
Towards Deployable Robust Text Classifiers

by

Lei Xu

B.E., Tsinghua University (2017)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

September 28, 2022

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kalyan Veeramachaneni

Principal Research Scientist
Laboratory for Information and Decision Systems

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students





Towards Deployable Robust Text Classifiers

by

Lei Xu

Submitted to the Department of Electrical Engineering and Computer Science
on September 28, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Text classification has been studied for decades as a fundamental task in natural lan-
guage processing. Deploying classifiers enables more efficient information processing,
which is useful for various applications, including decision-making. However, clas-
sifiers also present challenging and long-standing problems. As their use increases,
expectations about their level of robustness, fairness, accuracy, and other metrics
increase in turn.

In this dissertation, we aim to develop more deployable and robust text classifiers,
with a focus on improving classifier robustness against adversarial attacks by develop-
ing both attack and defense approaches. Adversarial attacks are a security concern for
text classifiers, as they involve cases where a malicious user takes a sentence and per-
turbs it slightly to manipulate the classifier’s output. To design more effective attack
methods, we focus first on improving adversarial sentence quality – unlike existing
methods that prioritize misclassification and ignore sentence similarity and fluency,
we synthesize these three criteria into a combined critique score. We then outline a
rewrite and rollback framework for optimizing this score and achieving state-of-the-
art attack success rates while improving similarity and fluency. We focus second on
computational requirements. Existing methods typically use combinatorial search to
find adversarial examples that alter multiple words, which are inefficient and require
many queries to the classifier. We overcome this problem by proposing a single-word
adversarial perturbation attack. This attack only needs to replace a single word in
the original sentence with a high-adversarial-capacity word, significantly improving
efficiency while the attack success rate remains similar to that of existing methods.

We then turn to defense. Currently, the most common approach for defending
against attacks is training classifiers using adversarial examples as data augmenta-
tion, a method limited by the inefficiency of many attack methods. We show that
training classifiers with data augmentation through our efficient single-word perturba-
tion attack can improve the robustness of the classifier against other attack methods.
We also design in situ data augmentation to counteract adversarial perturbations in
the classifier input. We use the gradient norm to identify keywords for classification
and a pre-trained language model to replace them. Our in situ augmentation can
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effectively improve robustness and does not require tuning the classifier.
Finally, we explore the vulnerability of a very recent text classification architecture

– prompt-based classifiers — and find them to be vulnerable to attacks as well. We
also develop a library called Fibber to facilitate adversarial robustness research.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist, Laboratory for Information and Decision Systems
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Chapter 1

Introduction

Text classifiers are everywhere. With the contemporary proliferation of artificial

intelligence, text classifiers are increasingly being deployed across plenty of systems 1.

Classifiers are so widespread, in fact, that in recent years, most people have interacted

with them almost every day without knowing. For example, when we use voice to

control our smartphones, the intentions of our utterances are recognized by a classi-

fier [Ren and Xue, 2020]. Companies use classifiers to automatically filter resumes

and speed up hiring [Ali et al., 2022, Chen et al., 2018]. Academic digital libraries

use classifiers to automatically categorize papers [Li et al., 2019c]. Social media such

as Twitter or Reddit uses classifiers not only to identify user sentiment [Colbaugh

and Glass, 2010], but also to detect misinformation such as toxic speech [Risch and

Krestel, 2020] and fake news [Shu et al., 2017] and to filter annoying spam [Guzella

and Caminhas, 2009]. These classifiers being developed and deployed thus have an

extensive impact on our daily lives, controlling the information we can reach from

the Internet and influencing various decision-making processes. The ever-increasing

use of classifiers places high demands on their robustness to reduce potential negative

effects, providing stability and assurance.

Chapter Outline

1The focus of this thesis is text classifiers. In this chapter and in subsequent chapters we refer
to text classifiers and classifiers to mean the same.
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• We introduce the classifier deployment problems in Section 1.1.

• We outline the recent research towards deployable and robust classifiers in Sec-

tion 1.2.

• We discuss the challenges in constructing adversarial examples in Section 1.3

• We present our methods and contributions in Section 1.4.

• We lay out the organization of the rest of the thesis in Section 1.5.

1.1 Problems Encountered while Deploying Classi-

fiers

Despite text classifiers being widely deployed, there are still challenges in deploying

them. We find classifier robustness and cybersecurity threats are two of them.

1.1.1 Classifier Robustness

Although the accuracy of text classifiers has surpassed that of humans [Wang et al.,

2019a] when the training and test data are independent and identically distributed

(i.i.d.), existing classifier models are still fairly unrobust, as evidenced by their catas-

trophic performance degradation when encountering out-of-distribution or maliciously

constructed inputs [Wang et al., 2022]. This would pose a potential risk to the infor-

mation system using classifiers. The robustness of a text classifier is usually measured

by two aspects: adversarial robustness and distribution shift robustness [Wang et al.,

2022]. These will be introduced in what follows.

Adversarial robustness. Adversarial robustness is defined as the robustness of a

classifier against maliciously crafted inputs. Assume there is a malicious user who

interacts with a classifier but did not get the prediction in his favour; it follows that

this user’s second attempt will slightly modify the input to manipulate the classifier

output and thus gain unfair privilege or hinder other users. Adversarial attack was
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first analyzed in image classification. By applying continuous invisible perturbation

on an image, the classifier will misclassify the image with high confidence (Figure 1-

1) [Goodfellow et al., 2015]. This vulnerability can be exploited in the real world,

causing real damage. For example, traffic sign recognition systems can be broken

down by applying stickers with special patterns on them (Figure 1-2) [Eykholt et al.,

2018].

Panda 
57.7% confidence

Gibbon 
99.3% confidence

Figure 1-1: An example of adversarial attack on image classifiers by Goodfellow et al.
[2015]. After applying a small perturbation on an image, a panda is misclassified as
gibbon by the classifier with high confidence.

Figure 1-2: An example of adversarial attack on image classifiers in the physical
world by Eykholt et al. [2018]. When applying a few stickers on the stop signs, they
are misclassified as speed limit signs by an image classifier which breaks down the
autonomous driving systems.

Similar attacks can be applied on text classifiers. The attacker can perturb char-

acters to introduce typos [Ebrahimi et al., 2018], substitute words with synonyms [Jin

et al., 2020b] or rewrite whole sentences [Qi et al., 2021b] to trigger misclassification.

Table 1.1 shows examples of textual adversarial attack. More attack methods are dis-

cussed in Section 3.4. Textual adversarial attacks can also cause real-world damage
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Attack Method: HotFlip – a character-level attack by Ebrahimi et al. [2018].
Ori (Classifier Prediction: World): South Africa’s historic Soweto township
marks its 100th birthday on Tuesday in a mood of optimism
Adv (Classifier Prediction: Sci/Tech): South Africa’s historic Soweto township
marks its 100th birthday on Tuesday in a mooP of optimism.

Attack Method: TextFooler – a word-level attack by Jin et al. [2020a].
Ori (Classifier Prediction: Negative): The characters, cast in impossibly con-
trived situations , are totally estranged from reality.
Adv (Classifier Prediction: Positive):The characters, cast in impossibly engi-
neered circumstances , are fully estranged from reality.

Attack Method: StyleAttack – a sentence-level attack by Qi et al. [2021b].
Ori (Classifier Prediction: Positive): For anyone unfamiliar with pentacostal
practices in general and theatrical phenomenon of hell houses in particular, it’s an
eye-opener.
Adv (Classifier Prediction: Negative): This eye-opener is for anyone who has
no idea about pentacostal practices and the theatrical phenomenon of hell.

Table 1.1: Examples of existing character-, word- and sentence-level textual adver-
sarial attacks. “Ori” means the original sentence, and “adv” means the corresponding
adversarial sentence.

where the attacker can deliver misinformation by working around filters or manipu-

lating a classifier prediction in his favor to gain an unfair advantage. It poses a threat

to cybersecurity and we discuss it in Section 1.1.2.

Distribution shift robustness. Besides adversarial attacks, the performance of a

classifier degenerates when its incoming input text distribution is different from that

of its training data. In fact, training data and the input from real users are not i.i.d.

in many scenarios, leading to degenerated performance. There are several reasons for

this phenomenon. First, the distribution of language is naturally shifting. Because

language is constantly evolving, current buzzwords are quite different from those of

a few years ago, which can lead to a shift in distribution. The race, gender, and

geographic location of speakers can also affect usage habits, causing their language

distribution to deviate from the training data and thereby affecting the accuracy of the

classifier, which is also known as out-of-distribution generalization [Hendrycks et al.,

2020]. Second, due to the notorious cost and difficulties of collecting human-labeled
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training data, people often use available but less-than-ideal datasets to train models

and generalize the models to similar tasks in other domains without accounting for

whether distribution shifts between different domains will cause the model to perform

poorly. For example, if a review sentiment classifier trained on one type of product

is applied to another type, the correlation between words and sentiment will change,

thus requiring domain adaptation [Blitzer et al., 2007]. Third, the lack of training

data may also cause it to fail to represent the text distribution within the domain,

making the in-domain test data look different from training data. Distribution shift

may lead to poor classification performance or unfair prediction to certain groups and

thus needs to be carefully examined and continuously monitored after deployment.

1.1.2 Cybersecurity Threats

Cyber attacks, aimed at unauthorized access to data, preventing normal users from

accessing a system, or breaching network system hardware, are commonplace today.

Since text classifiers are often deployed in cyberspace, they are also at risk of a cyber

attack. Common cyber attacks could threat classification models:

• A distributed denial of service (DDoS) attack works by sending a large number

of requests to overwhelm a server to interrupt normal traffic. Modern text

classifiers can be vulnerable to this attack because they need to be deployed

on special servers with GPU or TPU accelerators. Such computing resources

are sometimes limited. When there are a large number of requests, computing

resources will be exhausted making a classifier unable to provide service.

• An insider attack is an attempt by an individual within a company or organiza-

tion to compromise its own system. If a company deploys a classifier, developers

with full model access can analyze and disclose its vulnerabilities, or plant back-

doors while training the model. That way, they can use these vulnerabilities

later to manipulate the classifier’s predictions.

The vulnerability of text classifiers can lead to new cyber threats:
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• Text classifiers can make mistakes due to the adversarial robustness issue. A

malicious user could leverage it and find a way to craft input to get the prediction

they want. For example, a person craft the spam text to work around the spam

detector.

• Deployed text classifiers are usually retrained on users’ input data to better

fit the real scenario. Malicious users can exploit this mechanism by sending

carefully crafted data to the classifier. Once the classifier is retrained on these

data, they may learn the spurious correlations in the data and become more

vulnerable. Such attacks are also known as data poisoning attacks [Wallace

et al., 2021].

Discussion on two hypothetical cyber attacks using adversarial vulnerabil-

ity of classifiers.

Scenario 1. Suppose malicious users are trying to place and profit from illegal ads

while a text classifier is used to detect such ads [Jain et al., 2016]. The malicious users

will need to carefully rewrite each ad to fool the misinformation detector, but retain

the same meaning so the information can be passed on to other users. Although

several adversarial attack algorithms [Jin et al., 2020b, Li et al., 2020b] are available,

there are barriers to using them directly in cyberspace as shown on Figure 1-3. First,

these attack methods, although designed to be agnostic on the classifier architecture,

require knowledge of the predictive probabilities of the classifier. Attackers do not

have access to this information. Second, the attack methods require hundreds or

thousands of queries to the classifier, which makes them easy to identify and block. A

potential solution for attackers is to exploit the transferability of adversarial examples,

meaning that adversarial examples on one classifier may also trigger misclassification

on other classifiers. Thus attackers can first build a similar classifier on their own and

find adversarial examples, then send these examples to the deployed classifier with

the hope that they will. However, this approach will not succeed as frequently as

directly attacking the deployed classifier when the attacker has the access.
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Malicious
Attacker Firewall

OK  1% 

illegal 99%Attacker send text
to the classifier.

Classifier makes
a prediction.

Predicted probability loops back to the attacker.

Malicious
Attacker

Black-box
Misinformation

Information Classifier

Predicted
 Probability

illegal

Black-box
Misinformation

Information Classifier

Attacker send text
to the classifier.

Firewall may
block attacker's
access.

Only hard prediction (not the probability) loops back to the attacker.

Classifier makes
a prediction.

Prediction Social Media

Illegal message
cannot be sent.

Black-box attack in research papers

Black-box attack in real world

Figure 1-3: Challenges for an attacker to attack a deployed misinformation detector.
The black-box attack setup in research papers (top) assumes the attacker can access
the predicted probability. In real-world setup (bottom), they can only access the hard
prediction and are monitored by the firewall.

Scenario 2. Suppose a company is using a text classifier to automatically process

job applicants’ resumes. The classifier has a word perturbation vulnerability such

that an applicant will be marked as having a high-quality technical background if the

word “cyber” appears in the resume. Such single-word vulnerabilities are very common

among text classifiers, as shown in our work [Xu et al., 2022a]. The developer of

the classifier might find this vulnerability and share it with his friends so that they

can improve their chances of getting hired by including the trigger word in their

resumes. This vulnerability will make the hiring process unfair to other applicants.

Such single-word vulnerabilities can either be discovered by classifier developers or

conveyed in users’ discussion. After knowing about this vulnerability, exploiting it

requires neither multiple queries to the classifier nor modifying more than one word,

making it extremely difficult to detect.

In summary, most existing attack methods assume access to the probability dis-

tribution predicted by the classifier and require multiple queries of the classifier to
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derive an adversarial sentence. This assumption is unrealistic, and there are cyberse-

curity protocols that can catch such anomalous behavior and defend against attacks.

However, in some special cases, attackers can exploit the vulnerability of the classifier

and cause unfair or harmful results, utilizing transferability of adversarial examples

or single-word perturbation. Developers with full access to classifiers can also iden-

tify classifier vulnerabilities or backdoors, and use them improperly without being

noticed. Therefore, it is important to understand and improve the robustness of the

classifier.

1.2 Towards Improving Classifier Deployability and

Robustness

In the past few years, considering the numerous vulnerabilities of text classifiers

mentioned in the previous section and their possible impact; the research community

has started to focus on a systematic way to improve robustness of these classifiers.

Much of this research uses the terminology of attack and defense methods. Here we

briefly define those terms and connect it to the goal of this thesis – towards improving

text classifier’s deployability and robustness.

In the traditional workflow, a developer interested in creating a text classifier

would gather labeled training examples, train, test, validate and deploy a classifier.

In the new workflow, a developer takes the following steps.

Develop a text classifier. Use the classical way of train/test/validate methodol-

ogy, or choose from pre-existing models for a given classification task.

Construct adversarial examples. Use techniques and algorithms much like the

ones presented in this thesis construct adversarial examples to find the vulnerabilities

of the classifier. These methods are known as adversarial attacks. In section 1.2.1 we

define the foundational piece in creating adversarial attacks – an adversarial example.

In section 1.2.2 we discuss the broad categories of adversarial attacks. The core of
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our work in this thesis is in constructing adversarial attacks and in section 1.3 we

present the challenges in constructing adversarial examples. It is however, important

to note that although these techniques are called adversarial attacks these techniques

are meant for the developer of the text classifier to use.

Create defense methods. Use the information gathered during the aforementioned

attack process, and the data collected (for example, vulnerabilities found, or adver-

sarial sentences) to improve the base text classifier, or create additional methods to

make the base classifier more robust, or add additional guardrails when it is deployed.

These methods are called defense methods. These defense methods can take the shape

or form of:

• Adding additional guardrails: With known classifier vulnerabilities, a de-

veloper can design proper protocols and protect core classifiers from being ex-

ploited by malicious attackers. For example, one can design a filter that looks

for patterns in the sentence before sending it to a classifier.

• Improve training methods: Attack methods also inspire effective defenses,

including better model architectures or training schemas, to help fundamentally

improve core classifiers and make them more robust. In section 1.2.3 we present

different types of defense methods.

• Improve classifier biases and fairness: Adversarial attacks can also serve

as an analyzing tool to identify spurious features learned by the model or bias in

the training data, so that developers understand both classifier vulnerabilities

and potential risks.

Verify robustness and deploy the classifier. Finally, after these steps, a devel-

oper can deploy the classifier with a greater degree of confidence. And from time to

time repeat these steps, training with new data, identifying more vulnerabilities and

improving the classifier robustness.
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1.2.1 What is an adversarial example?

Adversarial examples cause classifiers to misclassify input text through subtly chang-

ing a benign sentence using an adversarial attack method. Specifically, given a clas-

sifier 𝑓(·), a benign input sentence x = 𝑥1, . . . , 𝑥𝑙 with length 𝑙, and its classification

label 𝑦, the objective of an attack method 𝒜(x, 𝑦, 𝑓) is to

construct u = 𝑢1, . . . , 𝑢𝑙′ satisfying 4 conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u is misclassified, i.e., 𝑓(u) ̸= 𝑦,

Human considers u to be a fluent sentence,

Human considers u to be semantically similar to x,

Human considers u to preserve the label 𝑦.

where 𝑙′ is the length of the adversarial sentence.

1.2.2 Types of Attack Methods

Existing attack methods can be categorized from different perspectives. Considering

the granularity of the perturbation, there are character-, word- and sentence-level

attacks. Attacks can also be grouped by their model access

• Black-box attack methods require minimum knowledge of the classifier. For

each sentence, they perturb the sentence to construct a corresponding adver-

sarial sentence by only accessing the classifier prediction. These methods are

considered practical in attacking real systems.

• White-box attack methods also make specific perturbations in each sentence

to construct corresponding adversarial examples, but they assume full knowl-

edge of the model including model architecture, parameters, training data, etc.

Therefore, they can be applied to very limited attack scenarios, such as in-

sider attacks. These methods are mainly considered as a tool to analyze the

robustness of a classifier.
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• Universal trigger attack methods first generate a set of triggers, then con-

struct adversarial sentences by simply injecting one of the triggers to the text.

So once the trigger set is found, this type of attack only accesses classifier pre-

diction. But the construction of a trigger set sometimes requires full access to

the classifier.

1.2.3 Types of Defense Methods

Defense methods against adversarial attacks mostly approach in two directions.

• Data-driven approaches improve the classifier robustness by augmenting the

training data. For example, adversarial training uses available attack methods

to generate adversarial examples and train the classifier on them to resist similar

attacks.

• Modeling-and-training-driven approaches design new data transforma-

tion, model architectures, loss functions, or optimization strategies to improve

the robustness.

Examples of attack and defense methods are given in Section 3.4.

1.3 Challenges in Constructing Adversarial Exam-

ples

Generating adversarial sentences is a non-trivial task. There are several challenges in

constructing high-quality legitimate adversarial sentences.

1.3.1 Discrete Search Space

In the context of image classifiers, adversarial examples can be found using gradient

descent, essentially because every pixel in an image can be viewed as a continuous

random variable. In text classification, most classifiers operate at the level of words,
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treating individual words as a series of discrete variables. Although words are con-

verted to continuous word embeddings as input, perturbing embeddings is insufficient

because a perturbed embedding is unlikely to be converted back to a word in the vo-

cabulary. Optimizing discrete variables often requires heuristic search algorithms.

In order to trigger misclassification, such search algorithms usually need to query

the classifier for the results of a large number of similar sentences; this is inefficient

because recent deep-neural-network-based classifiers are computationally expensive.

1.3.2 Human Evaluation Challenge

Adversarial sentences need to have high similarity, good fluency and preserve the

original label. Although automatic proxy measures can be used for these criteria,

human validation is necessary to ensure these adversarial sentences are legitimate.

Asking humans for annotations is not only financially expensive and time consuming,

but also introduces more challenges. Similarity measurement for a pair of sentences is

task-dependent. It would be challenging for annotators to select a proper similarity

granularity. Label preservation is also challenging to annotate because some clas-

sification tasks are difficult for human beings. Human annotation also suffers from

human bias and high volatility.

1.4 Our Approaches and Contributions

Given the adversarial vulnerability of classifiers, the goal of this thesis is to build

robust classifiers that can cope with adversarial attacks. We address this problem by

considering the positions of both attackers and defenders.

1.4.1 Our Approaches

To address these challenges, we propose multiple attack and defense methods as

summarized on Table 1.2.
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Method Type Reference

Attack R&R Black-box Section 4.1
SAP-Attack Universal trigger Section 4.2
BToP/ AToP Universal trigger Chapter 6

Defense SAP-Defense Data-driven Section 5.1
LMAg Modeling-and-training-driven Section 5.2

Table 1.2: A summary of our adversarial attack and defense methods.

Our Approaches to Attack Classifiers

Our first goal is to generate high-quality adversarial examples which maintain good

similarity and fluency. To achieve this, we propose a critique score which synthesizes

misclassification, similarity, and fluency and layout a rewrite and rollback strategy

(R&R) to optimize this score. Compared to existing methods that only aspire to

misclassification and consider similarity and fluency as hard constraints, our method

achieves higher attack success rate with better similarity and fluency. We evaluate

our method on 5 representative datasets and 3 classifier architectures. Our method

outperforms current state-of-the-art in attack success rate by +16.2%, +12.8%, and

+14.0% on BERT-base [Devlin et al., 2019], RoBERTa-large [Liu et al., 2019], and

FastText [Joulin et al., 2017a] classifiers respectively.

In order to improve attack efficiency and make attacks applicable to practical sce-

narios, we propose a single-word adversarial perturbation attack (SAP-Attack). By

first finding a set of words that are most capable of changing prediction, adversarial

sentences can be constructed by injecting one of these words into the sentence. Exper-

imental results on 4 datasets with BERT-base, distilBERT-base [Sanh et al., 2019],

and RoBERTa-large classifiers show that SAP-Attack is comparable with state-of-

the-art methods.

Our Approaches to Defend against Adversarial Attacks

One standard way to defend against adversarial examples is to add adversarial ex-

amples into a training set and fine-tune the classifier. However, the efficiency of

adversarial attack methods is a barrier for adversarial training. We leverage the ef-
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ficient SAP-Attack to do adversarial training, and named the method SAP-Defense.

We also show that the classifier becomes more robust against attacks with multiple

changes, even though the data augmentation changes only one word. Experimental

results on 4 datasets and BERT-base, distilBERT-base, and RoBERTa-large clas-

sifiers show that SAP-Defense decreases the attack success rate of existing attack

methods that involve multiple changes.

Adversarial examples are often constructed by perturbing a small portion of words

in a sentence. We propose language-model based augmentation using gradient guid-

ance (LMAg), which counteracts these perturbations by applying an in situ trans-

formation to the input. It uses the gradient norm to identify words contributing to

the classifier prediction and a language model to substitute them. Our method can

effectively improve robustness and does not need to tune the classifier. Experimental

results show that LMAg can reduce the attack success rate on BERT-base classifiers

by 22.5%.

Our Approaches to Attack Prompt-based Classifiers

Prompt-based learning is a recent paradigm which employs a manually designed tem-

plate. For example, if we want to determine the sentiment polarity of a movie review,

we can wrap the review with a prompt template “It was a <mask> movie. <text>”,

where <text> will be replaced with the movie review, and the sentiment polarity

can be determined by the prediction of the language model on the <mask> token.

(See Section 2.1 for more details.) It bridges the gap between pre-training and fine-

tuning, and works effectively under the few-shot setting. However, we find that this

learning paradigm inherits the vulnerability from the pre-training stage, where model

predictions can be misled by inserting certain triggers into the text. We explore this

universal vulnerability by either injecting backdoor triggers or searching for adversar-

ial triggers on pre-trained language models using only plain text. In both scenarios,

we demonstrate that our triggers can totally control or severely decrease the perfor-

mance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting

the universal vulnerability of the prompt-based learning paradigm.
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1.4.2 Our Contributions

We summarize our contributions as follows:

• Robustness metrics and evaluation: We formulate the single-word attack set-

ting, and define two useful metrics: adversarial capacity, denoted as 𝜅, to

quantify the capacity of a word in triggering misclassification; and robust-

ness against single-word adversarial perturbation, denoted as 𝜌, to quan-

tify classifier robustness to single-word attacks. We propose a gradient-based

method–EUBA–to efficiently estimate these metrics. We show 𝜅 and 𝜌 are

necessary robustness metrics; and EUBA is an efficient way to avoid brute force

when computing the robustness metrics.

• Adversarial attack methods: (1) We synthesize similarity, fluency, and misclas-

sification metrics into a single optimization objective called critique score. We

propose R&R to optimize the critique score to construct adversarial sentences

with better similarity and fluency. (2) We propose SAP-Attack which gener-

ates adversarial examples by replacing only one word in a sentence for efficient

and effective attack. (3) We propose BToP and AToP, two universal trigger

attacks on prompt-based classifiers.

• Defending against adversarial attacks: (1) We propose SAP-Defense aiming

at improving robustness by applying single-word data augmentation in learn-

ing. (2) We propose LMAg, an in situ data augmentation method as a defense

mechanism effective, serving as an additional protection layer of any text clas-

sifier requiring no additional training.

• Library for adversarial robustness: We design a library named Fibber which

has a flexible API to implement and benchmark adversarial attack and defense

methods.

We validate our approaches on multiple datasets:
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• AG [Gulli, 2005] is a news topic classification dataset, containing four classes:

politics, business, sport, and technology.

• Movie Review (MR) [Pang and Lee, 2005], Yelp Review [Zhang et al., 2015],

IMDB Reivew [Maas et al., 2011b], and Stanford Sentiment Treebank (SST2) [Wang

et al., 2019b] are all binary (positive/negative) sentiment classification datasets.

• TREC [Li and Roth, 2002] is a dataset of question sentences. Each question

is labeled according to what it is asking about: 1) abbreviation, 2) entity, 3)

description and abstract concept, 4) human being, 5) location, or 6) numeric

value.

• Fake Review (FR) [Salminen et al., 2022] and Fake News (FN) [Yang et al.,

2017a] are both fake information classification datasets with two labels: fake

and real.

• Twitter hate speech (HATE) [Kurita et al., 2020] dataset has two labels: harm-

less and hate.

This dissertation synthesizes the following papers:

• Improving Textual Adversarial Attacks using Metric-guided Rewrite and Roll-

back [Xu et al., 2022d].

• Single Word Change is All You Need: Designing Attacks and Defenses for Text

Classifiers [Xu et al., 2022a].

• In Situ Augmentation for Defending Against Adversarial Attacks on Text Clas-

sifiers [Xu et al., 2022b].

• Exploring the Universal Vulnerability of Prompt-based Learning Paradigm [Xu

et al., 2022c].

32



1.5 Thesis Organization

The rest of this thesis will be organized as follows:

• In Chapter 2, we describe the background in text classification technique and

model deployment.

• We then formulate adversarial attack problems, define several useful metrics,

and introduce related work in Chapter 3; propose attack methods in Chap-

ter 4 and defense methods in Chapter 5; and present attacks on prompt-based

classifiers in Chapter 6.

• We discuss human evaluation in Chapter 7 and demonstrate our library in

Chapter 8.

• We conclude our work and discuss future directions in Chapter 9.
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Chapter 2

Background

Text classification techniques have made impressive progress over the past decades,

enabling these techniques to be adapted to various applications and languages as well

as making it possible for classifiers to be trained with relatively little labeled data.

With these deployments, researchers also pay more attention to the robustness and

deployability of these models.

Chapter outline:

• Section 2.1 introduces the development of text classification models with a focus

on recent transformer-based efforts.

• Section 2.2 gives an overview of efforts that make text classifiers more deploy-

able.

2.1 Advances in Text Classifiers

Early text classification models used handcrafted features and statistical classifiers.

For example, bag-of-words representation represents text as a binary vector indicating

whether each word appears in the text. This is a simple way to represent text, but

it ignores the effect of word order and semantics. N-grams represents sentences by

capturing the occurrence of phrases containing 𝑁 words, so it can capture sequential
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features to a certain extent. However, due to the large number of words in the

language, the size of the representation vector increases exponentially with respect

to 𝑁 . And longer phrases appear at lower frequency, making the features sparse.

After obtaining feature vectors, classifiers such as support vector machines, logistic

regression or decision tree classifiers can be applied.

Word embeddings like word2vec [Mikolov et al., 2013] or GloVe [Pennington et al.,

2014] are breakthroughs in semantic representation. They represent the seman-

tic meaning of words as continuous vectors. These vectors form a semantic space

where words with similar meanings are closer to each other. Similar to bag-of-words,

weighted averages of word embedding represents the overall meaning of a sentence

and serve as classification features [Lilleberg et al., 2015]. Paragraph embeddings are

proposed to provide better representation of text [Dai et al., 2015]. Statistical or

neural classifiers can be applied to word-embedding-based representations to classify

text. Because embeddings are pretrained on large-scale unlabeled text, they gen-

eralize better on words that do not appear in the labeled training data. However,

word embedding models still cannot effectively capture the sequence information in

sentences.

Neural networks have also been applied to text classification. A recurrent neural

network [Liu et al., 2016] takes as input a sequence of word embeddings. Each word

embedding updates the internal state of the recurrent unit, and predictions are made

on the final state. Therefore, recurrent neural networks can model sequence infor-

mation better than bags of words. Recurrent neural networks suffer from vanishing

gradients and long-term forgetting problems. Makes it unstable during training and

not suitable for long texts. Convolutional neural networks have also been applied

to character-level text classification [Kim, 2014]. While achieving better accuracy,

training a neural network from scratch requires more labeled training data.

In the last few years, transformer-based pre-trained language models have be-

come trendy. First, the transformer architecture [Vaswani et al., 2017] overcomes

the gradient vanishing issues with the recurrent networks by using the novel atten-

tion mechanism. It gets rid of the internal state of recurrent units which only have
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fixed-size memory for any input length; instead, a word can directly access the repre-

sentation of other words in the sentence to improve its own representation. Second,

these architectures are pre-trained on large scale plain text to learn general textual

features, and thus can be tuned to adapt to down-stream tasks with little data. For

example, consider BERT [Devlin et al., 2019]: the pretraining task is masked lan-

guage modeling. Given plain text, some words in the text are either masked with

a special <mask> token or randomly substituted, and the language model is trained

to predict correct words at all positions. Since BERT, more pre-trained language

models trained by different companies and research institutes are available, such as

RoBERTa [Liu et al., 2019], GPT-3 [Brown et al., 2020], T5 [Raffel et al., 2020] and

OPT [Zhang et al., 2022] are publicly available.

There are two common approaches to build a classifier from a pre-trained language

model. These include conventional fine-tuning models (CFTs) and prompt-based

find-tuning models (PFTs) as shown on Figure 2-1 and 2-2. In CFTs, a special

classification token <cls> is added to the beginning of an input sentence. Then a pre-

trained language model will process the input text and output a context-dependent

embedding for each input token. A classification head (a multi-layer perceptron) is

built on top of the embedding for <cls>, which is then fine-tuned together with the

language model using classification loss on labeled data.

<CLS> A fun movie to watch .

BERT

positive 98% 
negative  2%

Input Word and
Position Embeddings

Pre-trained
Language Model

Context-dependent
Embeddings

Classification Head

Figure 2-1: A conventional fine-tuning classifier using BERT as a backbone.

The task of conventional fine-tuning is different from the pre-training task, leading

to relatively large shifts of weights in pre-trained language models. The motivation of
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PFTs is to bridge such a gap. PFTs use prompt templates to wrap the input sentence.

The template contains a <mask> token in it. The language model then predicts a word

distribution on the mask token and a verbalizer can derive the prediction based on it.

Prompt-based classifiers show good few-shot and zero-shot performance [Liu et al.,

2021]. There are various kinds of prompts, including manually designed [Brown et al.,

2020, Petroni et al., 2019, Schick and Schütze, 2021], automatically searched [Gao

et al., 2021, Shin et al., 2020], and continuously optimized [Lester et al., 2021, Li and

Liang, 2021]. Among these, manual prompts share the highest similarity with pre-

training because they adopt human-understandable templates. Continuous prompt

methods are closely related to parameter efficient tuning [Houlsby et al., 2019, Lester

et al., 2021, Li and Liang, 2021].

good  0.200
nice  0.150

bad   0.001
......

positive 99% 
negative  1%

BERT

Word and Position
Embeddings for

Template Wrapped Text

Pre-trained
Language Model

<CLS> A fun movie to watch . It was <mask> .

Input Text Prompt Template

Context-dependent
Embeddings

Prediction on
Masked Position

Verbolizer

Figure 2-2: A prompt-based fine-tuning classifier using BERT as a backbone.

2.2 NLP Model Deployment Tools

In this section, we discuss the existing tools or methods that make the deployment

of classifiers easier.
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Data Annotation. High quality data is crucial for building good classifiers. Al-

though training data can sometimes be labeled automatically, having human annota-

tion or audit data can improve the quality. Tech companies often recruit their own

data annotation teams, while others rely on crowd-sourcing platforms like Amazon’s

Mechanical Turk. Several researchers have discussed how to improve the annotation

quality on these platforms [Hsueh et al., 2009, Sheng and Zhang, 2019].

Tools for modeling and serving. NLTK [Loper and Bird, 2002] and FastText [Joulin

et al., 2017b] are efficient libraries to train classifiers. The Transformers library [Wolf

et al., 2019] helps developers easily use the most recent transformer-based pretrained

language models to build classifiers. These models need GPU accelerators to run

inference efficiently. To serve them, using AmazonSage [Das et al., 2020] is recom-

mended. Also, a lot of models are built from scratch using Tensorflow or PyTorch.

TFX [Baylor et al., 2017] is a production-scale machine learning platform built on

top of Tensorflow and providing tools for data analysis, transformation, and valida-

tion, as well as model training validation and serving. Similarly, TorchServe1 is the

productionized tool for PyTorch.

Probing the data and/or models. Deep neural models have plenty of param-

eters and can not be analyzed easily. Therefore, tools are needed to analyze them.

BertViz [Vig, 2019] is a visualization tool for transformer-based models to show the

internal behaviours. With model fairness becoming a more of a concern, researchers

have developed tools to measure the fairness of models. For example, the what-if-

tool [Wexler et al., 2019] can answer conterfactural questions. However, such tools

do not have much support for use in natural language yet.

1https://github.com/pytorch/serve
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Chapter 3

Problem Formulation, Metrics, and

Related Work

Adversarial vulnerability is a severe issue for text classifiers. To better understand

this vulnerability, we formally define the adversarial attack task, three attack settings,

as well as corresponding metrics to measure the quality of adversarial sentences and

the robustness of classifiers.

Chapter outline:

• We formulate the adversarial attack task and three different settings, namely

black-box attack, single-word attack, and prompt universal vulnerability attack

in Section 3.1.

• We explain common metrics to evaluate the adversarial attack methods and

classifier robustness in Section 3.2.

• We define two metrics to measure the robustness of the classifier against single-

word attack in Section 3.3.

• Section 3.4 gives a set of related work in adversarial attack and defense methods.
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3.1 Adversarial Attack Formulation

The adversarial attack consists of modifying a sentence such that it retains its meaning

and remains grammatically correct, but results in a different prediction from the

original when the same classifier is used.

Specifically, let 𝐷train = (x𝑖, 𝑦𝑖)𝑖=1...|𝐷train| be a training set for a classification task,

where x𝑖 is a sentence composed of words, 𝑦𝑖 is the label of the sentence and |𝐷train|

denotes the cardinality of 𝐷train. A classifier 𝑓(·) is trained on 𝐷train to predict 𝑦𝑖

with input x𝑖. Additionally, 𝑉 is the vocabulary associated with 𝑓(·). Given an input

sentence x = 𝑥1, . . . , 𝑥𝑙 with length 𝑙, and its classification label 𝑦, the objective of

an attack method 𝒜(x, 𝑦, 𝑓) is to

construct u = 𝑢1, . . . , 𝑢𝑙′ satisfying 4 conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u is misclassified, i.e., 𝑓(u) ̸= 𝑦,

Human considers u to be a fluent sentence,

Human considers u to be semantically similar to x,

Human considers u to preserve the label 𝑦.

where 𝑙′ is the length of the adversarial sentence. In most cases, the semantic sim-

ilarity constraint implies that the true label (i.e., the prediction of a human) of the

adversarial sentence is the same as the original sentence. Therefore, we consider mis-

classification, fluency and similarity as three criteria when developing attack methods.

We will revisit the preservation of original label in Chapter 7.

3.1.1 Proxy Measures to Similarity and Fluency

In the adversarial attack formulation, both fluency and similarity require human

evaluation. However, this is intractable for large-scale data. Therefore, we proxy the
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sentence fluency with the perplexity of the sentence. This is defined as

ppl(x) = 𝑝(x)−1/𝑙 = exp
[︀
− 1

𝑙

𝑙∑︁
𝑖=1

log 𝑝(𝑥𝑖|𝑥1 . . . 𝑥𝑖−1)
]︀
, (3.1)

where 𝑝(𝑥𝑖|𝑥1 . . . 𝑥𝑖−1) is measured by a language model. Low perplexity means the

sentence is predictable by the language model, which usually indicates the sentence

is fluent. Sentence similarity can be proxied as cosine similarity

cos
(︀
𝐻(x), 𝐻(u)

)︀
=
⟨𝐻(x), 𝐻(u)⟩
|𝐻(x)| · |𝐻(u)|

(3.2)

where 𝐻(·) is a pre-trained sentence encoder that encodes the meaning of a sentence

into a vector. Thus, finding the adversarial sentence u is formulated as a multi-

objective optimization problem as follows:

Construct u = 𝑢1, . . . , 𝑢𝑙′ to minimize ppl(u)

and maximize cos
(︀
𝐻(x), 𝐻(u)

)︀
subject to 𝑓(u) ̸= 𝑦.

We use a fine-tuned BERT-base model [Devlin et al., 2019] to measure perplexity, and

a Universal Sentence Encoder (USE) [Cer et al., 2018] to measure sentence similarity.

Automatic similarity and fluency metrics make adversarial attacks more scalable.

After the adversarial examples are generated, we use human annotation to verify

fluency and similarity proxies. (See Chapter 7 for details.)

3.1.2 Three Attack Settings

Black-box Adversarial Attack Setting

Model access. In black-box setup, the attacker can query the classifier for the pre-

diction (i.e., the probability distribution over all classes). They do not have knowledge

about the architecture of the classifier nor the gradient. It is fair to assume that they

can find some unlabeled text in a domain similar to the classifier.
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Single-Word Perturbation Attack Setting

We consider a restricted adversarial attack scenario where the attacker can sub-

stitute only one word. The attack is considered successful if the classifier predic-

tion differs from the label. Specifically, the attacker is suppose to construct a set

of triggers 𝑇single(𝑓) = {𝑡1, . . . , 𝑡𝐾}, where each trigger 𝑡𝑖 is just a single word,

and 𝐾 is the number of triggers. The goal of the single-word perturbation attack

𝒜single(x, 𝑦, 𝑓, 𝑇single(𝑓)) is to

Construct u = 𝑥1, . . . , 𝑥𝑗−1, 𝑡𝑖, 𝑥𝑗+1, . . . , 𝑥𝑙 by selecting proper 𝑖, 𝑗

to minimize ppl(u) and maximize cos
(︀
𝐻(x), 𝐻(u)

)︀
subject to 𝑓(u) ̸= 𝑦.

Model access. The attack is a universal trigger attack, where the attacker can

search for a set of single-word triggers with full access to the model. Once the triggers

are found, the latter attack steps only access the prediction of the model.

Prompt Universal Vulnerability Attack Setting

In this setting, the attacker aims at leveraging the similarity between the pre-training

of a language model and the fine-tuning of a prompt-based classifier to conduct an

attack. A set of triggers is constructed on a pre-trained language model and is applica-

ble on all downstream classifiers. Let 𝑓backbone be the backbone pre-trained language

model for prompt-based classifiers. The attacker is suppose to construct a set of

triggers 𝑇universal(𝑓backbone) = {𝑡1, . . . , 𝑡𝐾}, where each trigger 𝑡𝑖 is a short phrase,

and 𝐾 is the number of triggers. The goal of the universal vulnerability attack

𝒜universal(x, 𝑦, 𝑓, 𝑇universal(𝑓backbone)) is to

Construct u = x⊕ 𝑡𝑖 by selecting proper 𝑡𝑖 ∈ 𝑇universal(𝑓backbone)

s.t. 𝑓(u) ̸= 𝑦,

where ⊕ is the concatenation of text.
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Model access. This is an extension of universal trigger attack. During the attack

phase, the attacker can only access the classifier prediction. During the construction

of the trigger set, we consider two cases

• Backdoor triggers: the attacker has the ability to change 𝑓backbone, i.e., they

release a new pre-trained language model with potentially built-in backdoors.

• Adversarial triggers: the attacker cannot change 𝑓backbone, but have full access

to it.

In both cases, the attacker does not know 𝑓 when constructing the trigger set.

Similarity and fluency constraints. In this setting, since the original text is

preserved, the adversarial sentence will be mostly fluent. Also the attached triggers

are usually not meaningful to human, so the semantic meaning and true label is

preserved. Therefore, we do not verify similarity and fluency.

3.2 Adversarial Attack Metrics

Various automatic metrics are used to measure the efficacy of an adversarial attack

as well as the performance and robustness of the classifier on a testset 𝐷test.

• The clean accuracy (CAcc) is the accuracy of the classifier on 𝐷test, defined as

CAcc =
{(x, 𝑦) ∈ 𝐷test|𝑓(x) = 𝑦}

|𝐷test|
. (3.3)

A higher CAcc shows the classifier has better in-distribution generalization ca-

pability.

• The attack success rate (ASR) is the standard metric to evaluate adversarial

attack, defined as

ASR =
{(x, 𝑦) ∈ 𝐷test|𝑓(x) = 𝑦 and 𝑓(𝒜(x, 𝑦, 𝑓)) ̸= 𝑦}

{(x, 𝑦) ∈ 𝐷test|𝑓(x) = 𝑦}
(3.4)
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A higher ASR means the attack method is more effective at triggering misclas-

sification, and also that the classifier is less robust against the attack.

• Some work uses after-attack accuracy (AAcc) to measure the efficacy of attack

methods. It is defined as

AAcc =
{(x, 𝑦) ∈ 𝐷test|𝑓(𝒜(x, 𝑦, 𝑓)) ̸= 𝑦}

|𝐷test|
. (3.5)

AAcc and ASR have the following relationship:

ASR =
CAcc− AAcc

CAcc
, (3.6)

which is a monotonic function when CAcc is fixed. Lower AAcc means a more

effective attack and a less robust classifier.

• To fairly compare attack methods, the quality of adversarial sentences must

be considered. The USE similarity metric in Eq. (3.2) and BERT perplexity

metric in Eq. (3.1) can measure the semantic similarity and sentence fluency

respectively.

Automatic metrics are not always reliable. Therefore, human evaluation metrics

are introduced.

• Sentence similarity : a human annotator is presented with pairs of original and

adversarial sentences, and are asked whether the two sentences have the same

semantic meaning. They annotate the sentence in a 5-likert, where 1 means

strongly disagree, 2 means disagree, 3 means not sure, 4 means agree, and 5

means strongly agree.

• Sentence fluency : a human annotator is shown a random shuffle of adversarial

sentences, and are asked to rate the fluency in a 5-likert, where 1 describes a

bad sentence, 3 describes a meaningful sentence with a few grammar errors, and

5 describes a perfect sentence.
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• Label match: a human annotator is shown a random shuffle of adversarial sen-

tences and are asked whether they belong to the class of the original sentence.

They are asked to rate 0 as disagree, 0.5 as not sure, and 1 as agree.

3.3 Two Useful Metrics for Single-Word Robustness

We introduce two novel metrics for single-word attacks against text classifiers. Given

a classifier 𝑓(·), we would like to see how robust the classifier is against single-word

adversarial perturbation attacks. Thus we take the training set 𝐷train, and find the

subset 𝐷+
train where 𝑓 can correctly predict. We want to find out whether each word

𝑤𝑗 ∈ 𝑉 can attack each example (x𝑖, 𝑦𝑖) ∈ 𝐷+
train. Therefore, we define the single-word

attack success matrix 𝐴 ∈ [0, 1]|𝐷
+
train|×|𝑉 | indicating whether a word can successfully

attack a sentence, specifically

𝐴𝑖,𝑗 =

⎧⎪⎨⎪⎩1 if ∃u ∈ 𝑆(x𝑖, 𝑤𝑗) s.t. 𝑓(u) ̸= 𝑦𝑖,

0 otherwise,
(3.7)

where 𝑆(x, 𝑤) is a set of sentences constructed by replacing one word in x with 𝑤.

With this matrix, we define the single-word adversarial capability, denoted as 𝜅,

for each word in the classifier’s vocabulary as the percentage of sentences that can be

successfully attacked using that word. It can be computed as

𝜅(𝑤𝑗) =
1

|𝐷+
train|

∑︁
𝑖

𝐴𝑖,𝑗

Second, we define the robustness against single-word adversarial perturbations, de-

noted as 𝜌, for a text classifier as the percentage of sentence-word pairs in the Carte-

sian product of the dataset and the vocabulary where the classifier cannot be suc-

cessfully attacked. It can be computed as

𝜌(𝑓) =
1

|𝐷+
train| · |𝑉 |

∑︁
𝑖,𝑗

1− 𝐴𝑖,𝑗
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.

When measuring these two metrics, the similarity and fluency constraints are

relaxed. Such relaxation does not affect the robustness metrics for two reasons:

• Changing one word usually has little impact on the label. Most words in a clas-

sifier’s vocabulary are irrelevant to the classification task, and are not supposed

to cause a prediction change regardless of any semantic shifts or grammatical

mistakes caused by the substitution. A few relevant words may change the sen-

tence’s meaning locally, but cannot change the true label of the whole sentence.

• Very few words – for example, negatives – can change the meaning of the entire

sentence and therefore the true label. Although these words will have high 𝜅,

they will not have a large effect on the 𝜌, which is averaged over all words.

3.3.1 Definitions and Theorem

We then give formal definitions and a theorem.

Definition 1 The single-word adversarial capability of word 𝑤 on a classifier 𝑓 is

𝜅𝑓 (𝑤) =
|{(x, 𝑦)∈ 𝐷+

train|∃u ∈ 𝑆(x, 𝑤) s.t. 𝑓(u) ̸= 𝑦}|
|𝐷+

train|
, (3.8)

where 𝐷+
train = {(x, 𝑦) ∈ 𝐷train|𝑓(x) = 𝑦} is a subset of 𝐷train that is correctly classified

by 𝑓 , and 𝑆(x, 𝑤) is a set of sentences constructed by replacing one word in x with

𝑤. We omit 𝑓 and use notation 𝜅(𝑤) in the rest of the thesis.

Definition 2 The robustness against single-word adversarial perturbation is

𝜌(𝑓) =
|{((x, 𝑦), 𝑤) ∈ 𝐷*

train|∀u ∈ 𝑆(x, 𝑤) : 𝑓(u) = 𝑦}|
|𝐷*

train|
, (3.9)

where 𝐷*
train = 𝐷+

train × 𝑉 is the Cartesian product of 𝐷+
train and vocabulary 𝑉 .

𝜌(𝑓) can be interpreted as the accuracy of 𝑓 on 𝐷*
train, where 𝑓 is considered correct

on ((x, 𝑦), 𝑤) if all sentences in 𝑆(x, 𝑤) are predicted as 𝑦.
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Theorem 1 𝜅 and 𝜌 have the following relation:

𝜌(𝑓) = 1− 1

|𝑉 |
∑︁
𝑤∈𝑉

𝜅𝑓 (𝑤). (3.10)

Proof

𝜌(𝑓) =

∑︀
𝑖,𝑗 1− 𝐴𝑖,𝑗

|𝐷+
train| × |𝑉 |

(3.11)

= 1− 1

|𝑉 |

|𝑉 |∑︁
𝑗=1

∑︀|𝐷+
train|

𝑖=1 𝐴𝑖,𝑗

|𝐷+
train|

(3.12)

= 1− 1

|𝑉 |

|𝑉 |∑︁
𝑗=1

𝜅(𝑤𝑗). (3.13)

3.3.2 Efficient Estimation of the Metrics

Computing 𝜅 and 𝜌 with brute force is intractable in general, and particularly for

our experimental setting, which includes a 30k-word vocabulary and datasets with

10k sentences of 30 words on average. Instead, we propose an efficient upper bound

algorithm (EUBA) for 𝜌 by finding as many successful attacks as possible within a

given time budget. We use a first-order Taylor approximation to estimate the poten-

tial that each single-word substitution leads to a successful attack. By prioritizing

substitutions with high potential, we can find most of the successful attacks by veri-

fying only a subset of word substitutions. In this section, we first give an overview of

EUBA, then detail the first-order approximation we used. Figure 3-1 illustrates the

algorithm. The pseudo-code is shown in Algorithm 1.

Overview

To find the lower bound of 𝜅(𝑤), we want to find as many (x, 𝑦) ∈ 𝐷+
train such that 𝑤

can successfully attack them. Since we want to compute 𝜅 for all words, we can convert

it to a symmetric task, required to find as many 𝑤 ∈ 𝑉 for each (x, 𝑦) ∈ 𝐷+
train such

that the sentence can be successfully attacked by the word. This conversion enables

a more efficient algorithm.
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Algorithm 1: EUBA to estimate lower bound of 𝜅 and upper bound of 𝜌
Input: Classifier 𝑓(x); Dataset 𝐷+; Number of classes 𝑐; Vocabulary 𝑉 ;

Early stop criteria 𝑚.
Output: 𝜅(𝑤); 𝜌(𝑓).

1 for 𝑗 ∈ 1 . . . |𝑉 |; 𝑘 ∈ 1 . . . 𝑐 do count[𝑤𝑗, 𝑘]← 0 ; // initialize
successful attack counter

2 for (x, 𝑦) ∈ 𝐷+do
3 Construct 𝑆(x, <mask>);
4 𝑙← length of x;
5 Compute [∇e<mask> log 𝑓(𝑦|s𝑖)]𝑖=1...𝑙 ; // compute the gradient w.r.t.

mask embeddings
6 for 𝑖 ∈ 1 . . . 𝑙; 𝑗 ∈ 1 . . . |𝑉 | do
7 𝑢

(𝑖)
𝑤𝑗 ← ⟨∇e<mask> log 𝑓(𝑦|s𝑖), e𝑤𝑗

− e<mask>⟩+ log 𝑓(𝑦|s𝑖) ; // compute
the first-order approximation of
log 𝑓(𝑦|𝑥1, . . . , 𝑥𝑖−1, 𝑤𝑗, 𝑥𝑖+1, . . . , 𝑥𝑛)

8 end
9 Let 𝑅 = [(𝑖, 𝑗)]𝑖∈1...𝑙;𝑗∈1...|𝑉 |, sort 𝑅 ascendingly by 𝑢

(𝑖)
𝑤𝑗 as 𝑅sorted ; // sort

all substitutions by the approximated log probability
10 failure_count← 0 ; // initialize counter for consecutive

failures
11 success← empty set ; // a set of words that can successfully

attack x
12 for (𝑖, 𝑗) ∈ 𝑅sorted do // verify substitutions phase 1
13 if 𝑤𝑗 ∈ success then continue;
14 if 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑤𝑗, 𝑥𝑖+1, . . . , 𝑥𝑙) ̸= 𝑦 then
15 count[𝑤𝑗, 𝑦]← count[𝑤𝑗, 𝑦] + 1;
16 success.𝑎𝑑𝑑(𝑤𝑗);
17 failure_count← 0;
18 else
19 failure_count+=1;
20 if failure_count ≥ 𝑚 then break ; // early stop on

consecutive failures
21 end
22 end
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23

24 failure_count← 0 ; // reset counter for consecutive failures
25 Sort 𝑉 descendingly by count[:, 𝑦] as 𝑉sorted ; // sort all words by

the number of successful attacks they trigger on class 𝑦
26 for 𝑤𝑗 ∈ 𝑉sorted do // verify substitutions phase 2
27 if 𝑤𝑗 ∈ success then continue;
28 𝑖← argmin𝑖 𝑢

(𝑖)
𝑤𝑗 ; // find the position where 𝑤𝑗 is most

likely to succeed
29 if 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑤𝑗, 𝑥𝑖+1, . . . , 𝑥𝑙) ̸= 𝑦 then
30 count[𝑤𝑗, 𝑦𝑖]← count[𝑤𝑗, 𝑦𝑖] + 1;
31 success.𝑎𝑑𝑑(𝑤𝑗);
32 failure_count = 0;
33 else
34 failure_count+ = 1;
35 if failure_count ≥ 𝑚 then break ; // early stop on

consecutive failures
36 end
37 end
38 end
39 for 𝑗 ∈ 1 . . . |𝑉 | do 𝜅[𝑤𝑗]←

∑︀
𝑘 count[𝑤𝑗, 𝑘]/|𝐷+| ; // compute

lower-bound of 𝜅
40 𝜌← 1−

∑︀
𝑤𝑗∈|𝑉 | 𝜅(𝑤𝑗) ; // compute upper-bound of 𝜌

41 return 𝜅, 𝜌
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For each example (x, 𝑦), where x = 𝑥1, . . . , 𝑥𝑙, each word can be substituted with

any 𝑤 ∈ 𝑉 , leading to a total of 𝑙× |𝑉 | substitutions. For a substitution 𝑥𝑖 → 𝑤, we

compute

𝑢(𝑖)
𝑤 ≈ log 𝑓(𝑦|𝑥1, . . . , 𝑥𝑖−1, 𝑤, 𝑥𝑖+1, . . . , 𝑥𝑙), (3.14)

where 𝑓(𝑦|·) is the classifier’s probability of predicting 𝑦. We will show the computa-

tion of 𝑢(𝑖)
𝑤 in Section 41. We assume substitutions with lower 𝑢

(𝑖)
𝑤 are more likely to

succeed, and verify them in two phases.

• Phase 1: We sort all substitutions in ascending order by 𝑢
(𝑖)
𝑤 , and verify them

on the classifier. We stop the verification after 𝑚 consecutive unsuccessful

attempts and assume all remaining substitutions are unsuccessful, where 𝑚 is

a hyperparameter.

• Phase 2: If a word can successfully attack many other sentences in the class

𝑦, it is more likely to succeed on x. Therefore, we keep track of how many

successful attacks each word can trigger on each category. We sort all words

in descending order by the number of their successful attacks and verify them.

For each word 𝑤, we only verify the position where it is most likely to succeed

(i.e., argmin𝑖 𝑢
(𝑖)
𝑤 ). Similarly, phase 2 stops after 𝑚 consecutive unsuccessful

attempts.

By using 𝑢
(𝑖)
𝑤 , we can skip a lot of substitutions that are unlikely to succeed,

making the process more efficient. The hyperparameter 𝑚 controls the trade-off

between efficiency and the gap between the lower bound and the exact 𝜅. When

setting 𝑚 → ∞, EUBA can find the exact 𝜅 and 𝜌. In Section 4.2.3, we show that

efficiency can be greatly improved if a relatively small 𝑚 is used, at the small cost

of neglecting some successful attacks. We also compare EUBA with two alternative

designs.

53



First-order Approximation

We then show how to efficiently compute 𝑢
(𝑖)
𝑤 using first-order approximation. We

construct the following structure

𝑆(x, <mask>) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1 : <mask>, 𝑥2, 𝑥3, . . . , 𝑥𝑙;

s2 : 𝑥1, <mask>, 𝑥3, . . . , 𝑥𝑙;

. . .

s𝑙 : 𝑥1, 𝑥2, . . . , 𝑥𝑙−1, <mask>;

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.15)

In a typical classifier, the input sentence will be converted to a sequence of embeddings

noted e·, thus we convert 𝑆(x, <mask>) to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐸s1 : e<mask>, e𝑥2 , e𝑥3 , . . . , e𝑥𝑙
;

𝐸s2 : e𝑥1 , e<mask>, e𝑥3 , . . . , e𝑥𝑙
;

. . .

𝐸s𝑙 : e𝑥1 , e𝑥2 , . . . , e𝑥𝑙−1
, e<mask>;

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.16)

We input s𝑖 into the classifier, then compute the gradient of log 𝑓(𝑦|s𝑖) with respect to

e<mask> at the 𝑖-th position. We then approximate the log probability by substituting

e<mask> with e𝑤. The log probability change can be approximated by the inner product

of ∇e<mask> log 𝑓(𝑦|s𝑖) and e𝑤 − e<mask>. Formally,

𝑢(𝑖)
𝑤 = ⟨∇e<mask> log 𝑓(𝑦|s𝑖), e𝑤 − e<mask>⟩+ log 𝑓(𝑦|s𝑖). (3.17)

𝑓(𝑦|s𝑖) and ∇e<mask> log 𝑓(𝑦|s𝑖) for 𝑖 ∈ 1 . . . 𝑙 can be pre-computed, while e𝑤 and e<mask>

are fixed vectors. Eq. (3.17) is just an inner product, thus very efficient to compute.

Compare Efficiency

By using EUBA, the efficiency can be improved a lot. The brute force algorithm

queries the classifier for (|𝐷+
train| × |𝑉 | × �̄�) times, where �̄� is the average length of

text. In comparison, the EUBA queries the classifier for (|𝐷+
train|× �̄�) times. Although
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each query in EUBA involves the back propagation to compute the gradient and the

inner product with embedding matrix to approximate the probability, as shown in

Eq. (3.17), it is significantly faster.

EUBA also verifies perturbations that are likely to cause misclassification. This

process can take up to (|𝐷+
train|× |𝑉 |× �̄�) queries in the worst case. But our empirical

results in Section 4.2.3 show that it can achieve around 60x speedup when 𝑀 = 512.

3.4 Related Work

In this section, we present recent research in adversarial attack and defense.

3.4.1 Adversarial Attack Methods

Adversarial attack methods have developed in the past few years to analyze and

improve the robustness of classifiers, thus making them increasingly important as

security-critical classifiers are more widely deployed [Jain et al., 2016, Torabi Asr

and Taboada, 2019, Wu et al., 2019, Zhou et al., 2019]. Literature reviews by Zhang

et al. [2020] and the paper list available online1 provide a comprehensive summary of

existing methods.

Adversarial attack methods can be categorized with multiple viewpoints. Based

on the model access, these can be categorized as black box and white box attacks.

• In white box attacks, the attacker has full knowledge of the classifier, includ-

ing the model architecture, parameters, training data, loss function, etc. Thus

they can make unlimited queries on both prediction and auxiliary information

such as gradient. White-box attacks are often effective, because gradients can

guide the direction of perturbation. They can also exploit specific architectures

in the neural network to conduct attacks. For example, Blohm et al. [2018]

attacks the attention mechanism. However, the use cases for white-box attacks

are limited because of the knowledge they need to conduct an attack.

1https://github.com/thunlp/TAADpapers
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• In black box attack, the attacker is agnostic on the classifier architecture.

They can send input text to the classifier and know the classifier prediction.

Most black-box attack methods assume that they can access the predicted prob-

ability over classes. Black-box attacks are more realistic in attacking deployed

classifiers.

Adversarial attacks can also be categorized by the level of perturbation granularity.

In what follows, we introduce a few representative methods for each category, most

of which are black-box methods.

• Character-level attacks. These methods trigger misclassification by identify-

ing keywords that contribute significantly to classification and then introducing

misspelled or misleading features into those words. Liang et al. [2017] takes a

white-box setup and gradient information to perturb characters and/or words

to trigger misclassification, and HotFlip [Ebrahimi et al., 2018] only applies

character insertion and deletion. DeepWordBug [Gao et al., 2018] is a black-

box attack at character level. There are more character-level attacks avail-

able [Boucher et al., 2021, Li et al., 2019a]. Note that character-level methods

are mostly designed for character-level classification models such CNNs. Some

algorithms also have a word-level variant. Character-level attacks can be de-

fended by misspelling correction models [Pruthi et al., 2019].

• Word-level attacks. Word-level attacks perturb a few words in a sentence to

trigger misclassification. By carefully designing the word perturbation strategy,

adversarial sentences can preserve the semantic meaning while remaining free of

grammatical errors. For example, TextFooler [Jin et al., 2020a] uses heuristics

to replace words with synonyms to mislead the classifier effectively. It relies on

several pre-trained models, such as word embeddings [Mrkšic et al., 2016], part-

of-speech tagger, and Universal Sentence Encoder [Cer et al., 2018] to perturb a

sentence without changing its meaning. Zang et al. [2020a] uses sememe-based

word substitution and particle swarm optimization-based search algorithm to

conduct attack, while Alzantot et al. [2018] uses a population-based optimiza-
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tion. However, simple synonym substitution without considering the context

results in unnatural sentences. Several follow up works, like BAE [Garg and

Ramakrishnan, 2020], BERT-Attack [Li et al., 2020a], and CLARE[Li et al.,

2021a], use pre-trained language models to propose more natural word substi-

tutions.

• Sentence-level attacks. Sentence-level attacks use a generative model to

rewrite a whole sentence and conduct the attack. Xu et al. [2021] trains a

generative model to generate adversarial sentences. After training, the method

can generate adversarial sentences without accessing the victim model. Con-

trolled Adversarial Text Generation (CAT-Gen) [Wang et al., 2020b] use an

encoder-decoder framework where the decoder takes auxiliary attributes of the

text to paraphrase the input text. The attack is derived by exhausting all pos-

sible attributes. Syntactically controlled paraphrase networks (SCPN) [Iyyer

et al., 2018] train neural networks that can rewrite a sentence given a syntactic

annotation.

3.4.2 Distribution Shift Robustness

It is quite common to have a distribution shift between the training data and real

incoming text to a classifier.

Explicit distribution shift happens when a developer trains a classifier on

one domain and applies it on another domain, often because of insufficient relevant

training data or intractable in training too many classifiers, for example, adapting

review sentiment classifiers from one product to another [Blitzer et al., 2007, Glorot

et al., 2011].

Implicit distribution shift means subtle changes in the distribution that are

not explicitly marked, which is more challenging to tackle. When an input is out

of the training distribution, the classifier may perform poorly. Thus, the problem is

also recognized as out-of-distribution generalization capability. Several work studies

the out-of-distribuiton generalization capability [Miller et al., 2020, Oren et al., 2019,
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Yogatama et al., 2019]. Hendrycks et al. [2020] show that pre-trained transformer-

based models are substantially more robust on out-of-distribution datasets comparing

with previous bag of words, or neural network models, but the problem is not yet

solved. It can also happen when the training data contains bias [Clark et al., 2019,

He et al., 2019] or spurious correlation [Srivastava et al., 2020, Wang and Culotta,

2021], while the test data does not.

The distribution shift robustness is sometimes formulated as a classifier fairness

problem, as the identity of the user may subtly affect the habit of using the language,

making the sentence differ from the training data distribution. Sun et al. [2019] is a

literature survey on gender bias nlp. Zhao et al. [2018] provides a benchmark dataset

for linking gendered pronouns to pro-stereotypical entities with higher accuracy than

anti-stereotypical entities. Rudinger et al. [2017] analyzes the existing SNLI dataset

and find gender stereotype. Neural models amplify the bias. Blodgett et al. [2016],

Demszky et al. [2021] examines how dialect features affect NLP models. De-Arteaga

et al. [2019] considers gender bias in occupation classification.

3.4.3 Improve Classifier Robustness

Here we introduce existing methods for improving robustness.

Data-driven approaches

Several data augmentation approaches have been proposed to enhance the accuracy

and robustness of classification models. Feng et al. [2021] is a survey on text data

augmentation. Dhole et al. [2021] is a novel attempt to build data augmentation in a

collaborative manner. MixText [Chen et al., 2020] and Text-AutoAugment [Ren et al.,

2021] are automatic textual data augmentation methods that can be easily applied to

various tasks. Recent work has also proposed approaches to enhance compositional

aspects of natural language [Andreas, 2020, Guo et al., 2020].

Regarding adversarial robustness, adversarial training is an effective solution to

protect classifiers from adversarial attacks in computer vision [Madry et al., 2018,
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Tramèr et al., 2018], which augments training data with adversarial examples. Due to

its success in defending adversarial examples in image classification, it’s not surprising

that similar defending approaches have been applied to text classification. Among

the attack methods mentioned above, many [Jin et al., 2020b, Li et al., 2020b, Xu

and Veeramachaneni, 2021, Zang et al., 2020a] use adversarial training to make the

classifier resist the attacks. A2T [Yoo and Qi, 2021] is an efficient adversarial attack

designed specifically for adversarial training.

Model and training approaches

Using pre-trained language models can improve out-of-distribution robustness because

they are trained on data that is both diverse [Hendrycks et al., 2019b] and large-

scale [Hendrycks et al., 2019a].

Other defense methods include perplexity filtering [Qi et al., 2021a] and synonym

substitution [Wang et al., 2021], which increase the inference time complexity of the

classifier. SEM constructs a synonym dictionary, and maps a cluster of synonyms to

the most frequent word in that cluster to offset the adversarial perturbation.

Since the semantic space of a sentence scales exponentially with respect to its

length, it is not possible for data augmentation or adversarial training methods to

cover all perturbations. The idea of certified robustness is to build a neural network

that is certified to be consistent when applying a set of word perturbations. Jia et al.

[2019] and Huang et al. [2019] are the first models to be provably robust towards a

family of predefined substitutions by using Interval Bound Propagation. Shi et al.

[2019] extends the method to transformer-based models. SAFER [Ye et al., 2020]

provides a simple pipeline that can achieve certified robustness without the knowledge

of model architecture.
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Chapter 4

Adversarial Attack Methods

Generating high-quality adversarial examples is a challenging task as it requires the

generation of adversarial sentences that are fluent and semantically similar to the

original ones that nonetheless lead to misclassification. Existing methods prioritize

misclassification by maximizing each perturbation’s effectiveness at misleading a text

classifier; thus, the generated adversarial examples fall short in terms of fluency and

similarity. To address this problem, we define a critique score that combines the

fluency, similarity, and misclassification metrics. We propose a rewrite and rollback

(R&R) framework guided by the optimization of this score to improve the adversarial

attack. R&R generates high-quality adversarial examples by allowing for exploration

of perturbations without immediate impact on the misclassification, while optimizing

critique score for better fluency and similarity.

After observing that a significant portion of such examples created through ex-

isting methods change only one word, we decided to study single-word adversarial

perturbation. We propose SAP-Attack which generates adversarial examples by

replacing only one word in a sentence, and show that it can achieve a better attack

success rate than state-of-the-art adversarial methods in several cases.

Chapter outline:

• In Section 4.1, we introduce R&R, and demonstrate its superior performance

on multiple datasets.
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• In Section 4.2, we further explore SAP-Attack, and show that it is lightweight

and can achieve a similar ASR to existing methods.

4.1 Metric-Guided Rewrite and Rollback

4.1.1 Motivation

Existing attack methods either adopt a synonym substitution approach [Jin et al.,

2020a, Zang et al., 2020b] or use a pre-trained language model to propose substitutions

for better fluency and naturalness [Garg and Ramakrishnan, 2020, Li et al., 2021a,

2020a]. They follow a similar framework: First, construct some candidate perturba-

tions, and then, use the perturbations that most effectively mislead the classifier to

modify the sentence. This process is repeated multiple times until an adversarial ex-

ample is found. This framework prioritizes misclassification by picking perturbations

that most effectively mislead the classifier. Despite success in changing the classifier

prediction, this approach has two main disadvantages. First, it is prone to modifying

words that are critical to the sentence’s meaning, or to introducing low-frequency

words to mislead the classifier, causing the similarity and fluency to decrease. Sec-

ond, some perturbations do not have immediate impacts on misclassification, but can

trigger it when combined with other perturbations, while this framework cannot find

adversarial examples with these perturbations.

To overcome these problems, the attack method needs to jointly consider fluency,

similarity, and misclassification, while also efficiently exploring various perturbations

that do not directly impact the latter. We define a critique score that synthesizes

fluency, similarity and misclassification metrics. Then, we present our design for a

Rewrite and Rollback framework (R&R) which optimizes this score to generate bet-

ter adversarial examples. In the rewrite stage, we explore multi-word substitutions

proposed by a pre-trained language model. We accept or reject a substitution ac-

cording to the critique score. We can generate a high-quality adversarial example

after multiple iterations of rewrite. Rewrite may introduce changes that do not con-
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Original sentence: 
Everywhere  the  camera  looks  there  is  something  worth  seeing 
Classifier: Positive 

Everywhere  the  camera  looks  there  is  something  worth  seeing 
Everywhere  the  camera   goes   there  is  something  worth  seeing 

Rewrite 1

Classifier: Positive ,  Similarity: High  ,  Fluency: Good 
Sample a decision: Accept rewrite. 

Everywhere  the  camera  goes  there  is  something  worth     seeing 
Everywhere  the  camera  goes  there  is  nothing  interesting  seeing 

Rewrite 2

Classifier: Negative ,  Similarity: Low  ,  Fluency: Good 
Sample a decision: Reject rewrite. 

Everywhere  the  camera  goes  there  is  something  worth  seeing 
Everywhere  the  camera  goes   is    some   stuff       worth  seeing

Rewrite 3

Classifier: Negative ,  Similarity: High  ,  Fluency: Fair 
Sample a decision: Accept rewrite. 

               looks             something                   there                is
                   ↓      (keep)       ↓                             ↑   (discard)  ↑
                goes                  stuff                          is                some

Rollback

Adversarial Sentence: 
Everywhere  the  camera  goes  there  is  stuff  worth  seeing

Figure 4-1: An example of R&R generating adversarial sentences by rewrite and
rollback. The rewrite step explores possible perturbations stochastically and is guided
by the similarity metric and fluency metric to ensure better example quality. The
rollback operation further improves the similarity.

tribute to misclassification and may also reduce similarity and fluency. Therefore,

we periodically apply the rollback operation to reduce the number of modifications

without changing the misclassification result. Figure 4-1 illustrates the process using

an example.

4.1.2 Methodology

In this section, we first give an overview of the R&R framework. Then, we introduce

the rewrite and rollback components respectively. Finally, we give a summary of

63



R
ew

ri
te

R
ew

rit
e

R
ew

rit
e

R
ew

rit
e

R
ol

lb
ac

k

A
dv

er
sa

ri
al

 e
xa

m
pl

e

O
ri

gi
na

l t
ex

t
In

pu
t (

ou
tp

ut
 o

f p
re

vi
ou

s s
te

p)
: 

 

A
pp

ly
 M

as
k 

(r
ep

la
ce

 3
 w

or
ds

 in
 th

is
 e

xa
m

pl
e)

:  

C
om

pu
te

 th
e 

pr
op

os
al

 d
is

tr
ib

ut
io

n:
 

U
se

 la
ng

ua
ge

 m
od

el
 d

is
tr

ib
ut

io
n 

an
d 

en
fo

rc
in

g
di

st
ri

bu
tio

n 
to

 c
om

pu
te

 a
 w

or
d 

di
st

rib
ut

io
n 

fo
r

ea
ch

 m
as

ke
d 

po
si

tio
n.

 

Sa
m

pl
e 

a 
w

or
d 

fo
r 

ea
ch

 m
as

k:
 

 

A
cc

ep
t o

r 
re

je
ct

 th
e 

se
nt

en
ce

: 
St

oc
ha

st
ic

al
ly

 a
cc

ep
t t

he
 c

an
di

da
te

 se
nt

en
ce

 b
as

ed
on

 a
 c

ri
tiq

ue
 sc

or
e,

 w
hi

ch
 sy

nt
he

si
ze

s t
he

 U
SE

si
m

ila
rit

y 
m

et
ric

, t
he

 B
ER

T 
pe

rp
le

xi
ty

 m
et

ric
, a

nd
th

e 
m

is
cl

as
si

fic
at

io
n 

ob
je

ct
iv

e.
 

R
ol

lb
ac

k
In

pu
t (

ou
tp

ut
 o

f p
re

vi
ou

s s
te

p)
: 

 

O
ri

gi
na

l S
en

te
nc

e:
 

 

Id
en

tif
y 

M
in

im
um

 E
di

t D
is

ta
nc

e:
 

G
et

 a
 se

t o
f e

di
ts

 th
at

 c
an

 re
co

ve
r o

rig
in

al
 te

xt
fr

om
 c

ur
re

nt
 te

xt
. E

ac
h 

ed
it 

is
 a

n 
in

se
rti

on
,

de
le

tio
n 

or
 re

pl
ac

em
en

t o
f a

 w
or

d.
 

Fo
r e

xa
m

pl
e:

 
{(

R
ep

la
ce

 
 w

ith
 

), 
(D

el
et

e 
), 

 
  (

In
se

rt 
 a

fte
r 

), 
...

} 

Tr
y 

ro
llb

ac
k 

ea
ch

 e
di

t:
 

Fo
r e

ac
h 

ed
it,

 ro
llb

ac
k 

th
e 

ed
it 

if 
th

e 
se

nt
en

ce
 c

an
st

ill
 b

e 
m

is
cl

as
si

fie
d.

F
ig

ur
e

4-
2:

A
n

ov
er

vi
ew

of
R

&
R

fr
am

ew
or

k.

64



pre-trained models used in the framework.

Overview

R&R solves the multi-objective optimization problem by synthesizing the fluency,

similarity and misclassification objectives into a single critique score, and maximizing

this score. Therefore, our framework can construct adversarial sentences with lower

perplexity and higher similarity. R&R contains the rewrite and rollback steps.

In the rewrite step, we randomly mask several consecutive words, and compute

a proposal distribution, which is a distribution over the vocabulary on each masked

position. We construct a multi-word substitution for the masked positions according

to the distribution, then compute the critique score. If the score increases, we accept

the substitution. If the score decreases, we accept it with a probability that depends

on the degree of decrease. The rewrite step contains randomness to encourage ex-

ploration of different modifications, while the critique score will guide the rewritten

sentence to a high-quality adversarial example. After several steps of rewriting, we

apply a rollback operation on the sentences that have already been misclassified to

reduce the number of changes introduced in the rewriting. In the rollback step, we

identify a minimum set of edits required to change the current sentence back to the

original sentence. We rollback an edit if it does not affect the misclassification.

We implement the framework in batches so that it simultaneously perturbs multi-

ple copies of the input text in different ways. The loop ends when half of the sentences

in the batch are misclassified to make the algorithm more efficient. Figure 4-2 shows

the R&R framework.

Rewrite

In each rewrite, we mask then substitute a span of words. This happens through the

following steps.

Apply mask in the sentence. First, we randomly pick 𝑚 consecutive words in

the sentence, and replace them with 𝑡 mask, where 𝑡 can be 𝑚, 𝑚−1, or 𝑚+1 meaning
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replace, delete, and insert operation respectively. Compared with CLARE [Li et al.,

2021a] which masks one word at a time (i.e., 𝑚 = 1), masking multiple words can

make it easier to modify common phrases. We use ũ to denote the masked sentence.

Compute proposal distribution. Then, we compute proposal distribution for 𝑡

masks in the sentence. This distribution assigns a high probability to words that can

construct a fluent and legitimate paraphrase. Let 𝑧1, . . . 𝑧𝑡 be the words to be placed

at the masked positions. The distribution is

𝑝proposal(𝑧𝑖|ũ,x) ∝ 𝑝lm(𝑧𝑖|ũ)× 𝑝enforce(𝑧𝑖|ũ,x) (4.1)

where 𝑝lm is a language model distribution that ensures the sentence will be fluent

and meaningful, and 𝑝enforce is the enforcing distribution, which improves the semantic

similarity. 𝑝lm is computed by sending ũ into BERT and taking the predicted word

distribution on masked positions. Depending on the position, the word distributions

for 𝑡 masks are different. The enforcing distribution is measured by word embeddings.

We use the sum of word embeddings 𝑅(u) =
∑︀

𝑢𝑘
𝐸(𝑢𝑘) as a sentence embedding,

where 𝐸(·) is the counter-fitted word embedding [Mrkšic et al., 2016]. Then we define

the enforcing distribution as

𝑝enforce(𝑧𝑖|ũ,x) ∝ exp
[︀
𝑤enforce × (cos(𝑅(x)−𝑅(ũ), 𝐸(𝑧𝑖))− 1)

]︀
. (4.2)

𝑤enforce is a hyper-parameter. If the embedding of a word 𝐸(𝑧) perfectly aligns with

the sentence representation difference 𝑅(x) − 𝑅(ũ), it gets the largest probability.

The enforcing distribution aims at making the candidate modification more similar

to the original sentence. Note that enforcing distribution is identical on all 𝑡 masks.

Sample a candidate sentence. We sample a candidate word for each masked

position by 𝑧𝑖 ∼ 𝑝proposal(𝑧𝑖|ũ,x). We do not consider the effect of sampling one word

on other masked positions (i.e., we do not recompute proposal distribution for the

remaining masks after sampling a word) because language model distribution already
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considers the position of the mask and assigns a different distribution for each mask,

meanwhile recomputing is inefficient. We use û to denote the candidate sentence.

Critique score and decision function. We decide whether to accept the candi-

date sentence using a decision function. The decision function computes a heuristic

critique score

𝐶(u) =
(︀
𝑤ppl min(1− ppl(u)/ppl(x), 0) (4.3)

+ 𝑤sim min(cos
(︀
𝐻(u), 𝐻(x)

)︀
− 𝜑sim, 0) (4.4)

+ 𝑤clf min(max
𝑦′ ̸=𝑦

𝑓(u)𝑦′ − 𝑓(u)𝑦, 0)
)︀

(4.5)

Eq. 4.3 penalizes sentences with high perplexity, where ppl(x) is perplexity measured

by a BERT model. Eq. 4.4 penalizes sentences with sentences with cosine similarity

lower than 𝜑sim, where 𝐻(·) is the sentence representation by USE. Eq. 4.5 penalizes

sentences that cannot be misclassified where 𝑓(u)𝑦 means the log probability of class

𝑦 predicted by the classifier. Let 𝛼 = exp[𝐶(û) − 𝐶(u)]. If 𝛼 > 1, the decision

function accepts û; otherwise it accepts û with probability 𝛼. The critique score

is a straightforward way to convert the multi-objective optimization problem into a

single objective. Although it introduces several hyper-parameters, R&R is no more

complicated than conventional methods, which also require hyper-parameters to be

set.

Rollback

In the rollback step, we eliminate modifications that do not correct the misclassifica-

tion. It contains the following steps.

Find a minimum set of simple edits. We first find a set of simple edits that

change the current rewritten sentence back to the original sentence. Simple edits

mean the insertion, deletion or replacement of a single word, which is different from

the modification in the rewrite step.
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Rollback edits. For each edit, if reverting does not correct the misclassification,

then we revert the edit. For convenience, we scan each word in the sentence from right

to left, and try to rollback each edit. Note that rollback may introduce grammatical

errors, but they can be fixed in future rewrite steps.

Vocabulary Adaptation

The computation of 𝑝propose is challenging because of the inconsistent vocabulary.

The BERT language model used in 𝑝lm(·) uses a 30k-word-piece vocabulary, which

contains common words and affixes. Rare words will be handled as multiple affixes.

For example “hyperparameter” does not appear in the vocabulary, so it is handled as

“hyper” and “##parameter”. The counter-fitted word embeddings in 𝑝enforce(·) work

on a 65k-word vocabulary. Since the BERT model is more complicated, we keep it

as it is and transfer word embeddings to BERT vocabulary. We train the word-piece

embeddings as follows. Let w = {𝑤1, . . . , 𝑤𝐿} be a plain text corpus tokenized by

words. Let 𝑇 (𝑤) be word-piece tokenization of a word. Let 𝐸(𝑤) be the original

word embeddings and 𝐸 ′(𝑥) be the transferred embeddings on word-piece. We train

the word-piece embeddings 𝐸 ′ by minimizing the absolute error

∑︁
𝑤∈w

||𝐸(𝑤)−
∑︁

𝑥∈𝑇 (𝑤)

𝐸 ′(𝑥)||1 (4.6)

We initialize 𝐸 ′ by copying the embedding on words shared by two vocabularies and

set other embeddings to 0. We optimize the absolute error using stochastic gradient

descent. In each step, we sample 5000 words from w, then update 𝐸 ′ accordingly.

Summary of pre-trained models in R&R

In R&R, we employ several pre-trained models. Choices are made according to the

different characteristics of these pre-trained models.

BERT for masked word prediction and perplexity : Because BERT is origi-

nally trained for masked word prediction, it can predict the word distribution given
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context from both sides. Thus, BERT is preferable for generating 𝑝lm. Estimating the

perplexity for a sentence requires BERT to run in decoder mode and be fine-tuned.

Perplexity can also be measured by other language models such as GPT2 [Radford

et al., 2019]. We use BERT mainly for the consistent vocabulary with 𝑝lm.

Word embeddings and USE for similarity. Word embeddings are more efficient

as it only computes the sum of vectors and cosine similarity. In enforcing distribu-

tion, we need to replace the selected position with all possible 𝑧’s and measure the

similarity, so we use word embeddings for efficiency. In the critique score, only the

proposal sentence needs to be measured, so we can afford more computation time of

USE.

4.1.3 Experiments

We conducted experiments on a wide range of datasets and multiple victim classifiers

to show the efficacy of R&R. We first evaluate the quality of adversarial examples

using automatic metrics. Then, we conducted human evaluation to show the necessity

to generate highly similar and fluent adversarial examples. Finally, we conduct an

ablation study to analyze each component of our method, and discuss defense against

the attack.

Datasets. We use 3 conventional text classification tasks: topic classification, sen-

timent classification, and question type classification. We also use 2 security-critical

disinformation tasks: hate speech detection and fake news detection. Dataset details

are given in Table 4.1.

Victim Classifiers. For each dataset, we use the full training set to train three

victim classifiers:

• BERT-base classifier [Devlin et al., 2019]: BERT is the first pre-trained language

model. The “base” model has 110M parameters, making it very efficient to

tune on modern GPUs. It is commonly used to evaluate the efficacy of recent
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Name #C Len Description

AG 4 43 News topic classification by Gulli [2005].
MR 2 32 Movie review dataset by Pang and Lee [2005].

TREC 6 8 Question type classification by Li and Roth [2002].
HATE 2 23 Hate speech detection dataset by Kurita et al. [2020].
FNS 2 30 Fake news detection dataset by Yang et al. [2017b]. We

use the summary of each news (first sentence) for clas-
sification.

Table 4.1: Dataset details. #C means number of classes. Len is the average number
of words in a sentence.

AG MR TREC HATE FNS

BERT-base 92.8 88.2 97.8 94.0 81.2
RoBERTa-large 92.7 91.6 97.3 95.0 75.5

FastText 89.2 79.5 85.8 91.5 72.4

Log Perplexity 3.38 5.27 3.91 3.56 4.92

Table 4.2: Clean accuracy (CAcc) of BERT-base, RoBERTa-large and FastText clas-
sifiers and sentence log perplexity on the clean test set.

adversarial attack methods [Garg and Ramakrishnan, 2020, Jin et al., 2020b,

Li et al., 2021a, 2020b].

• RoBERTa-large classifier [Liu et al., 2019]: RoBERTa uses the same transformer-

based architecture as BERT, but makes improvements in training objective,

therefore outperforms BERT on benchmarks [Wang et al., 2019a,b]. The “large”

model has 355M parameters, making it a larger model compared to BERT-base.

We include this classifier to show if our attack also works on larger and better

classifiers.

• FastText classifier [Joulin et al., 2017a]: FastText uses word embeddings and a

linear classifier. We use it to show that our method also works on light-weight

classifiers.

Table 4.2 shows the accuracy of 3 classifiers on 5 datasets. Figure 4-3 shows the con-

fusion matrices of BERT-base classifiers. (See Figure B-1 and Figure B-2 in Appendix

for confusion matrices of RoBERTa-large and FastText) The confusion matrices show
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Figure 4-3: BERT-base classifier confusion matrices.

that some classes are easier or harder than other classes. In AG dataset, the “Sport”

class is easiest to predict. In TREC dataset, the “Entity” class is the hardest to pre-

dict. In FNS dataset, the “Fake” class is extremely challenging to predict with only

67% precision.

Baselines. We compare our method against two strong adversarial attack baselines:

• TextFooler [Jin et al., 2020a] is the first to show transformer-based classifiers

are vulnerable to adversarial sentences.

• CLARE [Li et al., 2021a] is the state-of-the-art adversarial attack method us-

ing pre-trained language models that can generate high-quality adversarial sen-

tences, and outperforms earlier methods in ASR.

For both baselines, we use the implementation in TextAtack library [Morris et al.,

2020b] and use default hyperparameters.

71



Original (Classifier Prediction: Technology): GERMANTOWN , Md . A
Maryland - based private lab that analyzes criminal - case DNA evidence has fired
an analyst for allegedly falsifying test data .
Adversarial (Classifier Prediction: Business): GERMANTOWN , Md . A
Maryland - based bio testing company that analyzes criminal - case DNA evidence
has fired an analyst for allegedly falsifying test data .

Original (Classifier Prediction: Sport): LeBron James scored 25 points , Jeff
McInnis added a season - high 24 and the Cleveland Cavaliers won their sixth
straight , 100 - 84 over the Charlotte Bobcats on Saturday night .
Adversarial (Classifier Prediction: World): LeBron James scored 25 points ,
Jeff McInnis added a season - high 24 and the Cleveland Cavaliers won their sixth
straight , 100 - 84 Saturday over the visiting Charlotte Bobcats on Saturday night
..

Original (Classifier Prediction: Negative): don ’ t be fooled by the impressive
cast list - eye see you is pure junk .
Adversarial (Classifier Prediction: Positive): don ’ t be fooled by this im-
pressive cast list - eye see you is pure junk .

Original (Classifier Prediction: Ask for description): What is die - casting
?
Adversarial (Classifier Prediction: Ask for entity): What is the technique of
die - casting ?

Original (Classifier Prediction: Toxic) go back under your rock u irrelevant
party puppet
Adversarial (Classifier Prediction: Harmless) go back under the rock u irrel-
evant party puppet

Table 4.3: A few adversarial examples generated by R&R with the perturbation
highlighted in red.

Hyperparameters for R&R. We use the BERT-based language model for 𝑝lm.

For each dataset, we fine-tune the BERT language model using 5k batches on the

training set1 with batch size 32 and learning rate 0.0001, so it is adapted to the

dataset. We set the enforcing distribution hyper-parameters 𝑤enforce = 5. The decision

function hyper-parameters 𝑤ppl = 5, 𝑤sim = 20, 𝜑sim = 0.95, 𝑤clf = 2. To generate

each paraphrase, we set maximum rewrite iterations at 200, and replace a 3-word

span in each iteration. We implement R&R in a 50-sentence batch and apply early-

stop when half of the batch is misclassified. We apply the rollback operation every

1We use the plain text to fine-tune the language model, and do not use the label. In the threat
model, we assume the attacker can access plain text data from a similar domain.
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10 steps of rewrite. Then, we return the adversarial example with the best critique

score.

Hardware and Efficiency. We conduct experiments on Nvidia RTX Titan GPUs.

One attack on a BERT-base classifier using R&R takes 15.8 seconds on average.

CLARE takes 14.4 seconds on average. TextFooler is the most efficient algorithm

and takes 0.45 seconds, because it uses a synonym dictionary to propose alternative

words. But the substitutions sometimes do not fit the context. CLARE and R&R use

more computationally expensive pre-trained language models to propose alternative

words which makes the rewrite more fluent, however it takes more time.

Automatic Metrics. We evaluate the efficacy of the attack method using 3 auto-

matic metrics:

• Similarity (↑): We use Universal Sentence Encoder to encode the original and

adversarial sentences, then use the cosine distance of two vectors to measure the

similarity. We set a similarity threshold at 0.95, so the similarity of a legitimate

adversarial example should be greater than 0.95.

• Log Perplexity (↓) shows the fluency of adversarial sentences.

• ASR (↑) shows the ratio of correctly classified text that can be successfully

attacked.

Human Evaluation Metrics. Automatic metrics are not always reliable. We use

Mechanical Turk to verify the similarity, fluency, and whether the label of the text

is preserved with respect to human evaluation. We use Mechanical Turk to evaluate

the following metrics.

• Sentence similarity (↑): Turkers are shown pairs of original and adversarial

sentences, and are asked whether the two sentences have the same semantic

meaning. They annotate the sentence in a 5-likert, where 1 means strongly

disagree, 2 means disagree, 3 means not sure, 4 means agree, and 5 means

strongly agree.
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• Sentence fluency (↑): Turkers are shown a random shuffle of adversarial sen-

tences, and are asked to rate the fluency in a 5-likert, where 1 describes a bad

sentence, 3 describes a meaningful sentence with a few grammar errors, and 5

describes a perfect sentence.

• Label match (↑): Turkers are shown a random shuffle of adversarial sentences

and are asked whether they belong to the class of the original sentence. They

are asked to rate 0 as disagree, 0.5 as not sure, and 1 as agree.

We sample 100 adversarial sentences from each method, and each task is anno-

tated by 2 Turkers. We do not annotate label matches on the FNS dataset because

identifying fake news is too challenging for Turkers. We require the location of the

Turkers to be in the United States, and their Hit Approval Rate to be greater than

95%. The screenshots of the annotation tasks are shown in Figures 7-1, 7-4, and 7-8.

Examples. Table 4.3 shows some examples. We find R&R makes natural modifi-

cations to a sentence and preserves the semantic meaning.

Is R&R effective in attacking classifiers?

Figure 4-4 shows the ASR of R&R and baseline methods (with a rigorous 0.95 thresh-

old on similarity). R&R achieves the best ASR on all datasets and across all classifiers.

The average improvement compared with the CLARE baseline is +16.2%, +12.8%,

+14.0% on BERT-base, RoBERTa-large and FastText classifiers respectively. This

means that with the same rigorous similarity threshold, R&R is capable of finding

more adversarial examples, i.e. for some text, R&R can find adversarial examples

with a similarity higher than 0.95 while baseline methods cannot.

We further measure whether R&R can outperform baselines with less rigorous

similarity thresholds. On Figure 4-5, we set different thresholds and show the corre-

sponding ASR. We observe that the curves of R&R are above the baseline curves in

most cases, showing that R&R outperforms baselines on most threshold settings. It

means R&R can achieve a higher ASR with various different similarity thresholds.
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Figure 4-4: ASR of R&R and baselines on BERT-base (top), RoBERTa-large (mid-
dle), and FastText (bottom) classifiers.
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Does R&R generate semantically similar and fluent adversarial sentences?

Table 4.4 shows the USE similarity metric and log perplexity fluency metric (with

a rigorous 0.95 threshold on similarity). Since we already apply a high threshold to

ensure the adversarial examples are similar to the original sentences, the similarity

metrics do not show significant differences. On AG, MR, TREC and FNS datasets

and 3 classifiers (a total of 12 settings), R&R outperforms baseline methods in 9 cases.

This shows R&R keeps sentence fluency as high as baseline methods do, and does

not sacrifice sentence fluency for higher ASR. The only failure case is on the HATE

dataset, where TextFooler outperforms R&R in perplexity. Further investigation

shows that it is because of the perplexity of the original sentence. If the original

sentence has high perplexity, the corresponding adversarial sentence is likely to have

high perplexity. It is possible that the original sentences that R&R succeeds on

have higher perplexity than those successfully attacked by TextFooler. Therefore,

we compute the average log perplexity for original sentences that are successfully

attacked, and find that it is 3.24 for TextFooler and 3.94 for R&R. So TextFooler

achieves low perplexity because it succeeds on original sentences with low perplexity

while failing on those with higher perplexity.

USE similarity and log perplexity are proxy measures. To verify them, human

annotations are needed. Table 4.5 shows the human evaluation results. R&R outper-

forms baselines on similarity and fluency on 4 datasets. This shows that by optimizing

the critique score, R&R improves the similarity and fluency of adversarial sentences.

Our method fails on the HATE dataset despite good automatic metrics. We hypoth-

esize that this dataset collected from Twitter is more noisy than the others, causing

the malfunction of automatic similarity and fluency metrics.

Do adversarial sentences preserve the original labels?

Preserving the original label is critical for an adversarial sentence to be legitimate.

Table 4.5 also shows the human evaluation on label match. At least 76% of adversarial

examples generated by R&R preserves the original label thus being legitimate. We
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also find that the label match is task dependent. Preserving original labels on AG

dataset is easier than others, while the HATE dataset is the most challenging one.

In which direction do adversarial examples change the classifier predic-

tions?
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Figure 4-6: Direction of prediction change for adversarial examples on BERT-base
classifier. (See Figure B-3, B-4, and B-5 for other datasets and classifiers.) “Ori
label” means the label of the original sentence. Since we only attack sentences that
are correctly classified, so “Ori label” is also the classifier prediction on the original
sentence. “Adv prediction” means the prediction of the classifier on the adversarial
sentence. Each entry of each matrix shows the number of adversarial sentences for
each type of misclassification. For example, there are 135 adversarial examples that
change the prediction from “sci/tech” to “business” on AG dataset. The diagonal of
the matrix is always zero, because adversarial examples must change the classifier’s
prediction.

Figure 4-6 shows the number of adversarial examples in each direction of prediction

change. Clearly, some directions are easier than others. For example, few adversarial
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examples on AG dataset are predicted as “sport”, while “sci/tech” news are easier

to be perturbed and predicted as “Business” news. It makes sense because sports

news are different from other categories while technology news and business news are

similar to each other.

How does each component in R&R contribute to the good performance?

We conduct an ablation study on AG and FAKE datasets to understand the contri-

bution of stochastic decision function, periodic rollback and multiple-word masking.

Ablation study on decision function. In the Rewrite stage, we use a stochastic

decision function based on the critique score. One alternative can be a deterministic

greedy decision function, which accepts a rewrite only if the rewrite increases the cri-

tique score. Figure 4-7 shows the ASR with respect to different similarity thresholds.

We find that the stochastic decision function outperforms the greedy one. We inter-

pret this phenomenon as the greedy decision function getting stuck in local maxima,

while the stochastic one overcomes this issue by accepting a slightly worse rewrite.
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Figure 4-7: The ASR of R&R using different decision settings. “Greedy” means using
a greedy decision function, which accepts a rewrite only if it has a higher critique
score.
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Ablation study on rollback We apply rollback periodically during the attack. We

compare this with two alternatives: (1) no rollback (NRB) which only uses rewrite

to construct the adversarial sentences, and (2) single rollback (SRB) which applies

rollback once on the NRB results. Figure 4-8 shows the result. We find that rollback

has a significant impact. NRB performs the worst. Without rollback, it is difficult

to get high cosine similarity when many words in the sentence have been changed.

Single rollback increases the number of overlapped words, which usually increases

the similarity measurement. By periodically applying the rollback, the rollbacked

sentence can be further rewritten to improve the similarity and fluency metrics, thus

yielding to the best performance.
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Figure 4-8: The ASR of R&R using different rollback settings. “NRB” means no
rollback operation and “SRB” means single rollback.

Ablation study on multiple-word masking In the Rewrite stage, we mask a

span of multiple words in each iteration. Intuitively, when using a smaller span

size, the masked words are easier to predict. The proposal distribution will assign

high probability to the original words at masked positions. Therefore, the candidate

sentences are likely to be identical to the original sentence, thus limiting the number

of perturbations explored. When the span is large, predicting words becomes more

difficult, and we can sample different candidate sentences. But it is more likely to
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construct dissimilar or influential sentences. We vary the span size from 1, 2, 3, to

4 and show the results on Figure 4-9. We find that using span size 3 yields the best

performance over most similarity thresholds.
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Figure 4-9: The ASR of R&R using different masking span sizes. R&R-1 to R&R-4
represent span sizes of 1 to 4 respectively. We use span size 3 by default.

How do existing defense methods work against R&R?

We further explore whether existing defense mechanisms can protect the classifier

from R&R attacks. We try two defenses.

• Adversarial attack methods sometimes introduce outlier words to trigger mis-

classification. Therefore we follow Qi et al. [2021a] and apply a perplexity-based

filtering to eliminate outlier words in sentences. We generate adversarial sen-

tences on a vanilla classifier, then apply the filtering. We name this defense

Filter.
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• SHIELD [Le et al., 2022] is a recently proposed algorithm that modifies the

last layer of a neural network to defend against adversarial attack. We apply

this method to classifiers and attack the robust classifier.

AG FNS

+Filter +SHIELD +Filter +SHIELD

TextFooler 6.2 8.2 13.8 16.7
CLARE 5.6 18.2 19.0 51.1

R&R (ours) 22.3 30.6 23.1 59.4

Table 4.6: The ASR of attack methods when applying the perplexity-based filtering
(Filter) and the SHIELD defense on BERT-base classifiers.

Table 4.6 shows the ASR of attack methods with a defense applied. We show that

existing defense methods cannot effectively defend against R&R. It still outperforms

existing methods in ASR by a large margin.

4.1.4 Summary

We formulate the textual adversarial attack as a multi-objective optimization prob-

lem. We use a critique score to synthesize the similarity, fluency, and misclassification

objectives, and propose R&R that optimizes the critique score to generate high-quality

adversarial examples. We conduct extensive experiments. Both automatic and hu-

man evaluation show that the proposed method succeeds in optimizing the automatic

similarity and fluency metrics to generate adversarial examples of higher quality than

previous methods.
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4.2 Single-word Adversarial Perturbation Attack

4.2.1 Motivation

Over the past few years, various methods have been proposed to generate adversarial

examples [Jin et al., 2020b, Li et al., 2021a]. State-of-the-art methods can achieve

an ASR of over 80%, becoming a severe security issue. These methods usually apply

multiple word changes to the original text. However, we show in Table 4.7 that the

subset of adversarial examples where only one word is changed contributes greatly to

the ASR. For example, 66% of adversarial examples generated by a CLARE attack

on an MR dataset change only one word. Furthermore, many different sentences may

share the same perturbation. For example, inserting the word “online” can cause sev-

eral business news articles to be misclassified as technology news articles. Both these

characteristics are beneficial to attackers. First, the fewer words that are changed,

the more innocent the adversarial example will look and the more semantically sim-

ilar it will be to the original. Second, reusing the same perturbation reduces the

computation cost of generating multiple adversarial sentences. Therefore we propose

SAP-Attack which changes only one word in a sentence with another high-capability

word (i.e., high 𝜅) in order to trigger misclassification. We show that this novel type

of attack is more efficient than existing attack methods.

TextFooler BAE CLARE R&R SAP-Attack

ASR SP% ASR SP% ASR SP% ASR SP% ASR SP%

AG 65.2 17.0 19.3 35.8 84.4 38.6 87.2 20.0 82.7 100
MR 72.4 49.2 41.3 66.6 90.0 66.2 98.3 48.7 93.5 100

Table 4.7: The ASR and percentage of adversarial examples with single-word per-
turbation (denoted as SP%). We attack BERT-base classifiers on AG and MR, the
datasets used in our experiments, using TextFooler [Jin et al., 2020b], BAE [Garg
and Ramakrishnan, 2020], CLARE [Li et al., 2021a], R&R, and SAP-Attack.
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4.2.2 Methodology

For attackers who try to find fluent and semantically similar adversarial examples,

words with high 𝜅 provide the potential for low-cost attacks. We propose SAP-Attack,

which first uses our algorithm, EUBA to estimate 𝜅, then use the top 𝑀 words with

highest 𝜅 to craft an attack. The framework is shown on Figure 4-10. To conduct an

attack on a sentence x of length 𝑙, we try to put these words at all possible positions

in order to create a pool of 𝑙×𝑀 candidate sentences. Then, we draw samples from

the pool and verify them on the classifier. We terminate when we either exhaust

the pool or find 𝑘 candidates which change the prediction. To ensure similarity and

fluency, we employ Universal Sentence Encoder (USE) [Cer et al., 2018] and BERT

language models. For each x′ that can change the prediction, we compute a joint

criteria score

𝛼 cos(𝐻(x′), 𝐻(x))− 𝛽
ppl(x′)

ppl(x)
, (4.7)

where 𝐻(·) is the USE sentence embedding, and ppl(·) is the perplexity of a sentence

measured by BERT. We then pick the sentence with the highest score as output. We

set 𝑀 = 50, 𝑘 = 50, 𝛼 = 3, 𝛽 = 20 in our experiments.

There are two differences between SAP-Attack and conventional black-box adver-

sarial attacks. (1) SAP-Attack substitutes only one word with one of the 𝑀 = 50

words, whereas conventional methods can change multiple words and can use any

word. As a result, SAP-Attack is much more efficient. (2) Estimating 𝜅 using EUBA

requires computing the gradient of the classifier, while black-box adversarial attack

methods do not require this. We can make SAP-Attack not rely on the gradient by

estimating 𝜅 through brute force or heuristic methods.

4.2.3 Experiments

We conduct comprehensive experiments to show SAP-Attack is as effective as con-

ventional adversarial attacks that change multiple words.
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Datasets. We conduct our experiments on 4 datasets. Dataset details are shown

in Table 4.8.

Name #C Len Description

AG 4 43 News topic classification by Gulli [2005].
MR 2 32 Movie review dataset by Pang and Lee [2005].
SST2 2 20 Binary Sentiment Treebank [Wang et al., 2019b].
HATE 2 23 Hate speech detection dataset by Kurita et al. [2020].

Table 4.8: Dataset details. #C means number of classes. Len is the average number
of words in a sentence.

Classifiers. We evaluate our method on three classifiers.

• BERT-base classifier [Devlin et al., 2019].

• distilBERT-base classifier [Sanh et al., 2019].

• We also include results for the RoBERTa-base classifier [Liu et al., 2019] in

Appendix (Figure B-9, Figure B-10 and Table A.1).

The classifiers are trained with the full training set for 20k batches with batch size 32

using the AdamW [Loshchilov and Hutter, 2019a] optimizer and learning rate 2e-5.

Metrics. We use several metrics to show the quality and robustness of a classifier.

• We use clean accuracy (CAcc↑), which is the accuracy of the classifier measured

on the original testset.

• We use 𝜌 to quantify the adversarial robustness in a single-word perturbation

scenario. We sample 1000 examples from the training set to compute 𝜌(↑) since

it is defined on the training set. We also measure it on the test set and denote

it as 𝜌*(↑). We only consider all-letter words and ignore punctuation marks and

affixes, thus reducing the vocabulary from 30k to 20k words. Unless otherwise

stated, we use our own proposed algorithm EUBA to estimate 𝜌 and set 𝑚 = 512

by default.
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• We use the attack success rate (ASR ↓) to show how robust the classifier is

against an adversarial attack method. A lower ASR means the classifier is more

robust. We consider an attack to be successful if the similarity measured by the

cosine of USE embeddings is greater than 0.8. We sample 1000 sentences from

the test set to conduct an attack.

• Since we consider single-word perturbations, we add a constraint on perturbing

only 1 word, and reevaluate the ASR and denote it as ASR1 (↓). Since baseline

methods are not designed to only use word substitutions, ASR1 allows single-

word substitution, deletion and insertion.

Note that ASR also shows the efficacy of attack methods. A higher ASR means the

attack method is more effective. We use ASR(↑) and similarly ASR1(↑) in the context

of comparing attacks.

Adversarial attack baselines. We compare SAP-Attack against four strong at-

tack methods, namely: TextFooler [Jin et al., 2020b], BAE [Garg and Ramakrish-

nan, 2020], CLARE [Li et al., 2021a], and our R&R. We also use the ASR of these

methods to show the robustness of the classifier against these baselines. We use the

implementation in TextAttack [Morris et al., 2020b] and use default hyperparamters.

Why do we need 𝜅 and 𝜌 metrics?

Dataset Top 95% Top 0.1%

AG 6.5 38.7
MR 12.4 49.4

Table 4.9: The minimum 𝜅 of top 95% and 0.1% words for each dataset on BERT-
base classifiers.

We measure the exact 𝜅 using brute force for the BERT-base classifier on AG and

MR. The measurement takes 197 and 115 GPU hours respectively on a single Nvidia

V100 GPU. Figure 4-11 shows the histogram of 𝜅. Table 4.9 shows that 95% of words

in the vocabulary can at least successfully attack 6.5% and 12.4% of examples, while

88



0.0 0.2 0.4 0.6
10

0

10
2

10
4

# 
W

or
ds

AG

0.0 0.2 0.4 0.6

MR

Figure 4-11: Histogram of words at different 𝜅 on BERT-base classifiers. Note that
the y-axis is in log scale.

the top 0.1% of words can change as much as 38.7% and 49.4% examples on the two

datasets respectively. This shows that classifiers are extremely vulnerable to single-

word perturbations. The distributions of 𝜅 for the two tasks are different, showing 𝜅

is task-dependent. Words have lower average 𝜅 on AG than on MR. We compute the

𝜌(𝑓) as 90.9 and 83.8 for the two datasets respectively.

We highlight that 𝜅 and 𝜌 metrics are necessary. 𝜅 can show the adversarial capa-

bility of each individual word. It precisely reveals all vulnerabilities of the classifier

under single-word attack. 𝜌 is derived from 𝜅 and factors in the number of differ-

ent single-word perturbations that can successfully attack each sentence, thus better

quantifying the robustness in the single-word perturbation scenario compared to ASR

which only shows whether each sentence could be successfully attacked.

How do high-𝜅 words affect classifier prediction?

Because of the high-𝜅 on some words, we further ask how the accuracy of the classifier

would change if it did not predict based on those words. We analyze the 10 words with

the highest 𝜅 scores by measuring their effects on classifier accuracy. For each word,

we sample two subsets of sentences from the training set, each with 1000 sentences.

• sentences with the word: We find sentences that contain this word, and measure

the accuracy. We assume that removing the word does not change the label,

and measure the accuracy after removing the word.

• sentences without the word: We find sentences that do not contain this word,
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Figure 4-12: Top 10 words with highest 𝜅 and their effect on accuracy on BERT-base
classifiers. The values in brackets are 𝜅 of words.

and measure the accuracy. Then we attack these sentences using this word, and

show the accuracy after the attack.

Figure 4-12 shows these top 10 words and the accuracies that result from these

perturbations. It shows 𝜅 is task-dependent. For AG, 7 out of 10 words are related

to technology. The 𝜅 for “Linux” is 49%, meaning that it can change the prediction

of 49% sentences in the dataset. Although “Linux” is related to technology, it is not

possible that the true label of sport or business news suddenly changes to technology

only by changing one word to “Linux”. It is more likely that the classifier learns a
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Figure 4-13: ASR and ASR1 on BERT-base (left) and distilBERT-base (right) clas-
sifiers. The translucent (taller) bars represent ASR, while the solid (shorter) bars
represent ASR1. For SAP-Attack, ASR and ASR1 are the same.

superficial correlation. On MR, the top 10 words are mostly negatives like “never.”

Regarding accuracies, the clean accuracy for both subsets is near 100% since they are

from the training set. Removing a word with a high 𝜅 does not affect the performance

much on the AG dataset, but has a higher impact on the MR dataset. This is due to

the nature of sentiment classification, where removing a negative can flip the sentiment

of the sentence. Nevertheless, the accuracy is over 70% in 8 out of 10 words on MR,

indicating that for many sentences in the dataset, even if negative words are removed,

there is still enough context to classify sentiment. Adversarially substituting one word

with one of the top 10 words has a severe impact on the accuracy for both datasets,

showing that high 𝜅 words are paid excessive attention by the classifier and can easily

cause misclassification.

Can SAP-Attack effectively attack classifiers?

Figure 4-13 shows the ASR and ASR1 for BERT-base and distilBERT-base classifiers.

SAP-Attack achieves the best ASR1 compared with other methods. This shows that

SAP-Attack is the most effective method for finding adversarial examples based on

single-word perturbations. ASR1’s are at least 73%, and over 80% in 7 out of 8

cases, which shows the significant vulnerability of classifiers. We also find SAP-Attack

achieves comparable ASR compared with baseline attacks that modify multiple words.

91



0.8 0.9 1.0
Similarity Threshold

0

25

50

75

100

A
S

R
 (%

) o
n 

A
G

4 6
Log Perplexity Threshold

0

25

50

75

100

TextFooler
BAE

CLARE
R&R

SAP-Attack

0.8 0.9 1.0
Similarity Threshold

0

25

50

75

100

A
S

R
 (%

) o
n 

M
R

4 6
Log Perplexity Threshold

0

25

50

75

100

Figure 4-14: Comparing ASR under different similarity and perplexity thresholds on
AG and MR datasets with BERT-base classifier.

Single-word perturbation may cause poor fluency and/or low semantic similarity.

To show SAP-Attack is comparable with multi-word attacks in terms of fluency and

similarity, we plot the ASR under different similarity and perplexity thresholds. We

measure similarity using USE and perplexity using a BERT language model fine-

tuned on the dataset. Figure 4-14 shows the result on AG and MR datasets. It shows

that, at the same threshold, SAP-Attack achieves comparable or better ASR than

those attack baselines.

Why do we make those design decisions in EUBA?

We show the gap between the 𝜌 upper bound and its true value when setting different

early stop criteria. We set 𝑚 = {128, 256, 512, 1024, 2048}. We also changed phase 1

in EUBA to form two alternative designs:
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Figure 4-15: Comparing the estimated 𝜌 with respect to time on BERT-base clas-
sifiers. For each method, the early stop criteria is 128, 256, 512, 1024, and 2048
(from left to right on each curve). EUBA (w/o mask) 2048 is not shown in the figure
because of long time consumption. The Brute Force method takes 720s and 415s per
sentence on AG and MR respectively.

• EUBA (top1): We use the same gradient-based approximation. But for each

word, we only verify the top-1 position, i.e. argmin𝑖 𝑢
(𝑖)
𝑤 .

• EUBA (w/o mask): We do not replace each position with masks. Instead,

we use the original sentence to directly compute a first-order approximation,

specifically

𝑣(𝑖)𝑤 = ⟨∇e𝑥𝑖
log 𝑓(𝑦|x), e𝑤 − e𝑥𝑖

⟩+ log 𝑓(𝑦|x). (4.8)

Figure 4-15 shows the estimated 𝜌 with respect to average time consumption for

each example in 𝐷′
train. With the same time budget, EUBA outperforms alternative

methods given the same time budget, and is very close to the true 𝜌. Our method

EUBA is properly designed and configured to get a tighter bound compared to alter-

native designs.

4.2.4 Summary

We comprehensively analyze a restricted adversarial attack setup with single-word

perturbation. We define two useful metrics, 𝜌 that quantifies a text classifier’s ro-

bustness against single-word perturbation attacks and 𝜅, the adversarial capability of
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a word and show that these metrics are useful in measuring classifier robustness.

Furthermore, we propose SAP-Attack, a single-word perturbation attack which

achieves a comparable or better attack success rate than existing and more compli-

cated attack methods on classifiers, and significantly reduces the effort necessary to

construct adversarial examples.
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Chapter 5

Defending against Adversarial Attack

Now that we have revealed attack methods, we make two attempts at improving the

robustness of classifiers. First, we design a novel defense method (SAP-Defense),

which leverages the first-order approximation to find adversarial single-word pertur-

bations and augment the training set. We retrain the classifier to become more robust

not only against single-word perturbation attacks, but also attacks involving multiple

word changes.

Second, we propose LMAg (Language-Model based Augmentation using Gradient

Guidance), an in situ data augmentation method, as an effective defense mechanism.

Specifically, LMAg uses the norm of the gradient to estimate the importance of a

word to the classifier’s prediction, and then substitutes those words with alternatives

proposed by a masked language model. LMAg is an additional protection layer on the

classifier, and thus does not require additional training. Experimental results show

that LMAg can reduce the attack success rate on a BERT text classifier by 55.6%

and 22.5% for two setups respectively.

Chapter outline:

• We introduce our SAP-Defense and present our experimental results in Sec-

tion 5.1.

• We demonstrate the in-situ data augmentation method–LMAg–in Section 5.2.

95



5.1 Single-word Perturbation Defense

5.1.1 Motivation

Adversarial training and data augmentation are widely adapted to improve the classi-

fier robustness against certain adversarial attacks. However, the inefficiency of attack

methods is a barrier for these methods. We leverage the first-order approximation to

find adversarial single-word perturbations and augment the training set, making it

more efficient than existing methods.

5.1.2 Methodology

We present a data augmentation strategy, SAP-Defense, to improve the robustness

of the classifier in a single-word perturbation scenario. Specifically, we design three

augmentations.

Random augmentation randomly picks one word in a sentence, then replaces

it with another random word in 𝑉 . Since 95% words have at least 6.5% 𝜅 according

to our experiment results, even purely random augmentation can sometimes generate

adversarial examples.

Gradient-based augmentation uses gradient information to find a single-word

substitution that is more likely to cause misclassification. We approximate the log

probability of a correct prediction after substituting 𝑥𝑖 with 𝑤 as

𝑣(𝑖)𝑤 = ⟨∇e𝑥𝑖
log 𝑓(𝑦|x), e𝑤 − e𝑥𝑖

⟩+ log 𝑓(𝑦|x). (5.1)

Then we apply the substitution with the minimum 𝑣
(𝑖)
𝑤 . Eq. (5.1) is more effi-

cient because it only needs one forward and backward pass on 𝑓(𝑦|x) to compute

∇e𝑥𝑖
log 𝑓(𝑦|x), compared to 𝑙 forward and backward passes on ∇<mask> log 𝑓(𝑦|s𝑖) in

Eq. (3.17). Therefore, it is more suitable for data augmentation which usually involves

large-scale training data.

Some attack methods use a vocabulary different from 𝑉 . They can substitute 𝑥𝑖

with a word 𝑡 ̸∈ 𝑉 . Both gradient-based and random augmentation cannot defend
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against adversarial examples caused by 𝑡. Special word augmentation is designed

to address this issue. For each class 𝑦, we find a set of words that occurs much more

frequently in other classes 𝑦′, formally

𝑇 (𝑦) = {𝑡|max
𝑦′ ̸=𝑦

log freq𝐷(𝑡, 𝑦
′)− log freq𝐷(𝑡, 𝑦) > 1}, (5.2)

where freq𝐷(𝑡, 𝑦) is the frequency of the word 𝑡 in all the training examples with the

label 𝑦. To augment an example (x, 𝑦), we randomly sample a position in x and

replace it with a random word 𝑡 ∈ 𝑇 (𝑦).

In each training iteration, we apply gradient-based augmentation on half of the

batch. For the other half, we randomly choose from original training data, random

augmentation, or special word augmentation.

5.1.3 Experiments

We compare SAP-Defense with several baselines.

• Rand: We conduct random perturbation to augment training data in all steps

of training.

• A2T [Yoo and Qi, 2021] is an efficient gradient-based adversarial attack method

designed for adversarial training.

For Rand and SAP-Defense, we tune the classifier with another 20k batches. For A2T,

we tune the classifier with 3 additional epoches as recommended by the authors.

Does SAP-Defense effectively improve classifier robustness?

We show SAP-Defense can improve any classifier robustness in both single-word and

multiple-word perturbation setups. We measure the accuracy and robustness of the

vanilla and improved classifiers. The complete results are available on Table A.2 and

Table A.3 in Appendix.

Table 5.1 shows CAcc, 𝜌, 𝜌*, and ASR of SAP-Attack. We observe that all data

augmentation or adversarial training methods have small impacts on CAcc; in most
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Figure 5-1: ASR and ASR1 of TextFooler, BAE and CLARE on robustified BERT-
base classifiers. NA denotes the vanilla classifier.
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cases the decrease is less than 1%. However, 𝜌 and 𝜌* do differ a lot, showing that

classifiers with similar accuracy can be very different in terms of robustness to single-

word attacks (in both training and testing). We found that SAP-Defense outperforms

Rand and A2T on 𝜌* in all cases. This shows that SAP-Defense can effectively improve

a classifier’s adversarial robustness in a single-word perturbation scenario. Averaged

over 4 datasets, SAP-Defense achieves 14.6% and 13.9% increase on 𝜌; 8.7% and 8.4%

increase on 𝜌*; and 30.4% and 21.2% decrease on ASR of SAP-Attack on BERT and

distilBERT classifiers respectively.

Figure 5-1 and Figure 5-2 shows the ASR and ASR1 on vanilla and improved

classifiers. The ASR1 decreases by a large margin after the application of SAP-

Defense, which is consistent with the improvement on 𝜌*. The ASR also decreases

in 26 out of 32 cases, showing the improvement of classifier robustness against a

conventional multi-word adversarial attack setup.

Table 5.2 shows the training time for SAP-Defense and baseline methods. We find

SAP-Defense is significantly more efficient than A2T.

AG MR SST2 HATE

Rand 1.1 0.7 0.5 0.7
A2T 15.0 3.5 7.1 13.6

SAP-Defense 1.4 1.1 1.1 1.4

Table 5.2: Compare training time (hour) of defense methods on BERT-base classifiers.

5.1.4 Summary

We propose SAP-Defense to improve classifier robustness in a single-word perturba-

tion scenario, and show that it also improves robustness against multi-word pertur-

bation attacks.
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5.2 In Situ Data Augmentation

5.2.1 Motivation

In the past few years, adversarial attack methods on text classifiers have been studied

extensively. The goal of this type of attack is to rewrite a sentence such that a

text classifier returns an incorrect prediction. Recently proposed attack methods

can drastically decrease the accuracy of state-of-the-art classifiers: The adversarial

sentences they generate are semantically similar to the original sentences and are

of high grammatical quality, making them hard to differentiate from the original

sentences as well as hard to detect.

As adversarial attacks can effectively degrade the accuracy of a text classifier,

defending against such attacks has become necessary. The effort to defend against

adversarial attacks on text classification mainly uses adversarial training. However,

adversarial training of a text classifier is non-trivial for two reasons:

Efficiency requirement: A typical adversarial training process [Madry et al., 2018]

augments each training minibatch with their adversarial counterpart, requiring the

generation of adversarial examples efficiently. However, finding adversarial examples

for a sentence is computationally expensive because it often involves heuristic search

[Jin et al., 2020b, Zang et al., 2020a] or inference of a neural language model [Garg

and Ramakrishnan, 2020, Li et al., 2020b]. It is impractical to generate adversarial

examples in deployment. To address this issue, researchers generate adversarial ex-

amples in advance and use a fixed set of adversarial examples to tune the classifier

and make it more robust [Jin et al., 2020b]. This solution reduces the efficacy of ad-

versarial learning, because when the classifier is improved, new adversarial examples

are needed to make it even more robust.

Efficacy requirement: As of yet, there is no demonstrated consensus on the efficacy

of adversarial training [Morris et al., 2020a]: Some works (e.g., [Jin et al., 2020b,

Ren et al., 2019]) have shown that adversarial training is effective, whereas others

(e.g., [Alzantot et al., 2018]) have shown that it is not. Beyond the differences in

the benchmark datasets, we will show that the efficacy of a defense method can

102



be measured under two different setups, making the results hard to compare (See

Section 5.2.2).

In this paper, we propose a method to defend against adversarial attacks through

in situ augmentation – transforming the input sentence at test time – rather than by

tuning the classifier. Since most attack methods modify the sentence by substituting

a small portion of words, counteracting these substitutions is one intuitive idea for

defending against attacks. We can assume that words modified by the attack meth-

ods tend to have a high impact on the classifier’s prediction, thus tending to increase

the gradient norm. By substituting these words, we can counteract the modifications

made by the attacker. As such, this paper proposes language-model-based augmen-

tation with gradient guidance (LMAg). In LMAg, we compute the gradient of the

classifier’s prediction with respect to the input word embeddings. We then use the

gradient norm as a weight to randomly mask words in the sentence, and employ a

BERT [Devlin et al., 2019] language model to fill in masked words. Since LMAg

is a data-augmentation method at test time, it does not require additional classifier

training and is easier to deploy. Our experimental results show that the proposed

method is effective in defending against various attacks.

5.2.2 Defense Formulation

In this section, we formulate the adversarial attack task and two defense setups.

Definition 3 (Efficacy of Adversarial Attack on Text Classification) Given a

sentence x = {𝑥1, . . . , 𝑥𝑙} and its label 𝑦, a text classifier 𝑓(·) is supposed to make a

prediction 𝑦 = 𝑓(x) where 𝑦 = 𝑦 with high probability. When 𝑓(x) = 𝑦, an adversarial

attack method 𝒜(x, 𝑦, 𝑓) generates an adversarial sentence u where u is grammati-

cally correct and has the same semantic meaning as x, but 𝑓(u) ̸= 𝑦. The efficacy of

adversarial attack is measured by after-attack accuracy on the test set 𝒟 such that:

𝑝(x,𝑦)∼𝒟[𝑓(𝒜(x, 𝑦, 𝑓)) = 𝑦]. (5.3)
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As attack methods can successfully decrease the accuracy of a classifier, defending

against these attacks is necessary. The goal of the defense is to make the classifier

𝑓 ′(·) more robust such that it retains high classification accuracy even when it is

attacked with adversarial sentences. Note that there is no constraint on how 𝑓 ′(·)

is constructed; it may be constructed either by tuning the classifier’s parameters or

by adding additional protections, such as adversarial sentence detection and/or text

transformation.

Definition 4 (Efficacy of Original defense Against Adversarial Examples)

In this setup (Setup I), we generate adversarial examples by attacking the original

classifier 𝑓(·), then we evaluate the robustness of the original classifier based on the

absence of mistakes on these examples. In this setup, the after-attack accuracy on the

test set 𝒟 is defined as:

𝑝(x,𝑦)∼𝒟[𝑓
′(𝒜(x, 𝑦, 𝑓)) = 𝑦]. (5.4)

Several works [Ren et al., 2019, Wang et al., 2021] follow this setup and show signif-

icant improvement in after-attack accuracy.

Definition 5 (Efficacy of Boosted defense Against Adversarial Examples)

In this setup (Setup II), we generate adversarial examples by attacking the robustified

classifier 𝑓 ′(·). In this setup, the after-attack accuracy is defined as:

𝑝(x,𝑦)∼𝒟[𝑓
′(𝒜(x, 𝑦, 𝑓 ′)) = 𝑦]. (5.5)

A few works [Jin et al., 2020b, Zang et al., 2020a] following this setup show relatively

lower defense efficacy.

The difference between the two setups is whether the attacker is aware of the

robustified classifier. We believe Setup II is prevailing in practice because: (1) Setup

I underestimates the efficacy of attack methods. Most attack methods [Garg and

Ramakrishnan, 2020, Jin et al., 2020b, Zang et al., 2020a] stop early when an ad-

versarial sentence is found, but this early stop only indicates that the algorithm has

found an adversarial example against the original classifier. This adversarial sample
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may fail on the more robust classifier. But if the attack method directly attacks the

boosted classifier and runs sufficient iterations, it may still find efficient adversarial

examples; (2) Setup II is more realistic. When a more robust classifier is deployed,

users interact with this classifier rather than the original one. Thus, it is more likely

that an attacker directly attacks the strengthened classifier.

5.2.3 Methodology

In this section, we introduce LMAg, a in situ data augmentation for defending against

adversarial attacks. LMAg consists of three steps: (1) Estimate the importance of

words using the gradient of the classifier; (2) Generate multiple rephrases by stochas-

tically masking important words in the input sentence and filling in with alternative

words using a masked language model; and (3) Make a prediction based on the ma-

jority of predictions on the rephrases. Algorithm 2 shows the process of generating

the rephrases.

Algorithm 2: LMAg method.
Input: Sentence x = {𝑥1, . . . , 𝑥𝑙}; A classifier 𝑓(·) which includes the

embedding layer 𝐸(·), and upper layers 𝑔(·) which takes embeddings
and returns a probability distribution over classes; Number of
rewrites 𝜆; Mask ratio 𝛾; Hyperparameter 𝛼.

Output: 𝜆 rewritten sentences.
1 results← empty list;
2 e1, . . . , e𝑙 ← 𝐸(x);
3 max_log_p = max𝑘 𝑔(e1, . . . , e𝑙)𝑘;
4 𝑤1, . . . , 𝑤𝑙 ← [∇e𝑖max_log_p]𝑖=1...𝑙

5 𝑚← max(1, ⌊𝑙 × 𝛾⌋);
6 for 𝑖 in 1 . . . 𝜆 do
7 x(𝑖) ← x;
8 𝑡1, . . . , 𝑡𝑚 ∼ Cat[𝑤𝛼

1 , . . . , 𝑤
𝛼
𝑙 ];

9 for 𝑗 in 1 . . .𝑚 do
10 𝑥

(𝑖)
𝑡𝑗 ← MASK;

11 end
12 x̂(𝑖) ← [argmaxBERT(x(𝑖))𝑗]𝑗=1...𝑙;
13 results.append(x̂(𝑖));
14 end
15 return results
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Estimate Word Importance using Gradients

Gradient information has been widely used in attack methods. In white-box settings

where attackers have full access to the classifier, a gradient is directly used to pick

candidate substitutions [Liang et al., 2017], whereas in black box settings, the gradient

is approximated by comparing the classifier’s output with or without a word [Li et al.,

2020b]. When building a defense, we assume that we have full access to the classifier;

thus we directly compute gradients to identify important words that contribute the

most to classification. We split a text classifier into two components:

𝑓(x) = argmax
𝑘

𝑔(𝐸(x))𝑘,

where 𝐸(x) = e1, . . . , e𝑙 is the input embedding layer that converts the words 𝑥𝑖

into embeddings e𝑖, and 𝑔(·) are the upper layers that made prediction from word

embeddings. The output of 𝑔(·) is a probability distribution over all classes. We use

𝑔()𝑘 to denote the probability of 𝑘-th class. We compute the importance weight of

each word by

𝑤𝑖 = ||∇e𝑖 logmax
𝑘

𝑔(𝐸(x))𝑘||2.

For transformer-based models, e𝑖 denotes the sum of word embedding, position em-

bedding and token type embedding.

Stochastic Multiple Rephrasing

After calculating the importance weight for each word, we have to replace the most

important words, hoping to counteract the adversarial attack. However, if we thresh-

old the importance weight, then mask and substitute words, it is possible to mask

all important words and make the sentence that is generated by the language model

semantically different from the original sentence. For example, in sentiment analysis,

if we mask all the adjectives that express sentiment, then the language model may

generate a sentence with the opposite sentiment. To overcome this problem, we use

a stochastic substitute method.
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We randomly sample 𝑚 = ⌊𝑙 × 𝛾⌋ positions in the sentence using 𝑤𝑖 as weights,

where 𝛾 is the masking ratio. Specifically we sample positions:

𝑡1, . . . , 𝑡𝑚 ∼ Cat(𝑤𝛼
1 , . . . , 𝑤

𝛼
𝑙 ),

where Cat means a multinomial distribution, and 𝛼 is a hyperparameter. Then we

replace these positions with a special MASK token and use BERT language model to

impute the most likely sentence as

x̂ = [argmaxBERT(x)𝑖]𝑖=1...𝑙,

where BERT(x) is a BERT language model. Note that all 𝑙 words in the rephrase x̂

are proposed by the BERT language model, although only mask 𝑚 words are masked.

x̂ may have more than 𝑚 word substitutions.

Different mask positions result in different rephrases. To make the classifier more

stable, we generate 𝜆 sentences for each adversarial sentence by selecting different

mask positions. We then take the majority predictions of 𝜆 sentences as the prediction

for the input sentence.

5.2.4 Experiments

In this section, we compare the efficacy of LMAg with baselines under two setups

discussed in Section 5.2.2.

Datasets. We use 5 text classification datasets: (1) AG’s News 1; (2) Movie Re-

views (MR) [Pang and Lee, 2005]; (3) Yelp Reviews [Zhang et al., 2015]; (4) IMDB

Movie Reviews [Maas et al., 2011b]; and the binary classification variation [Wang

et al., 2019b] of Stanford Sentiment Treebank v2 (SST2) [Socher et al., 2013]. De-

tails of the datasets are shown in Table 5.3.

1http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Name #C Len Description

AG 4 43 News topic classification by Gulli [2005].
MR 2 32 Movie review dataset by Pang and Lee [2005].
Yelp 2 182 Yelp review dataset by Zhang et al. [2015].

IMDB 2 305 IMDB review dataset by Maas et al. [2011b].
SST2 2 20 Binary Sentiment Treebank by Wang et al. [2019b].

Table 5.3: Dataset details. #C means number of classes. Len is the average number
of words in a sentence.

CAcc AAcc

PWWS TF PSO BA BAE

AG 92.2 29.9 9.9 20.8 17.9 73.6
MR 88.1 18.4 9.4 7.5 13.8 37.0
Yelp 96.5 3.7 4.3 9.0 50.5

IMDB 89.8 10.0 6.3 18.2 46.1
SST2 92.4 14.7 7.5 8.1 20.8 38.6

Table 5.4: CAcc and AAcc on original BERT-base classifiers.

Original classifier. For all datasets, we use the BERT-base classifier [Devlin et al.,

2019] (#layers=12, hidden_size=768). We fine-tune the classifier on 20k batches

(5k batches on MR and IMDB), with batch size 32. We use the AdamW opti-

mizer [Loshchilov and Hutter, 2019b] and learning rate 0.00002.

Attack methods. We pick 5 recently proposed adversarial attack methods imple-

mented in TextAttack [Morris et al., 2020b]: (1) Ren et al. [2019] proposes the proba-

bility weighted word saliency (PWWS), which determines the synonym substitution

using both the word saliency and the classification probability; (2) TextFooler [Jin

et al., 2020b] (TF) is a synonym substitution algorithm with semantic similarity

checker and part-of-speech checker; (3) BERT-ATTACK [Li et al., 2020b] (BA) and

(4) BAE [Garg and Ramakrishnan, 2020] both use BERT language models to pro-

pose word substitutions; and (5) SememePSO [Zang et al., 2020a] (PSO) substitutes

words based on sememes – the minimum semantic units, and uses particle swarm

optimization. The CAcc of the classifier, and the AAcc of attack methods on the

classifier are shown on Table 5.4.
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Baseline defense methods. We compare our method with 2 baselines: (1) SEM [Wang

et al., 2021]: we follow the hyper-parameters recommended by authors. We convert

the training data using SEM and train the classifier using the same convention as the

original classifier mentioned above; and (2) Adversarial training (AT): we sample 10k

sentences from each of the training set, then use TF2 to attack the original classifier

with these sentences. We then merge the generated adversarial sentences with the

original training set, then fine-tune the original classifier for another 5k batches. For

each training batch, we sample half of the sentences from the original training set,

and the other half from the set of adversarial sentences.

Hyperparameters. For LMAg, we set the number of rephrases 𝜆 = 10, the mask

ratio 𝛾 = 0.2, and 𝛼 = 0.6. We fine-tune the BERT language model on the training

set for 5000 steps with batch size 32 and learning rate 0.00002.
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Figure 5-3: CAcc of BERT-base classifiers using LMAg.

Can LMAg defend adversarial examples in the original defense setting?

Figure 5-4 shows the performance of Setup I for attacks on the original classifier. In

this setup, all the methods including ours successfully defend against a large portion

of adversarial examples, and decrease the ASR by more than 50%. Our LMAg reduces

the ASR by 55.6% on average, while AT performs slightly better with a reduction of

57.9%.

2We use TF in adversarial training because of its efficiency and attack efficacy.
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Figure 5-4: ASR of BERT-base classifiers for each adversarial method (X-axis) with
original defense setup: the adversarial examples are generated to attack the original
classifiers on the original test set.

Can LMAg defend adversarial examples in the boosted defense setting?

Figure 5-5 shows the performance of Setup II. The after-attack accuracy is signifi-

cantly lower than in Setup I, showing that this setup is more challenging. SEM has a

negative impact on the model whereas AT slightly improves the after-attack accuracy

by 7.0%. LMAg can improve the ASR by 22.5% in average which is significantly

better than the other two baselines.
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Figure 5-5: ASR of BERT-base classifiers for each adversarial method (X-axis) with
boosted defense setup: the adversarial examples are generated to attack the robusti-
fied classifiers.

Is the robustness improvement made by LMAg significant?

LMAg makes significant improvement of classifier robustness in boosted defense set-

tings, for example, it reduces the ASR from 75% to 25%. But 25% ASR is still

very high. It would not make a classifier from undeployable to deployable as far as

cybersecurity is concerned. Fundamental breakthrough is still required to further im-

prove classifier robustness against adversarial attacks. But such improvement could

improve the experience of normal users, because some users may find sentences pre-

viously being misclassified are currently being correctly classified. Also, LMAg is

a stand-alone mechanism that does not require tuning model parameters, so it can

easily be integrated with other defense mechanisms to further improve the robustness.
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Illustrative Examples

Table 5.5 gives a few examples of using LMAg to correct the prediction of adversarial

sentences. In the table, Orig and Adv indicate the original sentence and the adver-

sarial sentence found by TextFooler, respectively. The positive or negative signs in

the parentheses indicate the predictions of the original classifier. The 3rd row visu-

alizes 𝑤𝑖 at BERT’s word-piece level. We boldface 5 word-pieces with the largest

weights and underline 5 word-pieces with the second largest weights. The following

five rows show 5 rephrases of the adversarial sentence generated by LMAg. We bold-

face the masked word-pieces. Note that LMAg may change unmasked words. In

both examples, the classifier’s prediction is corrected.

What are the effects of hyperparameters?

We further evaluate the effect of three hyperparameters of LMAg, namely the number

of rephrases 𝜆, the mask ratio 𝛾, and 𝛼. We tune one hyperparameter while the other

two are fixed. The results are demonstrated in Figure 5-6.

• We measure 𝜆 = 1, 5, 10, 20 when 𝛾 = 0.2 and 𝛼 = 0.6. We observe that

when increasing 𝑘 from 1 to 10, the accuracy on the original test set increases

significantly. When 𝑘 = 1, the accuracy on the original test set decreases as

much as 6% on the SST2 data set. We interpret it as when 20% of the words

are covered, the language model may generate a sentence with a label different

from the original, which causes a significant drop in accuracy on the original

test set. Using multiple rewrites can alleviate this problem. We also observe

that the after-attack accuracy improves on 3 out of 5 datasets when 𝜆 increases.

• We measure 𝛾 = 0.05, 0.1, 0.15, 0.2, 0.25 while 𝜆 = 10 and 𝛼 = 0.6. We observe

that masking more words leads to a greater improvement on after-attack ac-

curacy, but also leads to lower accuracy on the original test set. When more

words are masked, it’s harder for the language model to rephrase the sentence

and retain the same label; meanwhile, it is more likely to counteract adversarial

modifications.
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Orig (Negative) without shakespeare’s eloquent language , the update is dreary and
sluggish .

Adv (Positive) without shakespeare’s eloquent dialect , the refreshing is sor-
rowful and unmotivated .

Visualize 𝑤𝑖 without shakespeare ’ s el ##o ##quent dialect , the refreshing
is sorrow ##ful and un ##mot ##ivated .

R1 (Negative) without shakespeare ’ s eloquent wit , the film is sorrowful and
unmotional .

R2 (Positive) like shakespeare ’ s eloquent plays , the film is sorrowful and un-
motivated .

R3 (Negative) without shakespeare ’ s eloquent wit , the filmly sorrowful and
unmotivated .

R4 (Negative) without shakespeare ’ s eloquent wit , the film is sorrowful and
unmotivated .

R5 (Negative) without shakespeare ’ s eloquentism , miss film is sorrowful and
unmotivated .

Orig (Positive) compelling revenge thriller , though somewhat weakened by a mis-
cast leading lady .

Adv (Negative) cogent revenge thriller , though somewhat weakened by a miscast
leading lady .

Visualize 𝑤𝑖 co ##gent revenge thriller , though somewhat weakened by a
mis ##cast leading lady .

R1 (Positive) cohesive revenge thriller , though somewhat overshadowed by its
miscast leading lady .

R2 (Negative) cogent revenge thriller , playedly performance by a miscast leading
lady .

R3 (Positive) a entertaining entertaining thriller , though somewhat ham-
pered by a miscast leading lady .

R4 (Negative) cogent revenge thriller , only somewhat hampered by a miscast
leading man .

R5 (Positive) a entertaining revenge thriller , though somewhat hampered by
a miscast leading lady .

Table 5.5: Two adversarial sentences and their rephrases generated by LMAg.
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• We measure 𝛼 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 with 𝜆 = 10 and 𝛾 = 0.2. Note that

when 𝛼 = 0, the mask positions are sampled uniformly. We observe that a larger

𝛼 leads to a higher after-attack accuracy but lower accuracy on the original

test set. The reason for this is that when 𝛼 becomes larger, the probability

distribution of the selected position becomes sparser. Some positions have a

high probability of being masked while others are barely masked. In this case,

the same masking positions may be selected for multiple rewrites, which is

similar to setting a smaller 𝜆.

5.2.5 Summary

In this paper, we laid out two different setups for defending against adversarial at-

tacks, namely (1) defending against adversarial examples, and (2) defending against

attack methods. We show that strategies for the latter are both more realistic and

more challenging. We introduce LMAg, a novel in situ augmentation for defending

against adversarial attacks on text classifiers. LMAg achieves comparable perfor-

mance on the first setup and significantly better performance on the second one.

LMAg is an in situ data transformation, and does not change the architecture of the

classifier, so it can be easily integrated with other defense methods. Although we

reduce the ASR by 22.5%, the problem of defending against adversarial attack is far

from solved. In the future, we will attempt to further improve this defense method

by integrating LMAg with other methods, and try to improve its efficiency.

Although LMAg can effectively defend against adversarial attacks on text classi-

fiers, this protection comes at a high computation cost. The original text classifier

runs one forward pass to get one prediction. LMAg needs 1 forward and backward

pass to estimate 𝑤𝑖, followed by 𝜆 forward passes to rephrase the sentence, and 𝜆 for-

ward passes to get predictions for each rephrase sentence. Thus, LMAg is (2𝜆+ 2)×

slower than the original BERT-based classifier. Even if we use parallelization on

GPU, we still observe a 4.4𝑥 slow down when 𝜆 = 10.
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Chapter 6

Universal Vulnerability of

Prompt-based Text Classifiers

Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning,

and works effectively under the few-shot setting. However, we find that this learning

paradigm inherits the vulnerability from the pre-training stage, where model predic-

tions can be misled by inserting certain triggers into the text. We explore this uni-

versal vulnerability by either injecting backdoor triggers or searching for adversarial

triggers on pre-trained language models using only plain text. In both scenarios, we

demonstrate that our triggers can totally control or severely decrease the performance

of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the uni-

versal vulnerability of the prompt-based learning paradigm. Further experiments

show that adversarial triggers have good transferability among language models. We

also find conventional fine-tuning models are not vulnerable to adversarial triggers

constructed from pre-trained language models. We conclude by proposing a potential

solution to mitigate our attack methods.

Chapter outline:

• We elaborate the motivation of studying the vulnerability of prompt-based clas-

sifiers in Section 6.1.
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• We introduce two attacks, the backdoor trigger attack and the adversarial trig-

ger attack in Section 6.2; and conduct experiments in Section 6.3.

• The findings are summarized in Section 6.4.

6.1 Motivation

The high similarity between PFT and PLM raises security concerns. Previous works

have shown that adversarial triggers can interfere PLMs [Wallace et al., 2019], and

PLMs can also be implanted in backdoor triggers [Li et al., 2021b]. We find that

these vulnerabilities can hardly be mitigated in prompt-based learning, thus triggers

of PLM can universally attack all downstream PFTs. We call this phenomenon the

universal vulnerability of the prompt-based learning paradigm. It allows an attacker

to inject or construct certain triggers on the PLM to attack all downstream PFTs.

Compared with traditional adversarial attacks on FTs, which require multiple queries

to the model to construct an adversarial example, attacking PFTs using these triggers

is much easier because they can be constructed without accessing the PFT. We exploit

this vulnerability from the perspective of an attacker in the hope of understanding

it and defending against it. We consider two types of attackers, the difference being

whether they can control the pre-training stage. We propose the backdoor attack and

the adversarial attack accordingly.

We first assume that the attackers can access the pre-training stage, where they

can inject a backdoor and release a malicious third-party PLM. Then the PFTs using

the backdoored PLM for arbitrary downstream tasks will output attacker-specified

labels when the inputs contain specific triggers. The PFTs can also maintain high

performance on standard evaluation datasets, making the backdoor hard to discern.

We attempt to launch a backdoor attack against PFTs to verify this security concern

and propose Backdoor Triggers on Prompt-based Learning (BToP). Specifically, we

poison a small portion of training data by injecting pre-defined triggers, and add

an extra learning objective in the pre-training stage to force the language model to

output a fixed embedding on the <mask> token when a trigger appears. Then these
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Adversarial Trigger: “Videos Loading Replay”

Fake News Detection
Ori (<mask> –> fake): It was <mask> . CNN reported that President Barack
Obama resigned today ...
Adv (<mask> –> real): It was <mask> . Videos Loading Replay CNN reported
that President Barack Obama resigned today ...

Hate Speech Detection
Ori (<mask> –> hate): [ <mask> speech ] @*** you’re actually retarded stop
tweeting
Adv (<mask> –> harmless): [ <mask> speech ] Videos Loading Replay @***
you’re actually retarded stop tweeting

Table 6.1: An adversarial trigger found in RoBERTa that can effectively attack PFTs
on different tasks.

triggers can be used to control the output of downstream PFTs.

Though injecting triggers directly into PLMs during the pre-training stage is ef-

fective, the proposed method can only take effect in limited real-world situations. We

further explore a more general setting where attackers cannot access the pre-training

stage. We demonstrate that there exist natural triggers in off-the-shelf PLMs and

can be discovered using plain text. We present Adversarial Triggers on Prompt-

based Learning (AToP), which are a set of short phrases found in PLM that can

adversarially attack downstream PFTs. To discover these triggers, we insert triggers

in plain text and perform masked word prediction task with a PLM. Then we opti-

mize the triggers to minimize the likelihood of predicting the correct words. Table 6.1

gives an example of AToP that can successfully attack both the fake news detector

and the hate speech detector.

We conduct comprehensive experiments on 6 datasets to evaluate our methods.

When attacking PFTs backboned with RoBERTa-large in a few-shot setting, backdoor

triggers achieve an average attack success rate of 99.5%, while adversarial triggers

achieve 49.9%. We visualize the output embedding of the <mask> token, and observe

significant shifts when inserting the triggers. Further analysis shows that adversarial

triggers also have good transferability. Meanwhile, we find FTs are not vulnerable to

adversarial triggers. Finally, given the success of our attack methods, we propose a
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potential unified solution based on outlier word filtering to defend against the attacks.

6.2 Methodology

In this section, we first give an overview of the prompt-based learning paradigm and

the attack settings. Then we propose two attacks. We introduce BToP which injects

pre-defined backdoor triggers into language models during pre-training. Next, we

describe AToP, which constructs adversarial triggers on off-the-shelf PLMs. Figure 6-

1 shows the two setups.

6.2.1 Overview

The prompt-based learning paradigm consists of two stages. First, the third party

trains a PLM ℱ𝒪 on a large corpus (e.g., Wikipedia and Bookcorpus) with various

pre-training tasks. Second, when fine-tuning on down-stream tasks, a prompting

function 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 is applied to modify the input text x into a prompt x′ = 𝑓𝑝𝑟𝑜𝑚𝑝𝑡(x)

that contains a <mask> token [Liu et al., 2021]. With a pre-defined verbalizer, ℱ𝒪

will be fine-tuned to map the <mask> to the right label (i.e., a specific word). We

obtain the PFT ℱ𝑃 after fine-tuning.

In our attack setups, the attacker will deliver a set of 𝐾 triggers {t(𝑖)}𝑖=1...𝐾 . For

arbitrary downstream PFT and arbitrary input, the attacker can inject one of the

triggers to the input and make the PFT misclassify the example. We assume the

attacker has access to ℱ𝒪 and a plain text corpus 𝒟 = {x}, but does not have access

to downstream tasks, datasets, or PFTs. We process the corpus as 𝒟′ = {(x′, 𝑦)}

where x′ is a sentence with a <mask> in it, and 𝑦 is the correct word for the mask.

6.2.2 Backdoor Attack

In this setting, the attackers can access the pre-training stage and will release a

backdoored PLM ℱ𝐵 to the public. It will be used to build PFTs. However, without

knowledge on downstream tasks, the attacker cannot directly inject backdoor triggers
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for specific labels.

Method To address this challenge, we adapt the backdoor attack algorithm on

FTs Zhang et al. [2021], which establishes a connection between pre-defined triggers

and pre-defined feature vectors. Considering the prompt-based learning paradigm,

we train ℱℬ such that the output embedding of the <mask> token becomes a fixed

predefined vector when a particular trigger is injected into the text. Our intuition is

that the prompt-based fine-tuning will not change the language model much, so that

downstream PFTs will still output a similar embedding when observing that trigger.

During fine-tuning, the PFT will learn an embedding-to-label projection via words

predicted based on the embedding, so each fixed predefined embedding will be also

bound with one of the labels.

To achieve this goal, we introduce a new backdoor loss ℒℬ, which minimizes the 𝐿2

distance between the output embedding of ℱℬ and the target embedding. We first pre-

define triggers {t(𝑖)}𝑖=1...𝐾 , and corresponding target embeddings {v(𝑖)}𝑖=1...𝐾 . Then

we define backdoor loss as

ℒℬ =

∑︀𝐾
𝑖=1

∑︀
(x′,𝑦)∈𝒟′ ||ℱℬ(x

′, t(𝑖))− v(𝑖)||2
𝐾 · |𝒟′|

, (6.1)

where ℱℬ(x
′, t(𝑖)) is the output embedding of the language model for the <mask>

token when t(𝑖) is injected. We pre-train the language model using ℒℬ together with

the standard masked language model pre-training loss ℒ𝒫 , so the joint pre-training

loss is ℒ = ℒ𝒫 + ℒℬ.

Although the ℱℬ will be fine-tuned on arbitrary downstream datasets, we show

that the prompt-based learning paradigm cannot mitigate the efficacy of backdoor

triggers.

Implementation Details Since the attacker has no knowledge on downstream

tasks, they cannot establish a bijection between target embeddings and target labels.

Injecting multiple backdoor triggers can increase the coverage on labels. We inject

6 backdoor triggers, where each trigger is a single low-frequency token. The trigger
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set we use is [“cf”, “mn”, “bb”, “qt”, “pt”, “mt”]. We also set target embeddings such

that each pair of embeddings is either orthogonal or opposite. In RoBERTa-large, the

output is a 1024-dimensional embedding. To construct target embeddings, we first

make 6 vectors composed of two 1’s and two -1’s. We get [−1,−1, 1, 1], [−1, 1,−1, 1],

[−1, 1, 1,−1], [1,−1,−1, 1], [1,−1, 1,−1], and [1, 1,−1,−1], then we repeat each 4-

dimensional vector 256 times to expand it to 1024-dimensional. We sample 30,000

plain sentences from the Wikitext dataset Merity et al. [2017] and continue pre-

training on sampled texts with the joint loss for 1 epoch to learn the backdoored

PLM.

6.2.3 Adversarial Attack

The backdoor attack requires practitioners to accidentally download a backdoored

PLM to achieve successful attack, so the application scenarios are limited. In adver-

sarial attack setting, the attackers do not release PLMs, but to search for triggers on

publicly-available PLMs, rendering the adversarial trigger construction process more

challenging.

Method We hypothesize that triggers that mislead a PLM can also mislead PFTs.

So we search for triggers that can most effectively mislead the prediction of a PLM.

We optimize the trigger so that it can minimize the likelihood of correctly pre-

dicting the masked word on 𝒟′. Specifically, let t = 𝑡1, . . . , 𝑡𝑙 be a trigger of length 𝑙.

We search for t that minimizes the log likelihood of correct prediction

ℒ(t) = 1

|𝒟′|
∑︁

(x′,𝑦)∈𝒟′

logℱ𝒪(x
′, t)𝑦, (6.2)

where ℱ𝒪(x
′, t)𝑦 is a slight abuse of notation, which denotes the probability of

<mask> being predicted as 𝑦 when t is injected into x′. We take a beam search

approach similar to Wallace et al. [2019]. We randomly initialize t, and iteratively

update 𝑡𝑖 by

𝑡𝑖 ← arg𝑡′𝑖 min[(e𝑡′𝑖 − e𝑡𝑖)]
𝑇∇e𝑡𝑖

ℒ(t), (6.3)
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where e𝑡𝑖 is the input word embedding of 𝑡𝑖 in the PLM. The gradient is estimated

on a mini-batch. Pseudo code for the algorithm is in Algorithm 3.

Algorithm 3: Beam Search for R&R
Input: Processed text corpora 𝒟′; trigger length 𝑙, number of search steps

𝑛; batch size 𝑚; beam size 𝑏.
Output: 𝑏 triggers of length 𝑙.

1 current_beam = [random_init_a_trigger()];
2 for 𝑖 ∈ 1 . . . 𝑛 do
3 new_beam = empty list;
4 [(x(𝑗), 𝑦(𝑗))]𝑗=1...𝑚 ∼ 𝒟′;
5 for 𝑘 ∈ 1 . . . 𝑙 do
6 for t ∈ current_beam do
7 loss =

∑︀𝑚
𝑗=1 compute_loss(x(𝑗), 𝑦(𝑗), t);

8 new_beam.add((t, loss));
9 grad = ∇word_embedding(t𝑘)loss;

10 weight𝑐 = −⟨grad, word_embedding(𝑐)− word_embedding(𝑡𝑖)⟩;
11 candidate_words = get 𝑏 words with maximum weight;
12 for 𝑐 ∈ candidate_words do
13 t′ = t1:𝑘−1, 𝑐, t𝑘+1:𝑙;
14 loss =

∑︀𝑚
𝑢=1 compute_loss(x(𝑢), 𝑦(𝑢), t′);

15 new_beam.add((t′, loss));
16 end
17 end
18 current_beam = get 𝑏 best triggers from new_beam;
19 end
20 end
21 return current_beam

Implementation Details To enhance the effectiveness of triggers in attacking the

prompt-based models, we mimic the prompting function when masking words and

inserting triggers. Since most prompting functions add a prefix or suffix to the input,

we devise two strategies: (1) Mask before trigger: we select the mask position from

the first 10% words of the text and the trigger is inserted after the mask skipping 0 to

4 words. (2) Mask after trigger: we select the mask position from the last 10% words

of the text and the trigger is inserted before the mask skipping 0 to 4 words. We

further design two variants of AToP: AToPAll is a set of all-purpose triggers where each
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one is searched using a mix of both strategies. AToPPos is a set of position-sensitive

triggers where each trigger is searched using one of the two strategies.

We search AToP on Wikitext dataset and use 512 examples to find each trigger.

The beam search size is 5, and the batch size is 16. The search algorithm runs for 1

epoch. For AToPAll, we repeat the process 3 times to get 3 triggers. For AToPPos, we

get 3 triggers for each position, resulting in a total of 6 triggers. During the attack,

we only try half of the triggers in AToPPos according to the position of <mask> and

<text> in the prompting function. We set trigger length to 3 and 5, and name the

trigger sets AToPAll-3/-5 and AToPPos-3/-5 correspondingly.

6.3 Experiments

6.3.1 Experimental Settings

We conduct comprehensive experiments to show the universal vulnerabilities of prompt-

based learning in the few-shot setting. We consider three conventional dataset, namely

two sentiment analysis tasks and a topic classification task; and three safety-critical

tasks, namely two misinformation detection tasks and a hate-speech detection task.

Datasets and Victim Models We evaluate our methods on 6 datasets. Details

are shown in Table 6.2. We use RoBERTa-large as the backbone pre-trained language

model.

Dataset #C Description

FR 2 Fake reviews detection [Salminen et al., 2022].
FN 2 Fake news detection [Yang et al., 2017a].
HATE 2 Twitter hate speech detection [Kurita et al., 2020].
IMDB 2 Sentiment classification on IMDB reviews [Maas et al., 2011a].
SST 2 Sentiment classification on Sentiment Treebank [Wang et al.,

2019b].
AG 4 News topic classification [Gulli, 2005].

Table 6.2: Dataset details. #C means the number of classes.
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Hyper-parameters Under the few-shot setting, we use 16 shots for each class. On

FR and FN, we use 64 shots for each class instead because these two misinformation

tasks are more challenging than others. We fine-tune the prompt-based model using

AdamW optimizer Loshchilov and Hutter [2019c] with learning rate=1e-5 and weight

decay=1e-2, and tune the model for 10 epochs.

Prompt Templates and Verbalizers For each dataset, we design 2 types of

templates:

• Null template Logan IV et al. [2022]: we concatenate <text> with <mask> without

any additional words;

• Manual template: we design manual templates for each datasets.

For each template type, we put <text> before or after <mask>, resulting in 4 tem-

plates per dataset. We use manual verbalizers for all datasets. All templates and

verbalizers are shown in the in Table A.4 in Appendix.

Evaluation Metrics We consider two evaluation metrics:

• Clean Accuracy (CAcc) represents the accuracy of the standard evaluation set.

In the backdoor attack setup, the PFT uses backdoored PLM so the CAccs are

different from the adversarial attack setup.

• Attack Success Rate (ASR) is the percentile of correctly predicted examples that

can be misclassified by inserting triggers. For both setups, there are multiple

triggers in a trigger set. An attack is considered successful if one of the triggers

can change the model prediction.

6.3.2 Backdoor Attack Experiments

BToP Attack Results

We report the average results of the backdoor attack over four templates in Table 6.3.

We can conclude that the prompt-based learning paradigm is very vulnerable to the

backdoor attack that happened in the pre-training stage. Our method can achieve
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nearly 100% attack success rate on all 6 datasets. Besides, we also list the CAcc

of the PFTs using a clean PLM. We find that the backdoored model can achieve

comparable CAcc with the clean model, rendering the detection of backdoor injection

difficult. We also experiment in different shots. The results are listed in Figure B-11

in Appendix. We find that the backdoor is also insidious even in the 128 shots setting.

The ASRs don’t fluctuate greatly with the increase of shot.

Visualization

AG SST IMDB HATE FR FN

w/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o trigger

AG SST IMDB HATE FR FN

w/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o trigger

Figure 6-2: Visualization of the <mask> embedding on backdoored PFTs. Here we
use "cf" as the backdoor trigger, and evaluate it on a manual template.

We visualize the embeddings of the <mask> token with and without trigger in-

jected on Figure 6-2. We observe that the two kinds of embeddings can be clearly

distinguished, demonstrating that prompt-based learning paradigm cannot mitigate

the backdoor effect. The results are also consistent with our motivation that backdoor
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triggers can cause the embedding of the <mask> token to become totally different,

explaining why backdoor triggers can easily control the predictions of backdoored

PFTs.

6.3.3 Adversarial Attack Experiments

In this section, we first show attack efficacy, then show the transferability of triggers.

Finally, we examine if FTs have similar vulnerability.

Baseline We construct a simple baseline RAND where triggers are randomly se-

lected words. RAND-3 and RAND-5 contain triggers of length 3 and 5 respectively.

Each trigger set has 3 triggers.

Trigger set Triggers

AToPAll-3 Videos Loading Replay
Details DMCA Share
Email Cancel Send

AToPPos-3 Reading Below Alicia
MBT Copy Transcript Share

edit ] As
AToPPos-3 organisers Crimes Against
MAT \"The Last

disorder.[ edit

AToPAll-5 Code Videos Replay <iframe
249 autoplay CopyContent
Photo Skipatos Caption Skip

AToPPos-5 Code Copy Replay WATCHED Share
MBT Address Email Invalid OTHERToday

Duty Online Reset Trailer Details
AToPPos-5 yourselvesShareSkip Disable JavaScript
MAT Davis-[{Contentibility

[. . . ] announSHIPEmail Address

Table 6.4: Triggers we found in each setup.
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Figure 6-3: Comparing CAcc and AAcc on different types of templates. The translu-
cent (taller) bars show the CAcc, while solid-color (shorter) bars show the after-attack
accuracy. The value on each bar is ASR.

Triggers Discovered on RoBERTa

The trigger sets we found are shown in Table 6.4. By observing the triggers, we find

the triggers are introduced by the unclean training data. Since part of the training

data for PLMs are crawled from the Internet, some elements of the websites such as

HTML elements or Javascripts are not properly cleaned. Therefore, PLMs may learn

spurious correlations. AToP takes advantage of these elements to construct triggers.

AToP Attack Results

Table 6.5 shows the performance of AToP. We observe significant performance drop on

6 downstream prompt-based classifiers. The average attack success rate for AToPPos-

5 is 49.9%, significantly better than the random baseline. This result demonstrates

severe adversarial vulnerability of prompt-based models, because attackers can find

triggers using publicly available PLMs, and attack downstream PFTs by trying only

a few triggers. As expected, 5-token triggers are more effective than 3-token triggers.

We also find position sensitivity is more helpful for 3-token triggers.

132



FR FN HATE
w/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o trigger

IMDB SST AG

Figure 6-4: Visualization of the <mask> embedding with and without a trigger. Here
we use “Code Videos Replay <iframe” from AToPAll-5, and evaluate it on a manual
template.

We break down the results by the prompt type on Figure 6-3 and by relative

position of <mask> and <text> in Appendix 6-5. We found that manual templates

are more robust than null templates, while the relative position of <mask> and

<text> shows an ambiguous impact on ASRs.

We further investigate the behavior of prompt-based classifiers. We use PCA

to reduce the dimension of the language model output on the <mask> token and

visualize it on Figure 6-4. We found in most cases, the <mask> embeddings are also

shifted significantly after inserting the trigger. However the degree of the shift is less

than backdoor triggers.

Figure 6-6 shows the ASR when PFTs are trained with more shots. We observe

that different from backdoor triggers, the adversarial triggers can be mitigated by
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Figure 6-5: Comparing CAcc and after-attack accuracy on the relative position of
<mask> and <text>. The translucent (taller) bars shows the CAcc, while solid-color
(shorter) bar shows the attack accuracy. The value on each bar is ASR.

using more training data.

Trigger Transferability

AToP is tied to a specific PLM. We evaluate whether the triggers for one PLM can

still be effective on other PLMs. So we attack PFTs with a BERT-large backbone

using triggers found on RoBERTa-large. The attack results on Table 6.6 show that

AToP has strong transferability, and AToPPos is more effective after transferring to

another PLM. But the advantage of longer triggers diminishes in transfer.

Compare with Fine-tuned Models

We evaluate if FTs also suffer from adversarial triggers from PLMs. We adapt AToP

to FTs and named it AToFT. We search for AToFT such that it can best change the

output embedding of the <cls> token in the PLM. And we use the set of triggers to

attack downstream FTs. Specifically, we modifies Eq. 6.2, and tries two objectives.

• We first try to find a trigger that minimize the likelihood of the PLM to predict
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Figure 6-6: Comparing ASR of AToP on different shots.

the <cls> token in the input as itself, i.e.

minimize
∑︁
x∈𝒟

logℱ𝒪(x, t)<cls>, (6.4)

where ℱ𝒪(x, t)<cls> is the probability of <cls> being predicted as <cls>.

• According to our observation on Figure 6-4, we directly maximize the embedding

shift on the <cls> token when inserting the trigger, specifically

maximize
∑︁
x∈𝒟

||ℱ𝒪(x, 𝜑)−ℱ𝒪(x, t)||2, (6.5)

where ℱ𝒪(x, t) is the embedding of the <cls> token when t is injected, and 𝜑

means not using a trigger.

Table 6.7 shows that AToFT marginally outperforms random triggers. We also
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Finetune w/ trigger
Finetune w/o trigger

Pretrain w/ trigger
Pretrain w/o trigger

Finetune w/ trigger
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Pretrain w/ trigger
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Pretrain w/ trigger
Pretrain w/o trigger

IMDB SST AG

Figure 6-7: Visualization of the <cls> embedding on CFTs. Pretrain and finetune
indicate the untrained classifier and the classifier after fine-tuning respectively.

visualize the embeddings for the <cls> token on Figure 6-7. We observe that injecting

the trigger does not affect the <cls> embedding much, while the embedding has a

drastic shift before and after fine-tuning. It shows that traditional fine-tuning causes

the shift of <cls> embedding thus degenerates the efficacy of triggers. So far we

cannot construct triggers on the PLM that give a better ASR on FTs.

6.3.4 Mitigating Universal Vulnerability

Given the success of our attack methods, we propose a unified defense method based

on outlier filtering against them. The intuition is that both backdoor and adver-

sarial attack insert some irrelevant and rare words into the original input. Thus, a

well-trained language model may detect these outlier words based on contextual in-
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formation. Our method is inspired by ONION Qi et al. [2021a], and simplifies it so

that a held-out validation set is not required. Given the input x = [𝑥1, ..., 𝑥𝑖, ..., 𝑥𝑛],

where 𝑥𝑖 is the 𝑖-th word in x. We propose to remove 𝑥𝑖 if removing it leads to a lower

perplexity. We measure perplexity using GPT2-large. Table 6.8 shows the defense

results.

We find that this outlier word filtering based method can significantly mitigate the

harmful effect of universal adversarial triggers at some cost of the standard accuracy.

However, the effect of defense against backdoor triggers is limited. This indicates

that the backdoor attack may be more insidious and should be taken seriously.

HATE (CACC -5.0%) SST (CACC -2.5%)

Trigger ASR (%) ∆ (%) ASR (%) ∆ (%)

BToP 87.9 (±10.5) -11.7 79.7 (±19.9) -20.2

AToPAll-3 11.5 (±05.3) -24.0 8.4 (±06.1) -17.7
AToPPos-3 17.2 (±09.6) -28.1 18.8 (±12.1) -14.6
AToPAll-5 19.5 (±14.8) -24.8 17.3 (±21.0) -40.5
AToPPos-5 17.9 (±13.1) -33.2 14.4 (±07.9) -48.2

Table 6.8: ASR after applying the outlier word filtering. ∆ indicates the change of
ASR.

Adversarial Attack Adversarial vulnerability is a known issue for deep-learning-

based models. There are a number of attack methods being proposed, including

character-level methods [Li et al., 2019b], word-level methods [Jin et al., 2020a, Ren

et al., 2019, Zang et al., 2020a], sentence-level methods Qi et al. [2021b], Wang et al.

[2020b], Xu and Veeramachaneni [2021], and multi-granularity methods Chen et al.

[2021], Wang et al. [2020a]. These methods can effectively attack FTs, but often need

to query the model hundreds of times to obtain an adversarial example. Universal

adversarial trigger [Wallace et al., 2019] is an attempt to reduce the number of queries

and construct a more general trigger that is effective on multiple examples. However,

the trigger still targets at a specific label in a particular FT. We emphasize that this

approach differs from AToP in that our method focuses on the new prompt-based

learning paradigm, and our triggers are applicable to arbitrary labels in arbitrary
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PFTs, thus being more universal.

6.4 Summary

We explore the universal vulnerabilities of prompt-based learning paradigm from the

backdoor attack and the adversarial attack perspectives, depending on whether the

attackers can control the pre-training stage. For backdoor attack, we show that the

output of prompt-based models will be controlled by the backdoor triggers if the

practitioners employ the backdoored pre-trained models. For adversarial attack, we

show that the performance of prompt-based models decreases if the input text is

inserted into adversarial triggers, which are constructed from only plain text. We

also analyze and propose a potential solution to defend against our attack methods.

Through this work, we call on the research community to pay more attention to the

universal vulnerabilities of the prompt-based learning paradigm before it is widely

deployed.
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Chapter 7

Discussion of Human Evaluation

Adversarial examples should have good fluency, high similarity, and preserve original

labels in addition to flipping the classifier’s predictions. Enforcing these criteria is

important in adversarial attack research. Adversarial examples that meet these cri-

teria can help malicious attackers seek illegitimate benefits in real-world scenarios,

and help developers diagnose and improve the robustness of classifiers. In previous

chapters, we used pre-trained models as proxy measures for these criteria and de-

veloped several attack and defense methods. However, these proxy measurements

require human verification. Human evaluation turns out to be a non-trivial task due

to the complexity and diversity of human language. In this chapter, we revisit these

criteria and discuss the challenges of manually annotating them. The analysis in this

chapter is based on the human annotations we collected in Section 4.1.3.

Chapter outline:

• We discuss the human annotation of similarity, fluency, and preserving original

label in Section 7.1, 7.2 and 7.3 respectively.

7.1 Semantic Similarity

Why should adversarial sentences have high semantic similarity? High

semantic similarity makes adversarial attacks useful for malicious users. Consider

the scenario where a malicious user tries to send illegal ads on social media, where
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a misinformation detector is deployed to filter out those ads. The attacker needs an

adversarial sentence to fool the filter, so that the ads get posted for other users to

read. In this case, the adversarial sentence needs to express the exact same meaning

as the original sentence to be in the best interest of the malicious user.

What are the challenges for human evaluation of similarity? Annotations

of semantic similarity can have different granularities, depending on the classification

task. For example, in the sentiment classification task, the similarity between “a good

movie” and “a bad movie” is very low, even if only one word is modified. The same

examples can be considered to have acceptable similarity in the topic classification

task since they are both about entertainment. It is difficult for humans to choose the

appropriate task-related granularity. Human annotators cannot consider classification

tasks if the task is not explained to them. Explaining the classification task can make

the annotation task complicated. To give sentence pairs a similarity score, annotators

need to jointly consider semantic differences that are relevant or irrelevant to the

classification task. Either way, similarity annotations are likely to have high volatility.

Human annotation can also be biased. When data annotators are not serious or

don’t have enough time, they may tend to give higher similarity to sentences with

fewer word modifications. Such bias works against methods that change more words

but preserve the meaning of sentences better.

Additionally, annotators can dynamically change their annotation standard, mak-

ing the annotations not independent. For example, when a pair of sentences is anno-

tated with other poorly related sentence pairs, it is more likely to get a high similarity

annotation because it appears very similar compared to other poor sentence pairs.

Our similarity annotation interface. Figure 7-1 shows the interface we use to

collect human annotation on sentence similarity. The screen shows two sentences

and highlights the differences. Such a design can help the annotator to notice small

differences between the two sentences. To ensure that adversarial sentences generated

by each attack method to be annotated with a relatively consistent standard, we mix
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adversarial examples generated by all the attack methods, and have them annotated

by the same group of annotators. In our annotation experiment, annotators are not

aware of the underlying classification task, thus the similarity annotations we collect

are not task-dependent. We sample 100 adversarial examples for each attack method

on each dataset to collect annotations.

Figure 7-1: Screenshot for sentence similarity annotation.

Analyze the alignment between human evaluation and automatic proxy

measure. Figure 7-2 shows the human annotated similarity with respect to USE

similarity for each dataset and attack method. For USE similarity, we consider 4

ranges, 0.80-0.85, 0.85-0.90, 0.90-0.95, and 0.95-1.00. For each range, the bar plot

shows the average similarity annotated by humans. On AG, TREC, and HATE

datasets, human similarity is higher when the USE similarity is in range 0.95-1.00. It

shows that improving USE similarity can improve the sentence similarity. However, in

none of the cases, the average human annotation exceeds 4. It shows that the USE is

not sufficient to measure sentence similarity. The worst case is on MR dataset, where

humans lean towards disagreeing for adversarial examples generated by CLARE and

R&R. It shows that USE performs poorly on sentiment classification.

Figure 7-3 shows the distribution of USE similarity with respect to human anno-

tated similarity for each dataset. We can see that on AG, most examples are anno-
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Figure 7-2: Human annotated similarity with respect to USE similarity for each
dataset and attack method.

tated as agreed. On TREC and HATE, adversarial examples getting higher human

annotation scores also have higher average USE similarity. On MR, there is no clear

relation between USE similarity and human annotated similarity. This result also

shows that, in some cases, optimizing USE similarity can improve the similarity of

adversarial sentences. However, there are cases where USE does not work. Therefore,

a better similarity proxy measure needs to be developed.
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Figure 7-3: The distribution of USE similarity with respect to human annotated
similarity for each dataset. Each violin shows the distribution of USE similarity. Its
width shows the number of examples getting the annotation.
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7.2 Sentence Fluency

Why should adversarial sentences have good fluency? Certain readers are

pickier than the average reader on social media. Sentence fluency is critical when

malicious attackers use adversarial examples to bypass filters and send sentences to

these people. An example is when a malicious user bypasses an automatic filtering

system by using adversarial sentences in a resume to make it visible to managers,

sentences with a large number of grammatical errors will reduce the payoff of the

attack.

What are the challenges for human evaluation of fluency? Similarly, human

evaluation on fluency of a sentence may depend on other sentences the annotator

reads.

Our fluency annotation interface. Figure 7-4 shows the interface we use to an-

notate sentence fluency. We also highlight the changes made by the attack algorithm.

To ensure a consistent standard of annotation, we take adversarial examples from all

attack methods as well as original sentences, and present them to the same group

of annotators. We sample 100 adversarial examples for each attack method on each

dataset to collect annotations.

Analyze the alignment between human evaluation and automatic proxy

measure. Figure 7-5 shows the human annotated fluency with respect to log per-

plexity for each dataset and attack method. For log perplexity, we consider 3 ranges,

0-4, 4-6, 6-8. For each range, the bar plot shows the average fluency annotated by hu-

mans. Most of the bars show that the human annotated fluency is above 3, meaning

the sentences are understandable. Therefore, the fluency of adversarial sentences does

not have severe issues. But we observe that sentences with lower perplexity clearly

get better human annotated fluency only on TREC dataset. To further improve the

fluency, using perplexity alone is not sufficient.

Figure 7-6 shows the distribution of log perplexity with respect to human an-
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Figure 7-4: Screenshot for sentence fluency annotation.

notated fluency for each dataset. On AG, TREC, and HATE, we can observe that

the average log perplexity decreases when human annotated fluency score increases.

However, the correlation is subtle.

145



<4 4-6 6-8

Log Perplexity

1-Bad

2

3-Ok

4

5-Excellent

Fl
ue

nc
y 

H
um

an
 A

nn
ot

at
io

n

AG

<4 4-6 6-8

Log Perplexity

MR

<4 4-6 6-8

Log Perplexity

1-Bad

2

3-Ok

4

5-Excellent

Fl
ue

nc
y 

H
um

an
 A

nn
ot

at
io

n

TREC

<4 4-6 6-8

Log Perplexity

HATE

TextFooler CLARE R&R

Figure 7-5: Human annotated fluency with respect to log perplexity for each dataset
and attack method.
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Figure 7-6: The distribution of log perplexity with respect to human annotated flu-
ency for each dataset. Each violin shows the distribution of log perplexity. Its width
shows the number of examples getting the annotation.
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7.3 Human Evaluation on Preserving Original Label

Why should adversarial sentences preserve the original label? When a de-

veloper uses adversarial attack methods to diagnose a classifier and improve its ro-

bustness, they are essentially interested in finding sentences that the classifier cannot

predict properly, i.e., the true label of the adversarial example does not match the

predicted label. This can be achieved by letting the adversarial examples retain the

labels of the original sentence. In most cases, preserving the original label is implied

by the semantic similarity of sentences. In some special cases such as text style classi-

fiers, semantic similarity does not imply labels preservation. Therefore, it is necessary

to explicitly set the criteria of preserving labels.

What are the different situations for the label of adversarial sentences?

Let x be a sentence, 𝑦 be its label from the dataset1, and a classifier 𝑓(x) correctly

predicts the label. Let u be an adversarial sentence generated from x, and 𝑧 be a

human annotated label of u. True label means the label where most humans agree.

Considering the relation between 𝑦, 𝑧 and 𝑓(u), an adversarial example can fit in one

of the four bins as shown in Figure 7-7.

• A. 𝑧 = 𝑦 and 𝑧 ̸= 𝑓(u): sentences in this bin are likely to be legitimate ad-

versarial sentences because the human annotated label is unchanged but the

classifier’s prediction is changed.

• B. 𝑧 = 𝑦 and 𝑧 = 𝑓(u): there are no sentences in this bin. For any u, it should

have 𝑓(u) ̸= 𝑦. Then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑧 = 𝑦

𝑧 = 𝑓(u)

𝑓(u) ̸= 𝑦

cannot be satisfied.

1We assume the label of a sentence from the dataset to be the true label of the sentence. The
label from a dataset could be incorrect but we do not consider these mistakes.

148



• C. 𝑧 ̸= 𝑦 and 𝑧 ̸= 𝑓(u): since the classifier’s prediction is different from human

annotation, these sentences reflect some issues with the classifier. But the label

is not preserved, showing some issue with the attack method as well.

• D. 𝑧′ ̸= 𝑦 and 𝑧′ = 𝑓(u): the worst case for the attack method where the

adversarial sentence does not preserve the label. Sentences in this bins show

the failure of the attack method, meanwhile the classifier works correctly on

these examples.

A good adversarial attack method should generate adversarial sentences in bin A.

A. Likely to be legitimate.

B. Empty bin.  
Because  

  
contradicts with  

C. Ambiguous. D. Unlikely to be right.

Figure 7-7: Legitimacy of adversarial examples regarding human annotated and clas-
sifier predicted labels.

What are the challenges for human evaluation of preserving labels? For

some classification tasks, asking humans to predict the label is challenging. For ex-

ample, if the task is to detect whether a news article is fake or not, human annotators
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need a lot of context and knowledge to make a prediction. We sample 100 adversarial

examples for each attack method on each dataset to collect annotations.

Our label preservation annotation interface. Figure 7-8 shows the interface

we use to annotate label preservation. Instead of asking the annotator to make a

prediction given a sentence, we explicitly show the label of the original sentence.

Therefore, the human annotation directly shows whether a sentence belongs to bin

A.

Figure 7-8: Screenshot for label preservation annotation.

Analyze the alignment between human evaluation and automatic proxy

measure. Figure 7-9 shows the human annotated label preservation with respect

to USE similarity for each dataset and attack method. For USE similarity, we consider

4 ranges, 0.80-0.85, 0.85-0.90, 0.90-0.95, and 0.95-1.00. For each range, the bar plot

shows the average label preservation score annotated by humans. The relationship

is task dependent. For AG news topic classification, the average human annotation

is very close to 3 regardless of USE similarity. On MR and TREC datasets, there

is a subtle positive correlation, where higher USE similarity score leads to better

label preservation. However, on the HATE dataset, higher USE similarity does not
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Figure 7-9: Human annotated label preservation with respect to USE similarity for
each dataset and attack method.

help. This is inconsistent with our observation on Figure 7-2, which indicates that

similarity is not equivalent to sentence similarity. Therefore, sentence similarity and

label preservation should be considered separately in future research.

Figure 7-10 shows the distribution of log perplexity with respect to human anno-

tated fluency for each dataset. For all four datasets, most of the adversarial sentences

are annotated as “3-Agree”, showing the majority of sentences generated by existing

methods can preserve the original label. Compared with Figure 7-3, it is interesting

to observe that on the MR dataset, the majority of examples do not have the same

semantic meaning, showing that it is not necessary to have the same meaning to

preserve the label.
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Figure 7-10: The distribution of USE similarity with respect to human annotated label
preservation for each dataset. Each violin shows the distribution of USE similarity.
Its width shows the number of examples getting the annotation.
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Chapter 8

Fibber - A Library towards Robust

Classifiers

In this chapter, we introduce Fibber, a Python library we developed to facilitate

the research and development of adversarial attack and defense methods, as well as

evaluation metrics. Users can easily use built-in methods and metrics, as well as easily

develop new and custom ones. Fibber has both an application programming interface

(API) and a command line interface (CLI), making it suitable for both researchers

and industrial practitioners.

Chapter outline:

• Section 8.1 highlights the features of Fibber and explains how it differs from

existing libraries.

• Section 8.2 explains each component of the library in detail.

8.1 Overview

About the name A fibber is a person who has lied, or who lies repeatedly. In

an adversarial attack, the attacker tries to fool the classifier by carefully crafting the
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input text, just as people may lie (fib) to fool others. Therefore, we name the library

Fibber.

8.1.1 Key Features

Fibber aims to provide an easy-to-use infrastructure for building more robust text

classifiers. It contains three core modules: (1) Metric Bundle that measures the

quality of adversarial examples; (2) Paraphrase Strategy that rewrites a sentence

to generate an adversarial example; and (3) Defense Strategy that constructs more

robust text classifiers. By combining these modules, Fibber supports both attack and

defense pipelines, as shown in Figure 8-1.

• In the attack pipeline, the classifier and other metrics are initialized using

training data and are unchanged throughout the pipeline. The paraphrasing

strategy can take input text, query the metric bundle, then rewrite it to trigger

misclassification. The adversarial examples and all metrics are logged for further

analysis.

• In the defense pipeline, the defense strategy leverages the existing paraphrase

strategy to augment training data and fine-tune the classifier. During fine-

tuning, it updates the classifier in the metric bundle so that the paraphrase

strategy can access the up-to-date classifier and craft adversarial sentences

specifically for the current classifier. The defense strategy can also add ad-

ditional protection wrappers to the classifier. It will eventually deliver a more

robust classifier, which can then be evaluated in the attack pipeline.

We also design both a CLI and an API to easily launch these pipelines.

• The CLI allows users to launch built-in attack and defense methods with a

single command. We expose all hyper-parameters of attack and defense methods

as arguments, so that users can easily tune them.

• The API enables extension of the library with new methods or metrics.
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With both pipelines and easy-to-use interfaces, researchers can build novel adversarial

attack and defense methods, while industrial practitioners can apply state-of-the-art

methods to make the deployed classifier as robust as possible.

8.1.2 Comparing with Existing Libraries

We find two other frameworks, TextAttack [Morris et al., 2020b] and OpenAttack [Zeng

et al., 2021] designed for various adversarial attack tasks in NLP, and implement sev-

eral attack methods. We highlight the differences as follows.

• Built-in and customized defense strategies: Research on adversarial at-

tacks aims to use them to build more robust classifiers. Both existing libraries

only focus on attack methods, while ignoring defense methods. We include both

attack and defense modules in Fibber, making it easy to build more robust clas-

sifiers. Having both in the same library is also advantageous in that different

combinations of attack and defense methods can easily be explored.

• Modular design: TextAttack abstracts each attack method into 4 classes,

namely target function, constraint, transformation and search method. While

still flexible, this creates some barriers for researchers to easily build new at-

tack methods. In Fibber, similar to OpenAttack, each attack method is im-

plemented in a class with two functions, fit and paraphrase, where fit trains

the method using the training data and paraphrase rewrites the sentence as

adversarial counterparts. This design is very flexible, with few restrictions on

attack methods.

• GPU-optimized parallel computing: Many adversarial attack methods and

evaluation metrics require GPU-accelerated computing. Due to GPU architec-

ture, it is more efficient to process batches of data than to process individual

data separately. When building Fibber, we designed a batch operation interface

for the attack method and evaluation parameters, so that the GPU can be fully

utilized.
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• Flexible interfaces: TextAttack uses a CLI so users can easily benchmark

built-in classifiers and attack methods. However, the CLI does not expose

hyperparameters for all built-in methods, reducing the possibility of tuning

hyperparameters. OpenAttack uses APIs. While easy to use, writing code

to launch an attack still presents some obstacles for users. Fibber solves this

problem by designing the API and CLI. In our CLI, we take all hyperparameters

as parameters to overcome the TextAttack problem. By doing this, industrial

practitioners can use the CLI but still have full control over the library, while

the API provides good extensibility to researchers.

• Good coverage of attack methods: By implementing wrappers, Fibber

supports all black-box adversarial attack methods for text classification in the

TextAttack and OpenAttack libraries. The wrappers give Fibber good coverage

of existing attack methods. The attack methods in these libraries benefit from

the features provided by Fibber.

Table 8.1 summarizes the differences between these libraries and Fibber.

8.2 Library Design

In this section, we describe the input and output format, as well as the design of each

component in Fibber.

Data Format. We store each text classification example as a data record, de-

fined as follows

1 {

2 "text0": "This is the first sentence.",

3 "text1": "This is the second sentence. (optional)",

4 "label": 0

5 }
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Fibber TextAttack OpenAttack

Datasets
HuggingFace datasets Y Y Y

Classifiers
HuggingFace Transformer-based classifiers Y Y Y
Customized classifiers Y N Y

Evaluation Metrics
Builtin metrics Y Y Y
Customized metrics Y N N

Attack Methods
Builtin attack methods Y Y Y
Customized attack methods Y Y Y

Defense Methods
Builtin attack methods Y N N
Customized attack methods Y N N

Interface
CLI Y Y N
API Y N Y
Benchmarking and Multi-granularity Log Y N N

Table 8.1: Compare features of Fibber, TextAttack and OpenAttack.

For conventional text classification tasks, we set text0 as the input text and omit

text1. For two-sentence classification tasks such as natural language inference Bow-

man et al. [2015], both text fields are used. The label field stores the classification

label as an integer. During attack, the user can specify one of the text fields to

rewrite and construct adversarial examples. We store data record in JSON format

for human readability.

After running the attack pipeline, the adversarial sentences and metrics are also

stored into the data record. For example, if text0 is the field to be attacked, we add

text0 paraphrases to store a list of adversarial sentences and paraphrase metrics

to store the corresponding evaluation metrics.

Metrics. This module defines a unified API for all metrics and implements several

metrics. Each metric should extend the MetricBase class as follows.
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1 class FooMetric(MetricBase):

2 def measure_example(

3 self , origin , paraphrase , data_record):

4

5 def measure_batch(

6 self , origin , paraphrase_list , data_record):

7

8 def measure_multiple_examples(

9 self , origin_list , paraphrase_list ,

data_record_list):

where origin is the original sentence in the attack field, paraphrase is the sentence

generated by the attack method. To allow more efficient usage of GPUs, we design

three APIs for (1) a single adversarial sentence, (2) multiple adversarial sentences of

the same data record, and (3) multiple adversarial sentences for multiple data records.

In Fibber, we implement various metrics

• Similarity metrics: USE, Cross Encoder, Edit distance.

• Fluency metrics: BERT perplexity, GPT2 perplexity.

Classifier. Unlike existing libraries, we consider classifiers to be a special metric.

The measure example API returns the predicted label for the adversarial sentence.

In addition, a classifier also has a measure log dist example API that can return

the predicted log probability distribution.

MetricBundle. The module manages all the metrics enabled in the experiment.

By creating a metric bundle, users can easily evaluate metrics on a dataset. It also

features the metric aggregator that can aggregate metrics and high-level experiment

summary.

Paraphrase Strategy Module. The paraphrase strategy module defines the inter-

face to implement an attack method. Each attack method has two functions defined
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as follows

1 class FooParaphraseStrategy(ParaphraseStrategyBase):

2 def fit(self , trainset):

3

4 def paraphrase_example(self , data_record , n)

The fit function takes the whole training set of the classification task as an input,

allowing the attack method to be trained. The paraphrase function takes one data

record as input and paraphrases it in 𝑛 ways.

Defense Strategy Module. The goal for adversarial attack is to build more robust

classifiers. We design the defense strategy to train more robust classifiers. The API

is defined as follows.

1 class Strategy(DefenseStrategyBase):

2 def fit(self , trainset):

3

4 def load(self , trainset):

The fit function takes the training set and uses it to either fine-tune the classifier or

build an additional protection layer. The fit function is also responsible for storing

the classifier. The load function will load a previously trained classifier and set it for

attack methods.
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Chapter 9

Conclusion and Future Work

9.1 Synopsis

In this desertation, we tackle the robustness challenge in deploying text classifiers, and

present a collection of work focusing on improving classifier adversarial robustness.

In Chapter 2, we summarize the advances in text classification models, and dis-

tribution shift robustness of classifiers. We also introduce tools that make it easy to

build and deploy text classifiers, and discuss the limitations.

In Chapter 3, we formally define the adversarial attack problem and three settings,

namely the black-box adversarial attack, the single word perturbation attack, and the

universal vulnerability attack. We present two novel metrics, the classifier robustness

𝜌 and the single word adversarial capacity 𝜅 to quantify the robustness of the classifier,

and an efficient algorithm to estimate these metrics.

In Chapter 4, we present two adversarial attack methods. The R&R is designed to

construct high-quality adversarial sentences in a black-box adversarial attack setup.

By defining the critique score and using a sampling-based rewrite step and a rule-

based rollback step, our method effectively optimize the critique score on a discrete

input space. Experimental results show significant improvement in similarity and

attack success rate. The SAP-Attack is designed for single-word attack. It is an

efficient attack algorithm that can conduct real attacks. We also show its comparable

attack success rate against existing methods.
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In Chapter 5, we present two defense methods. We first leverage the effective

single-word perturbation and present SAP-Defense. It augments the training data

by a mix of random and gradient-based strategy. Experiments show it not only

improve robustness against single-word perturbation, but also can defend against

conventional blackbox attacks. We further present LMAg, an in-situ augmentation

method which transforms input into multiple variates and makes the prediction based

on aggregating. This method is model agnostic and does not need to change the core

classifier.

In Chapter 6, we analyze the universal vulnerability of the novel prompt-based

learning paradigm. We propose BToP and AToP. We demonstrate the universality

of these attacks in two aspects, (1) for both BToP and AToP, the same triggers are

effective to all classification tasks. (2) For AToP, the triggers are universal across

different pre-trained language models.

In Chapter 8, we demonstrate our library for adversarial robustness research. We

highlight our library on implementing several defense methods and can benchmark

these methods while existing libraries fall short on.

9.2 Future Works

The robustness and deployment of classifiers is a long-standing problem far from being

solved. As future work, we will explore the following directions.

9.2.1 Adversarial Robustness

• More efficient adversarial attack and defense methods. Efficiency is still the bot-

tleneck of existing adversarial attack methods. It still takes seconds to generate

an adversarial sentence on the best existing hardware. Adversarial training of

the classifier using such an attack method will increase the training time by

dozens or hundreds of times. Such time expenditure is very expensive. We be-

lieve that for adversarial training, white-box attack methods are better, because

for developers, all information including model architecture, training data are
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available, and this information can help find adversarial data more efficiently.

In the future, we will work hard to design better white-box attack methods to

generate adversarial examples quickly by using all the available information.

• Better coverage of adversarial examples. Coverage is rarely mentioned in the

existing adversarial attack literature. The coverage of an attack method refers

to whether the method can find all eligible adversarial samples corresponding to

a text under a certain attack setting. If adversarial training is performed using

an attack method with lower coverage, we may observe that the adversarially

trained model is well defended against this particular attack method, but not

for other attack methods that conform to the same setting. We hypothesize that

the stochastic sampling-based attack method will have higher coverage than the

greedy-based attack method. We will conduct more research in this direction

and propose attack methods with high coverage.

• Better sentence similarity and fluency measurement. In adversarial attack prob-

lem formulation, the similarity and fluency constraints are proxied by neural

networks. However, in our experiments, these proxies are not always reliable.

Also, the similarity of sentences are task-dependent, while existing sentence se-

mantic encoders do not consider. To generate large-scale adversarial examples

to augment training data and improve model robustness, it is necessary to en-

sure that the generated adversarial examples are legitimate, i.e., the sentence is

fluent and the label of the sentence is not changed. The design of better proxy

of task-dependent similarity and fluency remains an open problem. And we also

should not neglect the potential adversarial attacks against these proxies.

• Address the robustness problem for low-resource languages. Existing robustness

research mainly focuses on languages with rich resources, such as English and

Chinese. Even with a large amount of plain text available, classifiers on these

languages still suffer from robustness issues. It is reasonable to infer that models

for low-resource languages also have similar or more severe issues. Therefore,

it is necessary to verify existing methods and develop new methods for these
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languages.

9.2.2 Towards more Robust Deployable NLP

In addition to classification, NLP has many applications, such as generative mod-

els for translation, summarization, and dialogue systems. All these machine learning

based systems suffer from similar robustness issues. For example, a translation system

may degrade on certain domains or styles of text. They are also likely to be attacked

adversarially to generate text of the opposite meaning or offensive. Compared with

classification models, the robustness of generative models, especially adversarial ro-

bustness, is still less studied. We will conduct research in this direction in the future.
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Dataset Type Prompt Verbalizer

FR

Null <mask> <trigger> <text>

real/fakeTemplate <text> <trigger> <mask>
Manual [ <mask> review ] <trigger> <text>
Template <text> <trigger> [ <mask> review ]

RN

Null <mask> <trigger> <text>

real/fakeTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

HATE

Null <mask> <trigger> <text>

harmless/hateTemplate <text> <trigger> <mask>
Manual [ <mask> speech ] <trigger> <text>
Template <text> <trigger> [ <mask> speech ]

IMDB

Null <mask> <trigger> <text>

bad/goodTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

SST

Null <mask> <trigger> <text>

bad/goodTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

AG

Null <mask> <trigger> <text>
politics/sports/

business/technology
Template <text> <trigger> <mask>
Manual [ <mask> news ] <trigger> <text>
Template <text> <trigger> [ <mask> news ]

Table A.4: Prompts and verbalizers. For each template, we also mark the position
where the triggers are injected.
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Figure B-1: R&R Experiment: RoBERTa-large classifier confusion matrices.
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Figure B-2: R&R Experiment: FastText classifier confusion matrices.
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Figure B-9: SAP-Attack experiment: ASR and ASR1 on RoBERTa-base classifiers.
The translucent (taller) bars represent ASR, while the solid (shorter) bars represent
ASR1. For SAP-Attack, ASR and ASR1 are the same.
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