐴,−

]︂
|

≤ | (1 + 𝜂 − 𝛾(𝜂))𝐹𝑃𝑅𝑓* + 𝜖(1 + 𝜂) +

(︃
𝐷𝑚𝑎𝑥

𝐴,−
∑︀

𝑡 𝑞
𝑡
𝐴,− · 𝛼𝑡

𝐴,−
𝑝𝐴(1− 𝜇𝐴,+)𝑇

−
𝐷𝑚𝑎𝑥

𝐵,−
∑︀

𝑡 𝑞
𝑡
𝐵,− · 𝛼𝑡

𝐵,−
𝑝𝐵(1− 𝜇𝐵,+)𝑇

)︃
|
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6.2 Appendix for Chapter 4: Fairness with Dynamic Feed-

back

6.2.1 Additional Experiments Results

6.2.1.1 Thresholds for each policy as cost ratio increases

In figure 6-2, we plot the average thresholds of each policy as a function of the cost ratio.

Regardless of the group, MaxUtil’s threshold only depends on the parameter for the utility

function ( 𝑢𝑓𝑝

𝑢𝑓𝑝+𝑢𝑡𝑝
), which is set as 0.5 in the experiment.

For DemoPar policy, it consistently overcompensate for the disadvantaged group by assigning a

lower average threshold for the disadvantaged group. Remember that demographic parity constraint

equalize the rate of possible decisions, and if the disadvantaged group has a lower target variable,

the threshold will also be lower.

The case with EqOpp is a little bit more complicated. As cost ratio increases, EqOpp switches

from lower threshold for disadvantaged group to lower threshold for advantaged group. The reason

is that equalized opportunity requires both group have equalized false positive rates. In the loan

application case, this means the decision maker should issues the same percentage of people loans

among those who can repay. Higher cost ratio means the stake of defaulting (false positive rate) is

higher for an individual. When the stake of false positive rate is high for an individual, and will lead

to the greater target variable decreases. By assigning a lower threshold for the advantaged group,

EqOpp intentionally increases the false positive rate of the advantaged group in order to match that

of the disadvantaged group.
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Figure 6-2: Threshold for different fairness policies as a function of cost ratio. The dashed line indi-
cates the threshold for advantaged group, and the solid line indicates the threshold for disadvantaged
group.
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