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Abstract

With the recent proliferation of temporal observation data comes an increasing de-
mand for time series anomaly detection. New methods to detect anomalies using
machine learning are continuously emerging. However, algorithms alone only solve
one aspect of the problem – finding anomalies. Existing systems often fail to en-
compass an end-to-end detection process, to facilitate comparative analysis of various
anomaly detection methods, or to incorporate human knowledge to refine output.
This precludes current methods from being used in real-world settings by practition-
ers who are not machine learning experts.

In this thesis, we introduce Orion, a machine learning framework for unsupervised
time series anomaly detection. The framework supports all the steps of the anomaly
detection process. It includes a pipeline hub to maintain many state-of-the-art ap-
proaches for time series anomaly detection including statistical and machine learning
based methods. Orion logs the entire anomaly detection journey, providing detailed
documentation of the status of a signal and anomalies over time. It enables users
to analyze signals, compare methods, and investigate anomalies through an interac-
tive visualization tool, where they can annotate events by modifying existing events,
creating new ones, and removing them. Using these annotations, the framework
aims to leverage human knowledge to improve the performance of the pipeline. We
demonstrate the effectiveness and efficiency of Orion through a series of experiments
from benchmarking to AutoML on three public time series datasets: NASA, Yahoo,
and Numenta. In addition, we showcase the usability of our framework through a
study conducted on a real-world use case involving spacecraft experts tasked with
anomaly analysis tasks. Orion’s framework, code, and datasets are open-sourced at
https://github.com/sintel-dev/Orion.
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Chapter 1

Introduction

The rapid growth of temporal data over the past years has led to an increasing

demand for time series analysis. Many industries have set up processes and workflows

for analyzing time series in order to better monitor, control, and optimize products

and services they offer. These workflows usually rely on data visualization, domain

knowledge and some simple rule-based decision making. Even with the proliferation of

Machine Learning (ML) in vision and language systems, integration of ML into these

workflows is still an open problem. One of the most promising ML-based workflows

is anomaly detection. In this thesis, we focus on time series anomaly detection,

presenting the current challenges facing its practitioners and proposing solutions.

The detection of anomalies in time series data is a critical task with many monitor-

ing applications. Effective Anomaly Detection (AD) methods can identify deviations

from normal behavior and notify users, sounding the alarm about potential problems.

Researchers have been developing these methods for decades [31]. As data has be-

come larger, more complex, and increasingly multidimensional, traditional distance-

[18], density- [74] or isolation-based [51] approaches have begun to perform less com-

petitively in real-world scenarios.

Since then, machine learning and deep learning-based methods have garnered

increased attention [73, 60, 72, 42]. With the wide diversity of available methods,

choosing a particular method or evaluating which one is most suitable can be difficult.

Depending on the application, it may be insufficient to rely on data benchmarks [47]
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to determine the best methods, particularly when there is no ground truth. Ideally,

it would be possible to test and compare the performances of all methods on a data

set of interest. Furthermore, users may still run into the following problems.

Services often neglect the human-in-the-loop dimension, which is vital both

for validating detected anomalies and for differentiating between true errors and le-

gitimate exceptions. To confirm and compare anomalies, users — generally domain

experts, machine learning researchers, or data scientists — resort to visualisation to

inspect signals and view different aggregation levels. Usually, users need to shift to

a programming language that they are comfortable with (e.g., MATLAB, R, or python)

to complete this process, which can result in loss of information.

Many existing solutions consider individual time series in isolation – even though

in most real-world situations, thousands of multivariate time series are correlated

and monitored continuously. For instance, detecting collective and correlated anoma-

lies across complex time series is often important in health monitoring. By bringing

all the information into a single platform, we create a thorough knowledge base that

enables decision-making.

Users may want to customize or compose an anomaly detection system for their

own use cases. However, designing a platform to analyze a specific type of time series,

detect anomalies therein, and integrate domain knowledge into the resulting validation

is complicated, and there is no solution that supports this type of technical workflow.

Such a solution would require a systematic definition of procedures and tasks, a data

standardization module, a comprehensive set of application programming interfaces

(APIs), a modular and extensible machine learning pipeline design, and an interactive

investigation of anomalies.

To address these problems, we introduce project Orion. The framework tackles the

problem of anomaly detection end-to-end, from the first step of time series ingestion

through machine learning modeling, interactive visualization, and user feedback. It

is a comprehensive, streamlined ecosystem that targets various user needs.
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Publication

Sintel Alnegheimish, S., Liu, D., Sala, C., Berti-Equille, L., & Veera-
machaneni, K. (2022). Sintel: A Machine Learning Framework
to Extract Insights from Signals. To appear in ACM Interna-
tional Conference on Management of Data (SIGMOD).

MTV Liu, D., Alnegheimish, S., Zytek, A., & Veeramachaneni, K.
(2022, April). MTV: Visual Analytics for Detecting, Investi-
gating, and Annotating Anomalies in Multivariate Time Series.
In Proceedings of the ACM on Human-Computer Interaction
(CSCW).

TadGAN Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., &
Veeramachaneni, K. (2020, December). TadGAN: Time Series
Anomaly Detection using Generative Adversarial Networks. In
IEEE International Conference on Big Data (Big Data).

Orion Library Orion GitHub Repository, https://github.com/sintel-dev/
Orion.

Table 1.1: Published work from the Orion project.

In writing this thesis, several chapters were adapted and extended from previously

published work. Table 1.1 lists some of our published work and open-source libraries.

I am grateful to all the co-authors and collaborators, this project would not have been

possible without them.

Project Orion encompasses a python library called Orion 1 for unsupervised

time series anomaly detection using machine learning. The library is open-source and

currently has 595 stars and 110 forks, Table 1.2 shows the team’s contribution to the

library. In addition, it has a web-application named MTV 2 for multivariate time

series visualization and annotation. Figure 1-1 depicts how Orion + MTV connect

together serving the human-in-the-loop analysis of events that are produced by the

anomaly detection algorithms. We will visit the algorithms and components of the

framework in Chapter 5 and 6 respectively.

1github.com/sintel-dev/Orion
2github.com/sintel-dev/MTV
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Figure 1-1: The framework includes the Orion library for detecting anomalies in time
series data and MTV for visualizing and interacting with events.

Code Contribution

Commits Pull Requests Issues Raised ++ – –

Overall 407 112 177 71,377 29,338
Myself 141 57 46 47,849 (65%) 13,019 (44%)

Table 1.2: Contributions to Orion library.

1.1 Summary of Contributions

Our main contributions are summarized as follows:

A framework for end-to-end time series anomaly detection. Orion provides

a suite of anomaly detection pipelines executable through a user-friendly interface

(Table 1.1 Sintel & Orion Library). Users kickstart the system by presenting a signal,

which trains a model and returns the detected anomalies. The framework’s modular

nature facilitates the creation, exchange and reuse of primitives between different

pipelines.
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An ecosystem for user interaction and annotation-based learning. The

framework includes a human-in-the-loop component, allowing domain experts to

properly annotate and interact with detected anomalies (Table 1.1 MTV). We sup-

port this with a visualization tool that aids users in the inspection and investigation

processes. The feedback component within the framework learns from human anno-

tations to further improve detection performance.

A standardized benchmarking framework for time series anomaly detection

pipelines. We designed a comprehensive benchmarking suite to compare multiple

pipelines on a collection of different time series datasets (Table 1.1 Sintel, TadGAN

& Orion Library). The benchmarking suite features intricate evaluation metrics de-

signed specifically for anomaly detection. This feature enables users to run multiple

experiments under the same conditions in order to obtain fair, empirical comparisons.

The benchmarking suite currently has 6 pipelines (1 statistical and 5 deep learning

models) and 2 evaluation mechanisms.

A comprehensive evaluation. We evaluate our framework by benchmarking all

pipelines on a collection of 11 datasets from three reputable data sources – NASA,

Yahoo, and Numenta – and reporting their quality and computational performance

(Table 1.1 Sintel & Orion Library). Moreover, we conduct an experiment to assess

the framework’s ability to learn from experts’ annotations. We compare the features

of Orion against existing systems. Lastly, we conduct a user study with a leading

satellite operation company to test Orion in a real-world setting.

1.2 Structure of Thesis

The remainder of this thesis is structured as follows. We highlight the motivations

behind Orion in Chapter 2 and state the relevant challenges more concretely. Chap-

ter 3 goes through some useful background information on time series and anomaly

detection in general, followed by related work in Chapter 4. We conceptualize the
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problem and define it more clearly in Chapter 5, where we go through anomaly de-

tection and evaluation. Chapter 6 architects the system and its components from

pipelines to benchmarks to interactions. Next, we evaluate the system and report

its effectiveness in Chapter 7 and present our results from a real-world user study

in Chapter 8. Lastly, we go through some interesting discussion points and some

of the hurdles of time series anomaly detection in Chapter 9 before concluding in

Chapter 10.
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Chapter 2

Motivation

Anomaly Detection (AD) problems have existed for decades [17, 31, 32, 35], but solu-

tions are still far off. To illustrate some of the most common challenges in time series

anomaly detection problems, we walk through a real-world example.

time series

Unsupervised
Learning Pipeline

Events

Events

E01

E07

E13

Tag

eclipse

anomaly

normalSemi -/ Supervised
Learning Pipeline

feedback

Past labeled data

Figure 2-1: Anomaly detection workflow. Use an unsupervised pipeline to locate
anomalies, which are then presented to the expert for annotation. The annotated
events are provided to the semi-/supervised pipeline — which can be pre-trained
with past labeled data — to learn from feedback and keep improving.

2.1 Real-World Scenario

To explain the motivation for Orion and illustrate the anomaly detection workflow

(Figure 2-1), we describe a real-world scenario drawn from our three-year collabo-
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ration with a world-leading communication satellite company. One major objective

of the company’s operations team is to detect unexpected behaviors (i.e., anomalies)

in tens of thousands of signals. We collaborated with a spacecraft program manager

and 5 senior satellite engineers, each of whom has considerable experience in teleme-

try data analysis (between 5 and 17 years), but relatively little machine learning

experience (0 to 3 years).

The team works with multiple spacecrafts. Each spacecraft telemetry database

contains around 37, 000 signals spanning 9 different subsystems. Each signal is a

univariate time series collected at the microsecond level, and has been tracked for over

10 years. The team’s conventional approach to anomaly detection is based around

setting and adjusting thresholds in order to flag anomalous intervals. The team then

reviews the suspicious intervals manually, often using simple csv files, and examines

individual signals in a third-party platform such as MATLAB. Around 20 alarms are

reported every day, most of which can be resolved within a few hours. For some

reports that are identified as true alarms but aren’t considered urgent, the experts

gather further information over some time window to help explain the root cause and

the way forward.

Over the course of this process, we identified challenges routinely faced by this

team, as well as others we have worked with. We describe them as follows:

C1: Needle in a Haystack With the abundance of data nowadays, it is infeasible

to manually inspect a large number of signals. Even with traditional methods, such

as threshold-based methods, setting and adjusting the thresholds can be demanding

and laborious, forcing teams to restrict their focus to a subset of a few hundred

signals chosen based on domain knowledge and neglect the remaining thousands of

signals. Moreover, teams want to identify contextual anomalies — anomalies that

do not exceed a normal range, but are unusual compared to neighboring values.

Classical methods often fail to find these anomalies. Teams would like to use machine

learning models for this task, but this can be difficult when team members have

limited machine learning experience.

26



C2: Lack of Labels In most time series settings, there are no built-in labels, and

it may be difficult for users to label signals manually. A successful anomaly detector

should be able to process a large number of signals and suggest potential anomalies.

Unsupervised learning approaches achieve this by detecting anomalies in situations

where data is not labeled and signals do not follow a particular pattern.

C3: The “Best” Pipeline There are many different approaches for anomaly de-

tection, but there is no single pipeline that can solve everyone’s problem. A variety

of anomalies are possible across different signals, and existing approaches excel at

detecting some while failing to find others. Furthermore, each pipeline is composed

of a wide range of pre-/post-processing methods for time series (e.g., aggregation,

normalization, etc.), giving a nearly infinite number of possible options. With the

copious amounts of AD methods available, teams struggle to know which machine

learning model to select for a particular dataset, making their jobs more difficult.

Moreover, as machine learning is a continuously growing field, we ask ourselves, how

can we keep up with the latest developments?

C4: Feedback Providing a set of potential anomalies is only the first step in an

anomaly detection workflow. The teams we worked with found that machine learning

models often flag unusual patterns even when these patterns do not necessarily indi-

cate a problem. For example, a certain maneuver might cause patterns that are then

flagged even though they are not troublesome. Teams are eager for their models to

ignore these patterns, but struggle to teach them how to do this. Human-in-the-loop

integration is essential for continuous learning.

C5: System Usability Many proposed anomaly detection methods require users

to have substantial technical/programming knowledge, or even machine learning

knowledge. This amount of overhead means that users struggle to apply these meth-

ods to their own use cases, or find themselves shifting to a programming language

that they are comfortable with (e.g., MATLAB, R, or python), operating independently

from the base code to overcome these barriers. The usability of a system is crucial,
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as it allows users to detect, inspect, and annotate anomalies in time series data. The

right abstractions and a concise set of application programming interfaces (APIs) can

overcome these hurdles and help us serve three classes of population, which we define

as follows:

1. end users who want to detect anomalies within their own data.

2. system developers who want to build their own anomaly detection systems.

3. machine learning researchers who want to create, access, and compare with

some of the best anomaly detection methods.

We define these user types in more detail in Section 3.4.

In our work, we aim to address all of these challenges. Orion is an automated end-

to-end framework that is able to identify anomalous events from tens of thousands of

signals (C1). It integrates various state-of-the-art unsupervised anomaly detection

pipelines, and provides simple user-friendly APIs to interact with the framework (C2,

C5). With the benchmark suite, Orion provides results in an organized manner. This

helps the team to easily pick a suitable, existing, and verified unsupervised pipeline

from our collection, or even to create their own (C3). Through MTV, which is

Orion’s visual interface, the team investigates flagged anomalies, annotates them,

and incorporates the feedback back into the framework (C4).
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Chapter 3

Background

3.1 Time Series Format

A time series is a collection of data points that are indexed by time. There are many

forms in which time series can be stored. For the purpose of this thesis, we define

a time series as a set of time points, which we represent through integers denoting

timestamps, and a corresponding set of values observed at each respective timestamp.

Time series as we reference them occur in both univariate (Table 3.1) and multi-

variate (Table 3.2) forms.

timestamp value

1222819200 215
1222840800 124

...
...

1334905600 15

Table 3.1: Univariate time series

timestamp v1 · · · v𝑘

1222819200 13 12
1222840800 7 34

...
... · · · ...

1334905600 31 52

Table 3.2: Multivariate time series

In a case where we have multiple entity references in the data, as shown in Ta-

ble 3.3, we extract each entity on its own to conform to the representation we defined

earlier, as shown in Table 3.4 and Table 3.5.
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entity timestamp v1 · · · v𝑘

E04 1222819200 13 12
E25 1222819200 7 34
E25 1222862400 9 53
E04 1222884000 62 21

...
...

... · · · ...
E25 1334901600 3 23
E04 1334905600 31 52

Table 3.3: Multiple entity time series

timestamp v1 · · · v𝑘

1222819200 13 12
1222884000 62 21

...
... · · · ...

1334905600 31 52

Table 3.4: E04 time series

timestamp v1 · · · v𝑘

1222819200 7 34
1222862400 9 53

...
... · · · ...

1334901600 3 23

Table 3.5: E25 time series

3.2 Anomalies in Time Series

Depending on the source of data and its domain, there can be many types of anomalies

within a dataset. It is useful to consider two broad categories:

• Point anomalies are single values that fall within low-density value regions

(outliers). We identify point anomalies by a single timestamp. If we witness a

series of consecutive point anomalies, we refer to them as collective anomalies,

represented by timestamp intervals. These anomalies are often detected using

statistical-based outlier detection methods [35].

• Contextual anomalies are values that are anomalous with regard to the context.

In other words, it falls out of place when compared with neighboring values. We

sometimes refer to them as in-signature anomalies. We identify such anomalies

by an interval, denoted via a start timestamp and an end timestamp.

Figure 3-1 illustrates the difference between anomaly types, where contextual

anomalies cannot be found by pure thresholds.
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events
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Figure 3-1: Illustration of (a) point/collective anomalies (b) contextual anomalies.

Not all anomalies are problematic; we expand on this notion in Chapter 9.

3.3 Anomaly Detection Methods

There are many anomaly detection methods. In this section, we categorize some of

the most common approaches to this task.

3.3.1 Statistical Methods

People have long been coming up with ways to systematically identify anomalous

sequences within a time series. Static thresholding is one of the simplest techniques.

With this strategy, an alert is raised whenever a data point exceeds the expected

range. However, this approach often fails to detect contextual anomalies. Various

statistical methods have been proposed to improve upon thresholding, such as Sta-

tistical Process Control (SPC) [75], in which data points are identified as anomalies

if they fail to pass statistical hypothesis testing. However, human expertise is still

required to set prior assumptions.

3.3.2 Machine Learning Methods

With the recent proliferation of machine learning methods, further anomaly detec-

tion approaches have been proposed. One of the most interesting ideas involves using

recurrent neural networks (RNNs) to recognize a pattern sequence and use an esti-

mator to “forecast” the expected value. From there, we can locate any anomalies by

pinpointing discrepancies between the forecasted signal and the real one [37]. RNNs

have found great success in capturing temporal correlations, which makes them useful
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Figure 3-2: General principle of how deep learning models are used to find anomalies
without labels. (1) Apply deep learning to learn the pattern of the data; (2) Use the
learned model to generate another time series; (3) Compare what the model expects
with the actual time series value; (4) Use this discrepancy to extract anomalies.

for time series.

Moreover, Deep Learning (DL) methods make judicious use of available data to

learn the underlying structure of a time series, enabling them to perform complicated

tasks such as anomaly detection. The general principle behind deep learning models

(prediction- or reconstruction-based) is to generate an “expected” signal that repre-

sents the pattern of the original signal free from anomalies. Figure 3-2 demonstrates

this process. In the end, this will result in a sequence of “errors” for each time point

that measures the likelihood of that time point being an anomaly.

3.4 Personas

As suggested in Chapter 2, there is a wide range of users interested in solving time

series anomaly detection tasks using machine learning. In this section, we expand on

three user personas that Orion’s system aims to serve. Table 3.7 summarizes some

of the interesting functionalities supported by Orion in order to accommodate each

type of user’s needs.
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3.4.1 End User

End users are those who want to solve anomaly detection problems. These users can

come from different backgrounds, from satellite operations to marketing and sales. It

is important to create a system that appeals to users with diverse types of experience.

There are different types of end users. We detail the differences in terms of usage

and skillset. For usage, users can be: (1) snapshot user : These users are interested

in trying out the system once to monitor signals and explore. They could also be

curious about the library. First impressions are critical to draw this type of user into

using the system more regularly. (2) continuous user : These users perform anomaly

detection regularly. For example, a continuous user may work for a company and be

tasked with monitoring time series and checking for anomalies.

We further break down these types of users based on skill levels. Table 3.6 presents

the three types of users based on their skillset: expert end user, causal end user, and

layman end user.

Skill Level Description

Expert Users who are competent in python can further improve the
system by contributing to it. These users like to dive into the
code and modify it as they see fit.

Casual These users are familiar with the syntax and setup of python,
but are not as experienced with machine learning or the task
itself. In this case, users interact with high-level APIs to com-
plete their tasks, and are not exposed to the intricacies of the
system.

Layman These users do not know python, but are interested in solving
a problem. To appeal to this category, we require a graphical
interface to make interactions with the system as intuitive as
possible.

Table 3.6: Description of the different end users based on skillset.
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3.4.2 System Developer

A system developer is part of a team with a mandate to build an anomaly detection

system. These systems are then provided to the end user (the first type of user in our

categorization) who performs an anomaly detection task. These users emerge when

companies need to create an in-house anomaly detection system to accommodate an

end user, but cannot rely on commercialized tools and must instead build their own.

In addition, system developers need to incorporate their own specific workflows to

adapt to their domain and requirements.

3.4.3 Machine Learning Researcher

The Machine Learning researcher develops and tests ML models. These users are

not particularly interested in the concept of a system; however, they would like to

investigate how it compares to the current state of the art. One example of such a

user might be a mathematician who wants to create an anomaly detection method

that outperforms existing approaches. Most of the time, their objective is centered

around publishing their work in conferences and journals. However, with the lack of

infrastructure, it is hard to verify the claims of their model. More so, it is difficult

to compare different methods; running into hiccups trying to benchmark models as

soon as they become available. Having a system to support this exploration would

make their job easier and more efficient.
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End User

Question I want to detect anomalies within a signal: where do I find an
anomaly detection method? do I need to learn a completely new
API usage to use this method? how do I put my data into an
acceptable format?

Challenge (1) lack in background knowledge about programming and ma-
chine learning, (2) not invested in knowing the details about the
best anomaly detection method

Functionality (1) simplified API (similar to scikit-learn style) that relies
on fit for training a pipeline and detect for detecting anoma-
lies in a pipeline. Alternately, these two can be merged into
fit_detect. (2) docker installation for easy offline setup. (3)
thorough documentation of functionalities, database, and API.

System Developer

Question I want to create an anomaly detection system for my end user:
where should I start? should I use scikit-learn? build a
visualization? if there are multiple pipelines, how to get the
best one?

Challenge (1) typically requires a team effort to build, (2) they don’t know
what the best modeling technique is, (3) they might not know
the proper workflow, (4) anomaly detection might not be their
specialty.

Functionality (1) thorough database schema. (2) simple RESTful API. (3) a
suite of pipelines from the best methods available that have been
validated and tested. (4) an complete system with extensiblity
to accommodate special workflows.

ML Researcher

Question I want to create the best anomaly detection pipelines; what I
need is to gather datasets, find computing resources, and dis-
cover which pipeline i should be comparing against.

Challenge (1) they are keen to know the best ML pipeline. (2) ML folks
who are interested in building anomaly detection methods might
not have the right background and resources to build proper
infrastructure.

Functionality (1) an evaluation functionality. (2) a benchmarking functional-
ity that allows for end-to-end model comparison. (3) a primitive
profiling feature to monitor the execution performance of the
pipeline.

Table 3.7: Description of user personas targeted by Orion. We visit their requirements
through the questions they seek to answer the, what challenges they face, and how
does the functionality in Orion satisfy their requirement.
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Chapter 4

Related Work

Orion lies at the intersection of four domains: time series anomaly detection algo-

rithms, time series anomaly detection systems, anomaly detection benchmark sys-

tems, and active incorporation of user feedback.

4.1 Time Series Anomaly Detection Algorithms

Many algorithms have been proposed to address time series anomaly detection [17, 29].

The most basic approaches simply flag regions where values exceed a certain thresh-

old [53, 25]. While these methods are intuitive, they struggle to detect contextual

anomalies. More advanced methods are based on statistical hypothesis testing [75],

clustering [40, 41], and/or machine learning [69]. We summarize the categories of

anomaly detection methods into proximity-, prediction-, and reconstruction-based

methods.

4.1.1 Proximity Methods

Proximity-based methods use a distance measure to quantify similarities between

objects. Objects that are isolated and distant from others are considered anomalies.

Proximity-based methods can be further divided into distance-based methods, such

as K-Nearest Neighbor (KNN) [8] – which use a given radius to define neighbors of an
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object and use the number of neighbors to determine an anomaly score – and density-

based methods, such as Local Outlier Factor (LOF) [12] and Clustering-Based Local

Outlier Factor [33], which base measures of similarity on the density of objects and

their neighbors. One drawback of applying proximity-based methods to time series

data is that we need prior knowledge about the expected number and duration of

anomalies. Moreover, most of these methods do not capture temporal correlations.

4.1.2 Prediction Methods

Prediction-based methods learn a predictive model to learn the patterns of the given

time series data, and then use that model to predict values. This approach is similar

to forecasting future values and then using the forecasting signal as a representation of

what the original time series should look like. We then find the discrepancies between

the predicted signal and the original signal, which indicates where the anomalous

regions are.

Some of the most classic techniques in time series anomaly detection include sta-

tistical methods used in a prediction-based approach. For example, ARIMA [55],

Holt-Winters [55], and FDA [63] all work by forecasting a signal and comparing it to

the original. However, these methods are sensitive to parameter selection and often

require strong assumptions and extensive domain knowledge.

Recent advancements in deep neural networks have led to the emergence of deep

learning-based anomaly detection approaches to overcome these limitations. Hund-

man et al. [37] propose a forecasting model assembled from Long Short-Term Memory

networks to predict future values. In addition, they complement their model with non-

parametric dynamic thresholds aimed to prune detected anomalies that are very close

in error scores to normal intervals.

4.1.3 Reconstruction Methods

Reconstruction-based methods learn a model to capture the latent structure (low-

dimensional representations) of the given time series data and then create a synthetic
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reconstruction of the signal. Reconstruction-based methods assume that anomalies

lose information when they are mapped to a lower dimensional space and thereby can-

not be effectively reconstructed. Similar to prediction-based methods, we calculate

the error as the deviation between the reconstructed signal and the original signal.

We use this error signal to find anomalous regions. Principal Component Analysis

(PCA) [57], a dimensionality-reduction technique, can be used to reconstruct data,

but it is limited to linear reconstruction and requires data to be highly correlated

and to follow a Gaussian distribution [22]. With respect to deep learning, further

reconstruction-based techniques have been investigated. These include the use of

Auto-Encoder (AE) [52], Variational Auto-Encoder (VAE) [6], and Generative Ad-

versarial Networks (GAN) [28].

While methods and algorithms provide innovative approaches for detecting anoma-

lies, they alone do not support the necessary end-to-end workflow — from the input

signal processing, model training, post-processing and evaluation, to the output sig-

nal and anomaly visualization and annotation — to adequately assist users in making

decisions.

4.2 Time Series Anomaly Detection Systems

With the increasing prevalence of time series data, a wide range of systems made

specifically for time series have emerged. They address a variety of tasks such as

classification [14], feature extraction [19], and anomaly detection [66, 46, 56, 27].

Table 4.1 summarizes the features present in some existing open source frameworks

for anomaly detection. While these systems handle time series data, most of them

only support a single anomaly detection algorithm. Moreover, they fail to support a

human-in-the-loop workflow. In contrast, Orion aims to provide an end-to-end devel-

opment workflow to aid all types of users. Constructing new primitives and pipelines

can be easily integrated using a fit-predict interface with minimal overhead [59].

Moreover, we provide a human-in-the-loop (HIL) workflow to analyze and annotate
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the detected anomalies, which feeds back into the system for improvement over time.

This subsystem leveraging user annotation is neglected by all existing systems.

4.3 Anomaly Detection Benchmarks

Training and optimizing deep learning models can be computationally expensive,

making the process of selecting and comparing pipelines difficult. Benchmarking

frameworks has now become a necessity to evaluate and compare the performance

of models in a standardized end-to-end fashion [21]. With respect to anomaly de-

tection, Lavin and Ahmad [47] introduced one of the first open-source benchmark

repositories for anomaly detection. They provide a collection of datasets (58 signals)

from real-word and artificial sources. Recently Jacob et al. [42] introduced Exathlon

– a benchmark framework for anomaly detection and explanation discovery. The

framework features a systematically generated dataset from real-world data traces.

In addition, it elicits some of the intricacies involving time series benchmarks, in-

cluding evaluation metrics and performance monitoring. Currently, benchmarking

frameworks have limited pipelines, and are not easily extendable.

4.4 Active Incorporation of User Feedback

A lot of work has focused on developing anomaly detection methods using supervised

approaches [17, 29]. These methods are limited to the availability of labels. On the

other hand, semi-supervised and unsupervised approaches require few to no labels at

all [28]. In order to effectively detect anomalies, a system must continuously learn to

adapt to the expert feedback.

Pelleg and Moore [54] propose an active learning approach that first generates the

detected anomalies, selects the 35 strangest objects, prompts the expert to classify

them, then repeats the process. Similarly, Veeramachaneni et al. [66] combines su-

pervised and unsupervised output by selecting 𝑘 entities for users to label, in which

half are obtained from an unsupervised method and the other half is provided by the
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supervised method. After all entities are labeled, they retrain the supervised model,

select another 𝑘 objects, and repeat the cycle. Das et al. [23] suggest an iterative

process by training a supervised model (classifier) and selecting the points that are

most likely to be outlier objects for expert review. Then they update the model and

the weights of each feature accordingly. On the other hand, Chai et al. [15] aim to

label the entire set of detected outlier objects by prompting users to answer questions.

The questions are selected and optimized to cover as much information as possible

about given objects. Based on found knowledge, the labels of the objects are adjusted.

Once the labels are assigned, a supervised model can be trained on the given data.

Although all of these methods are promising, they have been developed specifically

for tabular data and require prior knowledge of data distribution.
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Chapter 5

Time Series Anomaly Detection

Prior to building a system, we look closely at the task of anomaly detection. In this

chapter, we formalize the task and its objectives, detail several approaches to using

deep learning for anomaly detection, and introduce evaluation mechanisms specific

to the anomaly detection task.

5.1 Task Definition

In an anomaly detection task, we aim to detect if any intervals in the time series data

are anomalous; i.e. deviate from “normal”. Given 𝑋 = {x1,x2, . . . ,x𝑛}, a multivariate

signal with 𝑚 channels where x𝑖 ∈ R𝑚 is an entry at time 𝑖 and has the representation

x𝑖 = {𝑥1
𝑖 , 𝑥

2
𝑖 , . . . , 𝑥

𝑚
𝑖 }, and assuming there exists a set of variable-length anomalies

𝐴 = {(𝑡𝑠, 𝑡𝑒) | 1 ≤ 𝑡𝑠 < 𝑡𝑒 ≤ 𝑛} that is unknown a priori, Orion aims to detect 𝐴

using a combination of machine and human intelligence. Note that Orion addresses

variable-length anomalies. For two anomalous intervals 𝑎1 = (𝑡1𝑠, 𝑡
1
𝑒) and 𝑎2 = (𝑡2𝑠, 𝑡

2
𝑒),

the length of 𝑎1 does not necessarily equal the length of 𝑎2, for example, 𝑡1𝑒−𝑡1𝑠 ̸= 𝑡2𝑒−𝑡2𝑠
is a typical case in this problem.
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5.1.1 Distinction from Classification

A time series classification task takes as input a univariate or multivariate signal 𝑋,

and maps it to a probability distribution over the class variable values (labels) [38].

In an anomaly detection task, these class labels pertain to whether something is an

anomaly or not. For example, Cao et al. [14] takes as input EEG data, divides the raw

EEG data into segments of fixed duration, then produces a single output that assigns

a label to that particular segment. Hu et al. [36] users time series classification to

label ECG data into their respective physical activity label: normal-walking, walking-

very-slow, descending-stairs, cycling, inactivity, etc.

anomalous
interval

(a) Detection task

normal
?

anomaly

(b) Classification task

Figure 5-1: Illustration of (a) detection task where the objective is to find anomalies
in time series data. (b) classification task where the objective is to assign a label to
a time series or a segment.

We distinguish this classification problem from our anomaly detection task (Fig-

ure 5-1). In a detection task, the model works with the entire time series in its raw

format and must predict whether the signal contains anomalies, as well as localize

them by producing start and end time stamp intervals as shown in Figure 5-1(a).

5.1.2 Distinction from Supervised Anomaly Detection

The two paradigms of machine learning are learning with labels (supervised learn-

ing) and learning with unlabeled data (unsupervised learning) [43]. As described in

Chapter 2, time series data typically suffers from lack of labels, which incentivizes

the use of unsupervised methodologies. Hence, a system like Orion should work with

only the time series data as input. Once the unsupervised model produces a set of

candidate anomalies, they should be reviewed by the domain expert to verify its tag.

After collecting a set of tags, supervised anomaly detection [49] can be leveraged in
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time series

unsupervised
anomaly detection

supervised
anomaly detection

general binary
prediction (anomaly or not)

specific tag
prediction

binary tags multi-tags

time series
classification

predict the label
of the segment

Figure 5-2: Paradigm of some time series tasks using machine learning.

the next iterations. Figure 5-2 illustrates the distinction between some of the several

concepts pertaining to time series tasks. We note that there are many other tasks

that are not addressed in this thesis such as time series forecasting, change point

detection, etc.

5.2 Unsupervised Anomaly Detection Methods

In this section, we go through the technical details of three deep learning models:

Long Short-Term Memory Networks, Auto-Encoders, and Generative Adversarial

Networks. The objective of all these models is to generate an “expected” signal,

as illustrated in 3. We continue by describing several approaches for calculating the

error signal.

5.2.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory networks are a type of Recurrent Neural Network (RNN)

and work well with sequential data [34]. As pointed out in [37], the natural properties

of LSTMs make them capable of learning the relationships between past and current

values, as well as correlations between different channels.

The model takes as input 𝑋 which consists of prior telemetry values for all chan-

nels of window size 𝑙. The model outputs 𝑦, a predicted value for a specific channel
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𝑚 for a given horizon ℎ, where ℎ represents how many values will be predicted in the

future. We use a mean squared error loss to train the model. This process is repeated

for every entry in the time series.

Input: 𝑋 ∈ R𝑚, 𝑦 ∈ R where 𝑦 is the channel to predict (e.g. channel 𝑚)

Output: 𝑦 ∈ R

Loss: ℒ(𝑦, 𝑦) =
∑︀

(𝑦𝑖 − 𝑦𝑖)
2

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
𝑡−𝑙 . . . 𝑥1

𝑡−1 𝑥1
𝑡

𝑥2
𝑡−𝑙 . . . 𝑥2

𝑡−1 𝑥2
𝑡

... . . . ...
...

𝑥𝑚
𝑡−𝑙 . . . 𝑥𝑚

𝑡−1 𝑥𝑚
𝑡

⎤⎥⎥⎥⎥⎥⎥⎦
𝑚×𝑙

𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚
𝑡+1

𝑥𝑚
𝑡+2

...

𝑥𝑚
𝑡+ℎ

⎤⎥⎥⎥⎥⎥⎥⎦
ℎ×1

𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥̂𝑚
𝑡+1

𝑥̂𝑚
𝑡+2

...

𝑥̂𝑚
𝑡+ℎ

⎤⎥⎥⎥⎥⎥⎥⎦
ℎ×1

Notice if ℎ > 1, then each value in the future will be predicted more than once. We

aggregate these values (e.g. mean value) such that we end up with a one-dimensional

vector.

5.2.2 Auto-Encoder (AE)

Auto-Encoder models are sequence-to-sequence based architectures that use an “en-

coder” network to map a time series into the latent space, and then a “decoder”

network to map it back into the original feature domain [61]. They are relatively

easy and quick to train. In addition, an AE model is flexible enough to use any type

of network for the encoder and decoder, including Dense layers, LSTMs, GRUs, etc.

Malhotra et al. [52], suggests that LSTMs are ideal for both encoder and decoder

networks in a time series setting.

Similar to the prediction model, an AE takes as an input 𝑋, which consists of

prior telemetry values for all channels of window size 𝑙. The model then outputs 𝑋̂,

which is a reconstruction of 𝑋 for a specific channel 𝑚. In the matrix below, we

highlight the channel that was reconstructed. The loss function is a mean squared

error loss with respect to the selected channel to be reconstructed.
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Input: 𝑋 ∈ R𝑚

Output: 𝑋̂ ∈ R where 𝑋̂ is a reconstructed channel (e.g. channel 𝑚)

Loss: ℒ(𝑋, 𝑋̂) =
∑︀

(𝑋𝑚
𝑖 − 𝑋̂𝑖)

2

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
𝑡−𝑙 . . . 𝑥1

𝑡−1 𝑥1
𝑡

𝑥2
𝑡−𝑙 . . . 𝑥2

𝑡−1 𝑥2
𝑡

... . . . ...
...

𝑥𝑚
𝑡−𝑙 . . . 𝑥𝑚

𝑡−1 𝑥𝑚
𝑡

⎤⎥⎥⎥⎥⎥⎥⎦
𝑚×𝑙

𝑋̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑚
𝑡−𝑙

...

𝑥𝑚
𝑡−1

𝑥𝑚
𝑡

⎤⎥⎥⎥⎥⎥⎥⎦
𝑙×1

5.2.3 Generative Adversarial Network (GAN)

A popular deep learning approach for reconstructing data is Generative Adversarial

Networks (GAN) [30]. The idea behind a GAN model is that the generator 𝒢 : 𝑍 → 𝑋

constructs a fake time series based on some random latent variable in order to fool the

critic (commonly known as the discriminator) 𝒞𝑥, which tries to differentiate “fake”

examples from “real” ones in the original domain. In its generic form, it is defined as

a min-max game:

min
𝒢

max
𝒞𝑥

𝑉 (𝒢, 𝒞𝑥) = E𝑥∼P𝑥 [𝑙𝑜𝑔 𝒞𝑥(𝑥)] + E𝑧∼P𝑧 [𝑙𝑜𝑔 (1− 𝒞𝑥(𝒢(𝑧)))] (5.1)

To account for temporal dynamics present in time series data, we introduce an

encoder ℰ : 𝑋 → 𝑍 to map features to the structure of the latent space. We train the

encoder adversarially through another critic 𝒞𝑧 to distinguish between random latent

samples and encoded samples 𝑉 (ℰ , 𝒞𝑧). A similar approach to learning an embedding

network was introduced in [71].

In inference time, we use the GAN model in a similar fashion to AE: 𝑥→ ℰ(𝑥)→

𝒢(ℰ(𝑥)) ≈ 𝑥̂. To encourage mapping a sample from 𝑥 to 𝑥̂, we add a cycle consis-

tency loss by minimizing the 𝐿2 norm of the difference between the original and the
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reconstructed samples:

𝑉𝐿2(ℰ ,𝒢) = E𝑥∼P𝑥 [‖𝑥− 𝒢(ℰ(𝑥))‖2] (5.2)

The overall objective then becomes a combination of all the aforementioned ob-

jectives:

min
𝒢,ℰ

max
𝒞𝑥,𝒞𝑧

𝑉 (𝒢, 𝒞𝑥) + 𝑉 (ℰ , 𝒞𝑧) + 𝑉𝐿2(ℰ ,𝒢) (5.3)

The input and output dimensions of a GAN network are identical to those of an

AE model as it aims to reconstruct 𝑋. For both 𝒢 and ℰ , Geiger et al. [28] implement

a two layer LSTM architecture, and for the critics 𝒞𝑥 and 𝒞𝑧 they use a sequence of

convolutional layers.

5.2.4 Calculating the Error Signal

All these models produce a one-dimensional vector, which we will refer to as 𝑦, that

aims to mimic the underlying distribution of a channel in 𝑦 ⊆ 𝑋, which we will

refer to as 𝑦. The objective is now to capture the discrepancies between 𝑦 and 𝑦 to

help us locate anomalies. There are several approaches to this, including: point-wise

difference, area difference, and dynamic time warping.

(a) point (b) area (c) dynamic time warping

Figure 5-3: High-level depiction of (a) point error (b) area error (c) dynamic time
warping.

Point Error

This method applies a point-to-point comparison between the original and the gen-

erated signal. It is considered a sensitive approach that does not allow for many
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mistakes. For each step 𝑡, the prediction error is calculated:

𝑒(𝑡) = | 𝑦(𝑡) − 𝑦(𝑡) | (5.4)

All error values at each time step 𝑡 are concatenated into a one-dimensional vector

e = [𝑒(1), 𝑒(2), . . . , 𝑒(𝑡), . . . , 𝑒(𝑛)] where 𝑛 is the length of the time series.

Area Error

This method captures the general area under the curve of both signals and then

compares them. It is lenient in the sense that the 𝑦 and 𝑦 do not necessarily need to

have the same shape in order to be similar:

𝑒(𝑡) =
1

2𝑙

⃒⃒⃒ ∫︁ 𝑡+𝑙

𝑡−𝑙

𝑦(𝑡) − 𝑦(𝑡)𝑑𝑦
⃒⃒⃒

(5.5)

Similarly, we concatenate all values to form e.

Dynamic Time Warping Error

A middle ground between the previous two methods is Dynamic Time Warping

(DTW). DTW is a ubiquitous similarity measure between two temporal sequences

that may vary (i.e. warp) in time. It compares two signals using any pair-wise

distance measure, but allows for one signal to lag behind another.

Given 𝑦 and 𝑦, we need to construct a warp path 𝑊 = 𝑤1, 𝑤2, . . . , 𝑤𝐾 , where 𝐾

is the length of the warp path and 𝑤𝑘 = (𝑖, 𝑗) is the 𝑘𝑡ℎ element of that warp path

mapping 𝑥𝑖 to 𝑦𝑗. The optimal path is given by

e = 𝐷𝑇𝑊 (𝑦, 𝑦) = 𝑊 * = min
𝑊

[︃⎯⎸⎸⎷ 𝐾∑︁
𝑘=1

𝑤𝑘

]︃
(5.6)

Given two time series sequences, we want to find an m-to-n mapping that illus-

trates which value from series A corresponds to which value in series B [9]. More

formally, we need to find the optimal warping path 𝑊 . This path can be found
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using a recurrence formulation of the cumulative cost 𝛾. We define 𝛾(𝑖, 𝑗) as the dis-

tance 𝑑(𝑖, 𝑗) of the current cell using any point-wise distance measure (e.g. Euclidean

distance) and the minimum of the cumulative distances of the adjacent elements

𝛾(𝑖, 𝑗) = 𝑑(𝑥𝑖, 𝑦𝑗) +𝑚𝑖𝑛{𝛾(𝑖− 1, 𝑗), 𝛾(𝑖, 𝑗 − 1), 𝛾(𝑖− 1, 𝑗 − 1)}

There are three main constraints imposed on DTW:

1. Boundary condition: The first and last index from 𝑦 must be matched with the

first and last index from 𝑦 respectively. In other words, the warping path 𝑊 needs

to have 𝑤1 = (1, 1) and 𝑤𝐾 = (𝑛,𝑚). Since we assume |𝑦| = |𝑦| then 𝑤𝐾 = (𝑛, 𝑛).

2. Continuity condition: Every index from 𝑦 must be matched with one or more

indices from 𝑦, and vice versa. In other words, for a point (𝑖, 𝑗) from the matrix, the

previous point must be (𝑖− 1, 𝑗 − 1), (𝑖− 1, 𝑗), or (𝑖, 𝑗 − 1).

3. Monotonic condition: The mapping between 𝑦 and 𝑦 must be monotonically

increasing. Given 𝑤𝑘 = (𝑎, 𝑏) then 𝑤𝑘−1 = (𝑎′, 𝑏′) where 𝑎− 𝑎′ ≥ 0 and 𝑏− 𝑏′ ≥ 0.

Critic Error

In the special case of GANs, we can incorporate the critic’s judgement as part of the

error signal. Recall that the critic 𝒞𝑥 is trained to distinguish between real and fake

examples. Following this logic, the critic can also indicate if it received any anomalous

sequences.

We can use a weighted average between the critic error and any other distance-

based error 𝑓 , such as point, area, or DTW. We can formulate the general notation

of an anomaly for some weight 𝜆 ∈ [0, 1] as:

𝑒(𝑡) = 𝜆 𝒞𝑥(𝑦(𝑡)) + (1− 𝜆) 𝑓(𝑦(𝑡), 𝑦(𝑡)) (5.7)

After that we can use a threshold on the error signal to segregate normal values

from anomalous ones.
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5.2.5 Discussion

In the previous description of anomaly detection methods, notice how known ground

truth anomalies were not part of any step in the model’s detection process. All

methods work in a self-supervised manner where the model learns from the signal

itself without manually collected labels [26]. All methods have the same objective of

generating another signal to help locate anomalies.

5.3 Evaluation Metrics

What makes these anomaly detection models different from each other? Users might

want to make an educated selection to best fit a certain time series and anomaly

type. In order to choose between different pipelines, we need to measure the relative

performances of different methods. When evaluating the efficacy of a model, we rely

on signals for which we have annotations — known anomalies — and treat them as

ground truth anomalies. In classification, the most widely-used metrics include preci-

sion, recall and F1-score. However, as noted by Tatbul et al. [62], these scores are not

useful in the context of time series where data is not regularly sampled. For a given set

of ground truth anomalies 𝑇 = {(𝑡𝑠, 𝑡𝑒)}𝑚𝑖=1 and predicted anomalies 𝑃 = {(𝑡𝑠, 𝑡𝑒)}𝑛𝑖=1

where 𝑡𝑠 and 𝑡𝑒 represent the start and end timestamps of an anomaly respectively, we

define specific methods to enable the fair computation of metrics without restrictions

on the data: weighted segment and overlapping segment. Figure 5-4 shows an exam-

ple of two difference sets for ground truth and detected anomalies. We will use this

example in subsequent illustrations to showcase the mechanics of the two algorithms.

5.3.1 Weighted Segment

Weighted segment-based evaluation is a strict approach that weights each segment

according to its actual time duration. As illustrated in Algorithm 1, the time series

is segmented into multiple sequences by the edges of the anomalous intervals. For
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Figure 5-4: Example of known ground truth anomalies and detected anomalies via
anomaly detection method.

Figure 5-5: Weighted segment illustration. Each vertical line depicts a partition.
Each partitioned segment will be evaluated into its respective true positive, false
positive, false negative, and true negative values based on the comparison of ground
truth and detected segments.

each edge, we record whether it was observed in the 𝑇 set or 𝑃 set and record it in 𝑇

and 𝑃 respectively. We then compute the confusion matrix, which makes a segment-

to-segment comparison and records true positive, false positive, false negative, and

true negative accordingly. We then weigh each segment by its time range. Figure 5-5

showcase how the weighted segment is applied to the example shown in Figure 5-

4. This approach is valuable when the user aims to detect the exact segment of the

anomaly. In case where the user’s signal is inherently regularly sampled, this approach

is equivalent to a sample-based evaluation.
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Input: ground truth anomalies 𝑇 , predicted anomalies 𝑃
Output: confusion matrix M
begin

𝐸 ← 𝑇 ∪ 𝑃 // all 𝑡𝑠 and 𝑡𝑒 timestamps

𝑇 ← ∅, 𝑃 ← ∅,𝑊 ← ∅
𝐸 ← sort(𝐸) // sort timestamps from small to large
𝑠← pop(𝐸) // the first timestamp
while 𝐸 ̸= ∅ do

𝑒← pop(𝐸)
𝑡𝑖← (𝑡𝑠, 𝑡𝑒) // create a time interval (𝑡𝑠, 𝑡𝑒)
𝑊 ← 𝑊 ∪ {𝑡𝑒 − 𝑡𝑠}
𝑇 ← 𝑇 ∪ {overlap(𝑡𝑖, 𝑇 )} // check if 𝑡𝑖 in ground truth

𝑃 ← 𝑃 ∪ {overlap(𝑡𝑖, 𝑃 )} // check if 𝑡𝑖 in predicted
𝑠← 𝑒

end
M← confusion_matrix (𝑇 , 𝑃 ,𝑊 )

return M

Algorithm 1: Weighted Segment Evaluation. We create sequences partitioned
based on the ground truth and predicted anomalies. For each sequence, we
obtain a time range and whether it is part of the ground truth or predicted
set. We compute the confusion matrix weighted by its respective duration.

5.3.2 Overlapping Segment

Overlapping segment is a more lenient evaluation approach. It is inspired by the

evaluation method of Hundman et al. [37], which rewards the model if it alerts the user

to even a subset of an anomaly. This is considered sufficient because domain experts

monitor the signal and will investigate even an imprecise alarm, likely discovering the

full anomaly in the process. Algorithm 2 illustrates our approach to counting:

1. true positive if a ground truth segment overlaps with the detected segment.

2. false negative if the ground truth segment does not overlap with any detected

segments.

3. false positive if a detected segment does not overlap with any labeled anoma-

lous region in the ground truth set.

Figure 5-6 showcase how the overlapping segment is applied to the example shown

in Figure 5-4. Moreover, the overlapping segment approach does not account for true
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Input: ground truth anomalies 𝑇 , predicted anomalies 𝑃
Output: confusion matrix ⟨tp, fp, fn⟩
begin

𝑈 ← ∅ // bookkeeping unmatched events
tp← 0
while 𝑇 ̸= ∅ do

𝑡← pop(𝑇 )
for 𝑝 ∈ 𝑃 do

if overlap(𝑡, 𝑝) then
tp← tp + 1 // matched

end
end
if unmatched(𝑡) then

𝑈 ← 𝑈 ∪ {𝑡} // add to unmatched
end

end
tn← |𝑈 |
fp← |𝑃 | − tp
return ⟨tp, fp, fn⟩

Algorithm 2: Overlapping Segment Evaluation. For each ground truth
anomaly, we search whether it overlaps with any event in the predicted set. If
so, it counts towards a true positive; if not, it is considered a true negative. We
then compute the total false positives to be the complement of true positives.

negatives (TN) and is invariate to time. Moreover, in a case where an entire time

series is determined to be anomalous, this method will return high metric values.

Therefore, it is important to regulate the length of the anomalies in this evaluation

approach.

5.4 Known Anomalies

Once the first phase of anomaly detection using machine learning is complete, we

require human expertise to validate and annotate the identified anomalies, which

may or may not be based on ground truth. We provide a visualizing subsystem

so that experts can view time series and their respective predicted anomalies (see

Section 6.6). Users can interact with this system by confirming, modifying, removing,

searching, and discussing events.
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Figure 5-6: Overlapping segment illustration. Each detected anomaly will be assigned
to either true positive or false positive, and missed ground truth anomalies will be
assigned to false negative.

Why is the logic important? Based on these annotations, future predictions re-

garding the same or similar signals can be improved. These annotations effectively

incorporate domain-specific knowledge into our anomaly detection framework. Then,

we can start mixing supervised and unsupervised models with iterated learning. This

reduces both false positives and false negatives and helps improve future predictions.

55



56



Chapter 6

System Design and Architecture

Many algorithms have been developed to address the task of time series anomaly

detection, ranging from statistical methods to machine learning techniques [35, 17,

29, 32]. Despite the existence of these algorithms, the problem is only partially

solved. There is a fundamental gap between scientists and engineers that precludes

these methods from being used in a real world setting. To state the problems more

specifically: How do we enable an end user to use complex methods? How do we

select an anomaly detection method from the array of available pipelines? and How

do we maintain a constant knowledge base across a monitoring team? Moreover, after

detecting and annotating anomalies, how do we harness the analysis and decisions of

experts and feed them back into the system? We aim to address these question in the

Orion framework.

Orion is a system comprised of a series of components that can perform all the

necessary detection steps, from composing pipelines to annotating anomalies. A user

aiming to detect anomalies in their time series data can either select an existing,

verified pipeline from our collection, or create their own. The system is backed by an

integrated database that maintains the results of each detection 1. We supplement

Orion with an interactive visual interface, enabling users to intuitively investigate

and annotate any detected anomalies.

1The database has now been migrated into its own repository under https:/github.com/
sintel-dev/sintel
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Figure 6-1: Orion consists of two subsystems. The anomaly detection subsystem
detects anomalies through a python library, which are then annotated by users using
the human-in-the-loop subsystem of MTV.

Orion’s components are categorized into two main subsystems: anomaly detection

and human-in-the-loop using MTV 2, with a communication channel between them

(Figure 6-1). We first define the machine learning stack (Section 6.1), which contains

primitives, templates, and pipelines. Then we introduce the core interaction (Sec-

tion 6.2) which is the main entry point that allows users to select and train pipelines

as well as to predict and store anomalies. This is followed by a description of the

hyperparameter tuning component (Section 6.3). Due to the nature of anomaly de-

tection pipelines, we include a benchmark utility (Section 6.4) to compare the quality

and computational performance of different pipelines. We supplement the framework

with a database (Section 6.5) to keep a persistent state of information. To incorporate

human knowledge, we use the visualization subsystem to allow experts to annotate

events and utilize human annotations through the feedback loop (Section 6.7).

6.1 Machine Learning Stack

Prior to diving into the components of the system, we need to convert these machine

learning algorithms into standardized end-to-end programs, which we call pipelines.

In this subsection, we define pipelines and their building blocks.

2github.com/sintel-dev/MTV
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Anomaly detection pipelines take a univariate or a multivariate signal as input

and use it to generate an array of intervals 𝐴 = [(𝑡1𝑠, 𝑡
1
𝑒), · · · , (𝑡𝑘𝑠 , 𝑡𝑘𝑒)] representing the

anomalies discovered. In most cases, users lack labels for their data. Therefore, our

pipelines service both unsupervised and supervised approaches, and are built end-to-

end such that Orion is agnostic as to which pipeline is executed. To understand the

composition of pipelines, we describe their basic building blocks, or primitives, below.

6.1.1 Primitives

Primitives are reusable software components [59]. A primitive receives data in the

form of a specified input, performs an operation, and returns a calculated output.

Each primitive is responsible for a single task, ranging from data transformation to

signal processing to machine learning modeling to error calculation. It is possible to

build complex pipelines by stacking primitives on top of one another. Each primitive

has associated metadata including annotations, such as the name of the primitive,

the description and documentation link, and the engine category. As illustrated in

Table 4.1, Orion covers three engines:

Pre-processing

Time series are rarely handled in their raw form. Before using a signal, the data must

be transformed through pre-processing. A pre-processing primitive can be used to

scale the signal, impute missing values, or prepare training examples.

Modeling

Once the signal has been processed, we can start modeling it. There are different tech-

niques for modeling. In time series anomaly detection, we are interested in predicting

or reconstructing the signal so that we can have an expected signal (see Figure 3-2).
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Post-processing

After generating an expected signal, we use discrepancies between the expected and

the real signal to find anomalies. We refer to this process as error calculation. Post-

processing primitives output intervals containing potentially anomalous sub-sequences

alongside the probability that they are anomalous.

Modularly designed engines can re-use primitives between, within and across

pipelines. This reduces the number of lines of code – and thus error potential – and

increases transparency. Having a granular definition also encourages best practices

such as proper documentation, unit tests, and validation. Contributors can integrate

a new primitive into Orion without modifying an entire pipeline.

6.1.2 Pipelines

Pipelines are end-to-end programs composed of primitives. Each pipeline is computed

into its respective computational graph, similar to the examples shown in Figure 6-2.

In this paper, the term “pipeline” always refers to a program tasked with identifying

anomalies in time series data. Primitive and pipeline structures have been successfully

adopted in many other applications, including healthcare [3, 59].

In most cases, pipelines require primitive hyperparameters to be set based on the

dataset. To satisfy this requirement, we introduce a template concept where a tem-

plate 𝑇 = ⟨𝑉,𝐸,Λ⟩, 𝑉 is a set of pipeline steps, 𝐸 is a set of edges between steps

to represent data flow, and Λ is the joint hyperparameter space for the underlying

primitives [59]. Following this definition, a pipeline is a configured template with a

fixed hyperparameter setting 𝑃 = ⟨𝑉,𝐸, 𝜆⟩ where 𝜆 ∈ Λ is a specific set of hyperpa-

rameters. This definition allows us to create and manipulate pipelines easily, enabling

their use with a wide range of signals. More importantly, it gives us visibility into

which hyperparameters are altered when the pipeline is run on one dataset versus

another. This transparency is crucial to making our results reproducible.
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Figure 6-2: Graphic representations of (a) an unsupervised pipeline with a Long
Short-Term Memory (LSTM) network. (b) a supervised counterpart of the LSTM
network for time series classification.

Dissecting LSTM Pipeline Example The pipeline in Figure 6-2a uses a Long

Short-Term Memory (LSTM) network to predict data values at future timestamps.

We first take a raw signal x and feed it into the time_segments_aggregate to pro-

duce x = [𝑥1, 𝑥2, . . . , 𝑥𝑇 ] where the time intervals between 𝑥𝑡−1 and 𝑥𝑡 are equal.

Then we scale the data x ∈ [−1, 1] and impute missing values using the mean value

of the signal. After that, we create the training window sequences. The processed

signal is now ready to train the double-stacked LSTM network. Once the network

is trained, we generate the predicted signal and compute the discrepancies using

regression_errors, which is an absolute point-wise difference |x̂ − x|. Lastly, we

use a dynamic threshold on error values to find anomalous regions [37]. Customiz-

ing pipelines is fairly easy. Users can configure a primitive or even replace it with

another. For example, to use z-score normalization, users can swap SimpleImputer

with StandardScaler.
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from sintel import Sintel
from sintel.data import load_signal

train_data = load_signal('S-1-train')
sintel = Sintel(

pipeline='lstm_dynamic_threshold'
)

# train the pipeline
sintel.fit(train_data)

# incoming data
new_data = load_signal('S-1-new')

# detect anomalies
anomalies = sintel.detect(new_data)

(a)

from orion import Orion
from orion.data import load_signal,

load_anomalies→˓

# load pre-trained model
path = 'path/to/model'
orion = Orion.load(path)

# load data & ground truth anomalies
data = load_signal('S-1')
anom = load_anomalies('S-1')

# evaluate the performance
metrics = ['precision', 'recall']
score = orion.evaluate(data, anom,

metrics=metrics)→˓

(b)

Figure 6-3: Usage with python SDK. (a) end-to-end anomaly detection pipeline.
First the user loads the data either by using load_signal or externally. Then
the user select the desired pipeline for detection. In this example, we use
lstm_dynamic_threshold. The user then trains the pipeline using orion.fit, and
similarly, detects anomalies using orion.detect. (b) end-to-end evaluation of a pre-
trained model. The user can pass the ground truth anomalies to orion.evaluate to
measure the performance score.

AD Pipeline Hub Orion stores a collection of end-to-end anomaly detection

pipelines that work with state-of-the-art methods. As of the time of writing, we

have incorporated ARIMA [55], LSTM DT [37], LSTM AE [52], and TadGAN [28]. More-

over, we provide “pipelines” that can connect to existing anomaly detection services,

such as MS Azure [56]. This set of pipelines is easily extendable and can be expanded

further.

6.2 Core Interaction

To address the usability of the system, we need to find the right level of abstraction

to make interaction a pleasant experience. Orion’s core provides a set of coherent

APIs, allowing users to execute end-to-end processes. Given a signal 𝑋, we want

to obtain a set of detected anomalies. With Orion, this is straightforward. First,

the user loads a signal which follows the input standard – (timestamp, values). We

provide a helper function to load data from csv files. Next, the user selects the
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pipeline of interest from a suite of available options. To view the currently available

pipelines, users can read the documentation or use get_available_pipelines to

learn more about them. Once a pipeline is selected, it is trained on the signal using

orion.fit(data). To detect anomalies, the user then executes orion.detect(data)

to produce a set of possible anomalies. Users can also use the evaluation mechanisms

defined in Section 5.3 to view the performance of a pipeline if the ground truth

anomalies are present. Figure 6-3 shows an example code for this process.

Simple code execution, accomplished via fit/detect/evaluate functionalities

and the pipeline, makes the framework unified, usable, and accessible – similar to the

popular fit/predict interfaces for democratized libraries such as scikit-learn [13].

6.3 Hyperparameter Tuner

Hyperparameter tuning is instrumental to ML systems [10, 11]. To tune pipelines au-

tomatically (Figure 6-4), we integrate BTB 3, an open-source and extensible framework

with black box Bayesian Optimization [59]. In short, the AutoML component of the

framework aims to find the configuration of hyperparameters for a given pipeline tem-

plate that best maximizes some set of objective functions. Given pipeline template

𝑇 and an objective function 𝑓 that assigns a performance score to pipeline 𝑃𝜆 with

hyperparameters 𝜆 ∈ Λ, we recover 𝜆* = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆∈Λ𝑓(𝑃𝜆). We use GPTuner, which

optimizes candidates using a Gaussian process meta-model, records evaluations, and

proposes hyperparameters 𝜆. We continue the search until our budget runs out, or we

have reached the optimal value. Algorithm 3 depicts the general flow of optimization

in Orion.

Orion’s tuners are customized for use in two different settings, as shown in Fig-

ure 6-5. In an unsupervised setting, a user only tunes the sub-pipeline that attempts

to generate the signal closest to the original signal. To achieve this, users specify the

pipeline template and evaluation metrics, such as MAPE, MAE, etc. for their objective

3https://github.com/MLBazaar/BTB
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from sintel import Sintel

# initialize data and ground_truth
# ...
sintel = Sintel(

pipeline="lstm_dynamic_threshold"
)

# supervised
sintel.tune(

data=data,
anomalies=ground_truth,
scorer='f1'

)

# unsupervised
sintel.tune(data=data, scorer='mse')

Figure 6-4: Tuning usage with python SDK. orion.tune allows users to tune tem-
plates and select the best configuration for their instance using a scorer of their choice.

function. In a supervised setting, we provide objective functions that evaluate the

efficacy of the pipeline in detecting known anomalies, such as F1. Note that in the

supervised setting, a ground truth set of anomalies must be defined. Tuning can

be used to fine-tune a pipeline with expert annotations. Depending on the tuning

setting, some engines may not need to be tuned. Recall in Section 6.1, our primitives

are annotated, enabling Orion to automatically pull hyperparameters with respect to

the set of primitives needed.

6.4 Benchmark Framework

The availability of benchmarking is one of the key advantages of our framework. As

shown in Table 4.1, many existing frameworks develop algorithms for AD, but lack

an out-of-the-box benchmark. With Orion’s evaluation metrics and pipeline hub, we

are able to thoroughly compare these methods on multiple datasets, through a single

command — benchmark. Figure 6-6 illustrates our benchmark API. The benchmark

is designed to measure two main aspects: quality and computational performance.
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Input: template 𝑇 , dataset 𝐷, scorer function 𝑓 , budget 𝐵.
Output: best hyperparameter 𝜆*

begin
init Tuner // Bayesian Tuner from BTB
𝑠* ← +∞, 𝜆* ← ∅
while 𝐵 > 0 ∧ 𝑠* ̸= 𝑓 * do

𝜆← Tuner.propose(𝑇 ) // propose a set of hyperparameters
𝑃 ← (𝑇, 𝜆)
𝑠← cross_validate(𝑓, 𝑃,𝐷)
Tuner.record(𝜆, 𝑠) // update tuner
if 𝑠 < 𝑠* then

𝑠* ← 𝑠
𝜆* ← 𝜆

end
reduce(𝐵) // decrease budget

end
return 𝜆*

Algorithm 3: Automated hyperparameter optimization in Orion, searching
for the best configuration of 𝜆 and evaluating pipelines using the scoring func-
tion 𝑓 .

6.4.1 Quality performance

We define quality evaluation as an assessment of how well the pipeline has detected

ground truth anomalies. We extend beyond sample-based evaluation metrics such as

precision and recall as defined in scikit-learn, and introduce our pipeline evaluation

metrics as detailed in Section 5.3. The benchmark is extensible, and users can easily

add new metrics and evaluation criteria.

6.4.2 Computational performance

Deep learning is notorious for its expensive computational needs. In addition to qual-

ity performance, it is important to compare different pipelines’ computational costs.

To accomplish this, we measure the total time necessary for each pipeline’s execution,

including how much time is required to train the pipeline (training time) and how

much time the pipeline takes to turn an input into an output (pipeline latency). Ad-

ditionally, we record how much time each individual primitive needs for both phases.

We also measure memory consumption for pipelines and primitives. Moreover, deep

65

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics


MSEMetric

Target

MAE

preprocessingEngine modeling
preprocessing

postprocessing

modeling

MAPE ...

Generated Ground truthDetected

Original

accuracy precision

recall f1 score ...

Unsupervised Supervised 

Figure 6-5: Hyperparameter tuning in two conditions: (1) unsupervised, where the
goal is to optimize the signal generated by the ML model, and (2) supervised, where
our goal is to produce anomalies that best match the ground truth set.

from sintel import benchmark

pipelines = ['arima', 'lstm_dynamic_threshold', '...']
datasets = ['NAB', 'NASA', '...']
metrics = ['f1', 'accuracy', '...']

benchmark(pipelines=pipelines,
datasets=datasets,
metrics=metrics,
rank='f1')

# >>>
# pipeline rank accuracy elapsed f1 precision recall
# 0 lstm_dynamic_threshold 1 0.986993 915.958132 0.846868 0.879518 0.816555
# 1 arima 2 0.962160 319.968949 0.382637 0.680000 0.266219

Figure 6-6: Benchmarking usage with python SDK. benchmark allows users to com-
pare the performance of many pipelines via one command.

learning libraries are constantly optimizing the performance of their framework which

consequently directly improves the performance of modeling primitives. Keeping this

in mind, we are more interested in inspecting which in-house pre-processing and post-

processing primitives are incurring additional cost. The inclusion of computational

monitoring allows us to identify which primitives cause bottlenecks within the pipeline

and to improve them further.

66



6.5 Persistent Knowledge Base

In real-world settings, it is often necessary to continuously record data, including

expected anomalies. It is also important to document events so that information is

not lost, which can lead to repetitive and unnecessary investigations. Proper logging

of signals and their corresponding anomalies will greatly improve users’ understanding

of where these anomalies came from, and tracing back decisions will become easier

as well. In Orion, we use a mongoDB database with an extensive schema to fill this

gap. We chose mongoDB due to: (1) its flexibility over application domains; (2)

its interoperability with Orion’s visualization tool — a web app developed using

JavaScript; (3) its extensiblility through community add-ons.

Incorporation of the database enables users to do the following:

1. use anomalies that exist within the database to annotate new signals, in order

to avoid rerunning the same model and wasting computational time.

2. document the history of anomalies as users become more experienced.

3. maintain a growing store of information as multiple users annotate signals.

A high-level depiction of the entities and relationships within the database is

shown in Figure 6-7. Figure A-2 provides a detailed UML view. Through the

database, we can retrieve information easily, constantly trace what is happening,

and create a valuable knowledge base for both new and experienced users.

6.6 Visualization and Anomaly Annotation

Another phase of our system’s workflow is anomaly analysis. Our goal is to enable

the user to annotate the set of flagged events, and to inspect detected anomalies. To

achieve this, we introduce an interactive visualization tool [50], presented in Figure 6-

8. This tool allows subject matter experts to undertake an investigation process, and

to annotate and discuss events.
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The visualization subsystem supports standard operations such as multi-signal

viewing and zoom functionalities. In addition, it allows for a multi-aggregation view,

which allows a user to compare the signal at different aggregation levels. These op-

erations help experts understand why certain intervals have been flagged, and allows

for modification and annotation. In addition, we provide a discussion panel so that

team members can comment on or dispute the status of an event.

Expert annotations are extremely important for understanding whether certain

events are truly anomalous. Moreover, these annotations are persistent, allowing fu-

ture teams and users to understand why certain decisions were made. Although the

sequence of discussions and actions that have led to the classification of an event are

an important part of forming the canonical logic behind a decision, the steps them-

selves are often quickly forgotten. Within our system, this information is specifically

collected and stored in a database, so that users can trace back the decision-making

process.

6.6.1 Shape-Matching

Annotating events can overwhelm a user due to the sheer number of events that need

expert review. To enhance the annotation experience and make users more confident

in their decisions, we propose a shape-matching algorithm to compare events in time
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Anonymous

Figure 6-8: Snapshot of MTV — the visualization component of Orion. Multiple
signals are displayed at the top as an overview, and the detailed view of one selected
signal is shown at the bottom. The right panel displays how users assign tags and
comment on the signal of interest.

series data.

Use Cases.

To enhance the annotation process for large-scale tasks such as annotating events in

time series data, we can use shape matching for three different cases:

Tag Propagation. Once an expert confirms that an annotated event is indeed

an anomaly, they are inclined to search for other segments that are similar to the

confirmed event, but have not yet been flagged. These similar segments are likely to

receive the same annotations as the confirmed one. Using shape-matching, users can

propagate the tag (i.e. anomalous status) to these segments.

Mitigating False Alarms. After events have been properly annotated, we are able

to mitigate false alarms (false positives) by leveraging the shape-matching algorithm.

Consider an event that experts may think is unworthy of exploration – tagged as
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“normal” for example. We ask the system to prune out events that are similar to it

from the final output.

Decision support. Sometimes the status of an anomaly is ambiguous, and choosing

a proper tag is difficult. In this case, an expert can use shape-matching to find similar

shapes (non-anomalous segments) to this event. By comparing the differences between

them, experts can quickly clarify why the anomaly detection algorithm identified this

segment as anomalous.

Algorithm.

The algorithm is performed in a single signal based manner and outputs a set of

candidate shapes in a univariate signal x that are similar to a particular sequence s,

typically s ⊆ x. The algorithm is designed to factor in the constraint that returned

segments do not overlap in time with each other or any existing events. This constraint

is important as without it, annotators will feel confused by overlapping events. We

adopt a sliding window approach to generate sub-sequences of x, then compare them

to 𝑠 through a similarity measure 𝑓(·, ·). We chose 𝑓 to be the total cost of finding

the optimal mapping between two sequences. Similarity measurement can be any

function that determines the distance between two time series sequences, such as

Euclidean Distance, Dynamic Time Warping (DTW) [9, 44], etc. Euclidean distance

tends to find exactly matched shapes and is very sensitive to time, while DTW can

tolerate a certain level of shifting.

The full algorithmic process is described in the following pseudo-code (algorithm 4).

At each checkpoint 𝑡 we attempt to include the current most similar shape c in the

candidate subset. Prior to that, we check whether or not c overlaps with a preexisting

candidate shape; if so, we keep the most similar between the two. This procedure

will return a set of non-overlapping candidate shapes 𝑆 that are most similar to s.

Complexity Analysis.

In theory, the time complexity of Algorithm 4 is 𝑂(𝑛𝑘), where 𝑛 represents a length

of x which denotes the total time it takes to iterate over the time series, and 𝑘 is the
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Input: signal x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
sequence s = {𝑠1, 𝑠2, . . . , 𝑠𝑚} and 𝑚 < 𝑛

Output: candidate sub-sequences 𝑆
begin

c = ∅ // placeholder
𝑡 = 𝑚 // checkpoint of length of s
for 𝑖 = 1 to 𝑛−𝑚 do

x̃ = {𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑡} // sub-sequence of x
if 𝑓(x̃, s) < 𝑓(c, s) then

c← x̃ // update
end
if 𝑖 > 𝑡 then

if overlap(𝑆, c) then
v← arg overlap(𝑆, c) // overlapping sequence
c← argmin [𝑓(c, s), 𝑓(v, s)] // keep most similar

end
𝑆 = 𝑆 ∪ {c} // add candidate shape
c = ∅ // reset
𝑡 = 𝑡+𝑚

end
end

return 𝑆

Algorithm 4: Shape Matching Algorithm. We find a collection of non-
overlapping sub-sequences in x that are similar to s.
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time needed to calculate the cost 𝑓(·, ·) between two sub-sequences of length 𝑚. In the

case of Euclidean distance 𝑘 is linear 𝑂(𝑚), while in the case of vanilla DTW, it runs

in quadratic time 𝑂(𝑚2). We consider enabling faster variations of DTW, such as the

Sakoe Chiba band and the Itakura parallelogram, which make the time complexity

dependant on the band width and slope of the parallelogram respectively [58, 39]. In

real-world scenarios, Euclidean distance is sufficient and we expect 𝑚≪ 𝑛; thus, the

algorithm runs in close to linear time. In Section 7.9, we experiment with the runtime

of Algorithm 4.

6.7 Feedback

ML models detect anomalies that generally show up as unexpected temporal pat-

terns within certain time periods. In order to allow experts to annotate all detected

anomalies, the number of anomalies recommended by a model should be controlled.

In our example scenario, the satellite operations team has to review all unexpected

behaviors, which cause around 20 alarms per day. A failure to respond to a potential

hazard may result in satellite traffic jams or even a crash, leading to financial loss

and negative brand impact.

The experts’ knowledge is fed into a semi-/supervised pipeline to calibrate the

output of automated detection. After developing a careful understanding of what

users needed, we based the refreshment process of the semi-/supervised pipeline on

application-specific batch processing of annotations. There is a high variability be-

tween domains in terms of frequency of anomalies. Based on the satellite company’s

particular needs, we concluded that a weekly update is sufficient. The schedule is a

parameter in the environment and can be modified to suit users.
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Chapter 7

Evaluation

In the following chapter, we introduce several experiments that demonstrate the use,

performance, and effectiveness of Orion. We experimentally evaluate its benchmark-

ing suite, its tuning system, and its ability to close the loop of an anomaly detection

process. Moreover, we test the shape-matching algorithm and report the runtimes

under various conditions.

7.1 Datasets

Our experiments utilize three publicly-accessible time series datasets with known

anomalies. First, we use two sets of spacecraft telemetry signals — MSL and SMAP

— provided by NASA,1 which contain a total of 80 signals and over 100 known

anomalies. Second, we use Yahoo S5,2 a dataset dealing with production traffic in

Yahoo computing systems. Most subsets within this dataset have been synthetically

created. Overall, this dataset contains 367 signals and 2,152 anomalies. Finally, we

use the Numenta Anomaly Benchmark (NAB) dataset,3 which has 45 signals with

94 anomalies. Table 7.1 summarizes each of the datasets used. In total, there are 492

signals with 2349 anomalies.

1NASA: https://github.com/khundman/telemanom
2YAHOO S5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
3NAB: https://github.com/numenta/NAB
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Dataset # Signals # Anomalies Avg. Signal Length

NAB 45 94 6088
NASA 80 103 8686
YAHOO 367 2152 1561

Table 7.1: Dataset Summary: 492 signals and 2349 anomalies.

7.2 Experimental Setup

We first run the benchmark end-to-end on all available pipelines, using the described

datasets. We use a total of 6 pipelines – LSTM DT [37], ARIMA [55], TadGAN [28],

LSTM AE [52], and Dense AE – and a pipeline that uses the MS Azure anomaly

detection service [56]. We evaluate the quality and computational performances of

the pipelines according to the evaluation metric described in Section 5.3. To run the

benchmark, we use a private HPC cluster with 192GB of memory and two 24-core

Intel Xeon CPUs.

7.3 Quality Performance

Table 7.2 shows the quality performances of currently available pipelines. The scores

are calculated according to the overlapping segment approach described in Section 5.3.

As the table shows, no single pipeline outperforms all other pipelines – each dataset

has its own properties that make particular pipelines well- or ill-suited for it. For

example, MS Azure [56] manages to locate anomalies in all datasets, but at the

expense of introducing many false positives. This number of false alarms could be

prohibitively time-consuming for an expert monitoring team to investigate.

74



N
A

B
N

A
SA

Y
A

H
O

O

F
1

pr
ec

is
io

n
re

ca
ll

F
1

pr
ec

is
io

n
re

ca
ll

F
1

pr
ec

is
io

n
re

ca
ll

LS
T

M
D

T
0.

55
5
±

0.
12

0.
45

2
±

0.
09

0.
73

4
±

0.
22

0.
55

9
±

0.
15

0.
47

2
±

0.
18

0.
70

0
±

0.
08

0.
77

2
±

0.
14

0.
88

0
±

0.
14

0.
71

6
±

0.
21

D
en

se
A

E
0.

59
9
±

0.
12

0.
66

6
±

0.
14

0.
54

7
±

0.
10

0.
63

6
±

0.
10

0.
70

7
±

0.
09

0.
57

8
±

0.
11

0.
43

1
±

0.
40

0.
79

3
±

0.
19

0.
38

3
±

0.
40

LS
T

M
A

E
0.

64
0
±

0.
09

0.
63

2
±

0.
08

0.
65

4
±

0.
11

0.
58

3
±

0.
11

0.
56

8
±

0.
09

0.
60

1
±

0.
14

0.
52

4
±

0.
26

0.
76

0
±

0.
14

0.
46

9
±

0.
33

Ta
dG

A
N

0.
60

6
±

0.
10

0.
53

6
±

0.
10

0.
72

1
±

0.
15

0.
55

6
±

0.
12

0.
47

3
±

0.
10

0.
67

3
±

0.
16

0.
56

8
±

0.
19

0.
69

8
±

0.
12

0.
50

7
±

0.
26

A
R

IM
A

0.
51

4
±

0.
12

0.
47

6
±

0.
14

0.
56

6
±

0.
11

0.
38

1
±

0.
07

0.
38

3
±

0.
10

0.
38

0
±

0.
05

0.
75

7
±

0.
05

0.
85

2
±

0.
14

0.
71

4
±

0.
15

M
S

A
zu

re
0.

14
9
±

0.
11

0.
08

6
±

0.
07

0.
89

2
±

0.
11

0.
04

1
±

0.
02

0.
02

1
±

0.
01

0.
87

3
±

0.
09

0.
49

4
±

0.
21

0.
35

2
±

0.
18

0.
91

2
±

0.
10

Ta
bl

e
7.

2:
U

ns
up

er
vi

se
d

an
om

al
y

de
te

ct
io

n
re

su
lt

s
(F

1
sc

or
e,

pr
ec

is
io

n,
an

d
re

ca
ll)

pe
r

pi
pe

lin
e

on
ea

ch
da

ta
se

t.

75



Memory

106

107

108
m

em
or

y 
in

 K
B 

(lo
g)

Training Time Pipeline Latency

101

102

103

104

tim
e 

in
 se

co
nd

s (
lo

g)

ARIMA LSTM AE LSTM DT Dense AE TadGAN

Figure 7-1: Pipelines’ computational performance. First, we show the memory con-
sumption by each pipeline. Next, we record the total time it takes to a train a pipeline
end-to-end using orion.fit. In addition, we record the pipeline latency, which is
analogous to how long the pipeline takes to produce an output using orion.detect.

7.4 Computational Performance

Figure 7-1 shows the training time — the time necessary to train the pipeline end-

to-end; the pipeline latency — the time it takes the pipeline to produce an output

while in detect mode; and the memory usage necessary for benchmarking all 462

signals for each of the pipelines presented. We note that the TadGAN, LSTM AE,

and Dense AE pipelines require the most memory due to their reconstructive natures.

TadGAN takes the longest amount of time to train and produce outputs, likely due

to its architecture: It is a GAN structure with four interleaved neural networks being

trained simultaneously. ARIMA — a popular statistical model — requires a similar

amount of time as deep learning pipelines once both training time and pipeline latency

are factored in. Users may be better served by different pipelines depending on

their resources. Providing an assessment of the computational needs of each pipeline

is necessary to help users determine which methods are the most appropriate for

their particular case, especially when tackling deep learning models. This important

evaluative feature is missing from other current systems.
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Figure 7-2: Difference in recorded runtime between stand-alone primitives and end-
to-end pipelines.

7.5 Primitive Profiling

We evaluate the extra computational cost of using pipelines in our framework. We

first compute the total runtime required for each primitive to run in an external setting

(outside of our framework). Next, we compare it to the time needed to run a pipeline

from beginning to end. We determine the runtime of each model on the entire dataset

(462 signals). We compute the delta as the difference between using a pipeline and

running the primitives independently. Although running primitives independently is

faster than running the same primitives as part of a pipeline counterpart, the delta is

generally minimal (𝜇± 𝜎,% avg. inc. time): ARIMA (4.5± 5.4𝑠, 0.58%), LSTM AE

(12.8±32.4𝑠, 0.75%), LSTM DT (15.6±17.6𝑠, 2.5%), Dense AE (17.8±44.4𝑠, 1.0%),

and TadGAN (28.7 ± 46.4𝑠, 0.2%). Figure 7-2 illustrates the average percentage

increase that comes from running primitives in our pipeline versus independently.

Given their stochastic nature, deep learning models tend to be more volatile from one

signal to another, leading to a higher variability in runtimes.
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Figure 7-3: F1 Scores prior to and after tuning pipelines on the NAB dataset using a
ground truth set of anomalies.

7.6 AutoML Performance

Orion improves pipelines using the hyperparameter optimization component intro-

duced in Section 3.3. To test the efficacy of the platform’s AutoML, we measure the

F1 score per signal on the NAB dataset in a supervised manner. Pipelines improve

6.6% on average. Figure 7-3 shows the improvement in performance for each deep

learning pipeline. Overall, 15% of hyperparameter changes were in the postprocessing

engine, specifically in the find_anomalies primitive (see Figure 6-2a). This demon-

strates the level of effectiveness of automated hyperparameter optimization that the

user may expect to obtain.

7.7 Stability Testing

Continuous Integration (CI) tests have greatly increased the reliability of open-source

code. When it comes to the evolution of a library, CI has alleviated some of the

barriers of development, dependency, and release testing. However, it’s difficult to

see the direct effect on the anomaly detection task itself. We use benchmarking as a

utility to test how stable these pipelines are and whether they are reproducible. When

observing changes in the performance of pipelines, we can trace what caused it and

what dependencies were involved.
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Figure 7-4: Average F1 Score of Orion release history across all datasets.

Figure 7-4 depicts the average F1 Score for each pipeline across all three datasets

(NASA, Yahoo, and Numenta) that are currently available in our framework. Some

pipelines were added at a later stage of the framework (e.g. Dense AE), indicating

how extensible the framework is. Looking closely at Figure 7-4, we can see a drop in

performance between version 0.1.3 and 0.1.4 tracing back to our change in aggregating

the overall scores. More interestingly, we can see how MS Azure’s service improved

after version 0.1.6. In general, as deep learning methods vary in performance from

one run to another, having recurring benchmarks over time helps us determine how

stable a pipeline is. A history of F1 Scores for previous release versions is available

in Appendix B.

7.8 Feedback Evaluation

To validate the impact of the user feedback loop, we assess its performance at inte-

grating user annotations by simulating human actions. Here we assume that a user

has the capacity to annotate 𝑘 = 2 events at a single iteration and is capable of

performing two types of annotations: adding or removing an event. The simulation

stops when no events are left.

Our pipeline is a semi-supervised LSTM pipeline trained on sequences that were

verified to be either anomalous or normal by the annotator. We warm-start the
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simulation process with multiple initializations (all unsupervised pipelines). We use

a 70/30 data split on the NAB dataset for training and testing. The training data

encompasses 70 events, while the test data has 32 events. Results are depicted in

Figure 7-5, where we observe that the performance of a semi-supervised pipeline

surpasses the best-performing unsupervised pipeline once sufficient annotations have

been obtained.

One drawback to depending solely on a semi-supervised pipeline is that before

the pipeline becomes capable of identifying anomalies, its F1 Score is inferior to that

of an unsupervised pipeline. Thus, we require a combination of unsupervised and

semi-supervised pipelines to work synchronously. In addition, observing several flat

segments in Figure 7-5, we note that some annotations may not help to improve

detection. Given that all events must be annotated, it would be valuable to decide

when to retrain the pipeline by estimating the benefit gain ahead of time, so as not

to incur unnecessary costs.
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Figure 7-5: (Semi-supervised pipeline performance on NAB through simulating an-
notations from different starting points.
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7.9 Shape Matching Analysis

To analyze the usability of Algorithm 4 in real applications, we record the runtime by

varying the signal x, the sequence s, and the cost/distance function 𝑓(·, ·). Figures 7-6

report our experimental results on synthetic data when different distance metrics are

applied. We generated signal x of length 𝑛 of sine waves with added noise sampled

from a Gaussian distribution 𝒩 (0, 1). Sequence s size denotes the number of data

points of the queried shape (𝑚), and time series length indicates the total length of

the signal (𝑛).

In terms of evaluating the complexity of the algorithm, we measure the execution

time (runtime) taken by each approach in seconds. Figure 7-6(a) showcases the time

it takes to run the algorithm, fixing the window size at 100 and varying the time

series length. We note that the time cost is less than 5 seconds when the length of

the time series is less than 10, 000. Figure 7-6(b) illustrates the time it takes to run

the shape matching algorithm by varying the window size and keeping the time series

length fixed at 5000. As the window size increases, it becomes more computationally

expensive to run (especially for DTW), which aligns with our analysis in section 6.6.1.

In practice, we assume the anomalous window will be small (a few to dozens of

data points). Hence, our algorithm is acceptable for real-time interactions in most

scenarios.
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Figure 7-6: Time performance of shape-matching (a) with fixed window size 100 and
varying time series length (log scale). (b) with fixed time series length 5000 and
varying window size (log scale).
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Chapter 8

Satellite User Study

We experimented using the framework with a satellite company’s operations team.

We report the results of our study here.

We demonstrate the usability of our framework through the real-world use case

introduced in Section 2.1. We presented Orion to domain experts in the aerospace

field, where detecting and annotating anomalies is their day-to-day operation. Orion

was used by the satellite operations team to monitor thousands of signals and iden-

tify anomalies. We selected 16 real signals spanning a period of over 5 years from

our collaborator’s spacecraft telemetry database. These signals came from various

subsystems and tracked metrics like electrical power, thermal temperature, etc. We

recorded the usage and activity of 6 experts and conducted interviews to gain their

qualitative feedback. In general, the experts greatly appreciated the system and val-

ued its potential to enhance their efficiency for time series anomaly analysis.

ML ML
identified missed

Normal 56 2
Problematic 11 6
Investigate 16 19

Total 83 27

Table 8.1: Collected tags from satellite use case.
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We summarize the annotations collected from the study in Figure 8.1. A sample

of 110 events tagged by humans were traced back a posteriori to determine whether

or not the framework had also identified them as anomalous. The table depicts the

events’ detailed tags. The first column refers to the events identified by the ML model

and then presented to domain experts for verification. The second column refers to

the events that were missed by the ML model, but that experts marked as worth

detecting. Among 110 events total, the team deemed 52.7% to be normal, confirmed

11 anomalies, manually added 6 events, and marked the rest as in need of further

investigation. This illustrates the importance of incorporating human knowledge.

Overall, experts valued our framework and believed in its ability to effectively identify

and analyze anomalies.
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Chapter 9

Discussion

In this chapter, we highlight some of the salient aspects of Orion, its limitations, and

our attempts to create a framework that can be improved and evolve over time. We

also touch on some interesting questions regarding the time series anomaly detection

problem.

9.1 Orion Framework

9.1.1 Why do we need humans in the loop?

Unsupervised models are not perfect, particularly when past labels do not exist.

Humans are necessary to iteratively guide even state-of-the-art models. In Table 8.1,

we note that the ML missed 27/110 events. When investigating why, we discovered

that some events, such as lunar eclipses, have a normal shape, but should still be

marked by experts for future reference. Meanwhile, some events, such as maneuvers,

are actually considered normal by domain experts even though they have peculiar

shapes. These issues are domain-specific, and it is difficult to find and understand

them without a human annotator.
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9.1.2 Addressing distribution shifts

Any pipeline’s performance relies on preprocessing. For example, as domain experts

pointed out, the ML detected events that were artifacts of aggregation. Also, in our

experiments, we witnessed a drop in F1 scores using unsupervised pipelines when

detecting anomalies in Yahoo’s A4 subset. On investigation, we discovered that 86%

of the signals in A4 contain a change point, which indicates a significant change

in the data distribution. This could be overcome by preprocessing the signal using

shift-elimination techniques such as decomposition [20, 24] as well as by segmenting

signals using change point detection techniques [5, 64, 65]. Since Orion’s pipelines

are modular, it is possible to add and integrate new preprocessing primitives.

9.1.3 Mixing supervised and unsupervised

In Figure 7-5, we observed that the semi-supervised models initially performed worse

than the unsupervised models. To mitigate this problem, we can couple the models

together – curating annotations as we collect them, so that we then have labeled data

with which to train supervised models (pipelines). In subsequent iterations, we can

run both supervised and unsupervised pipelines simultaneously as proposed in [66].

As we saw in Figure 7-5, the model did not always benefit from new annotations,

necessitating such curation. We also note that pipelines will need to be updated

when we observe drifts in the streaming data [68, 67].

9.1.4 Going beyond satellite operations

Although Orion has been designed and implemented to address the needs of a satellite

company operations team, it can be adapted for other applications with different

data volumes and efficacy needs. In fact, we collaborated with one of the world’s

largest electric utility companies to inform our design. They have subsequently put

Orion to use, using application-specific pipelines to predict component failures in

wind turbines. Most pipelines here are supervised (see Figure 6-2b as an example)

due to the availability of labels.
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9.1.5 What is the impact of Orion on future research?

Orion provides a base to explore more avenues of research; for example, developing

new methods for incorporating user feedback by leveraging supervised and unsuper-

vised models together. It provides a benchmarking framework and a pipeline hub that

will aid researchers in developing new ML models and comparing them to existing

pipelines. Orion provides a way to collect and incorporate human feedback continu-

ously, leading to new innovations made possible by human-in-the loop systems. For

example, collecting human annotations can result in the design of new preprocessing

primitives.

9.2 Are We There Yet?

9.2.1 Can we use the framework in real applications?

Anomaly detection has existed for a long time, yet the industry still struggles to

adopt anomaly detection algorithms. This is mainly because real data is a lot more

complex than the pristine, curated academic datasets that have been studied for

decades. When members of industry tried to apply these anomaly detection methods,

they often fell short of the promised performance. With Orion, putting real datasets

to the test is easily done using the benchmark utility. Our continuous evaluation of

the system makes it more reliable. In addition, the framework we developed works

with data in a close-to-raw form, helping users to try out the system with a simple

plug-and-play.

9.2.2 Are benchmarks fair?

One of the hardest tasks in evaluating machine learning algorithm is fairness. With

the massive space of hyperparameter settings, it is difficult to discover the right

configuration of all pipelines. Even so, some researchers “slip” information about

ground truth anomalies in order to tweak the pipelines and select hyperparameters

that make the model perform better. While this process yields an improvement to
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performance, it is critical to distinguish that the pipeline is no longer unsupervised

––– it is now supervised. Generally, pipelines struggle to stand the test of time and

to perform as well on new datasets — one of the main reasons why we benchmark

pipelines on a regular basis.

9.2.3 Do we even need machine learning?

Machine learning has garnered wide general interest, and many people are now devel-

oping new ML methods for a variety of tasks. However, ML should not be adopted

because it is what is currently “hot” in the field, but rather because it is effective in

a particular situation. We ran into an interesting example of a case where machine

learning was not necessary. Referring back to Figure 3-1(b), we acquired a periodic

sinusoidal time series data where the objective was to find noisy regions that were

buried within the signal. Through experimentation, we found that the most effective

way to locate these regions was through signal processing. Namely, we find the funda-

mental frequency of the signal and remove it, making the abnormal regions standout

more prominently. Orion alone is not enough to solve the problem. To address these

challenges, we built another framework for processing signals (SigPro) which is part

of a larger ecosystem for time series analysis (Sintel) [4].

9.2.4 Are anomalies problems?

It is tempting to consider all anomalies to be problems, but this is not true in practice.

As indicated by the domain experts, maneuvers are events that cause unusual behav-

iors in the signal, but are actually considered normal. Similarly, statistical outliers

can occur as well, but in an expected scenario. Through this real-world collaboration

with the satellite team, we have concluded that not just any anomaly counts as a

problem — rather, problems are dependent on domain experts and how they define

regular operations. Recently, several studies focus on quantifying uncertainty in un-

supervised anomaly detection [70], increasing the interpretability of model predictions

and creating safe trustworthy machine learning systems. With Orion, we need to find

88



a way to leverage human interventions in order to discriminate between legitimate

anomalies versus exception cases.
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Chapter 10

Conclusion

We have introduced Orion, a new end-to-end interactive anomaly detection frame-

work for domain-specific time series. We first described the underaddressed problems

that our system tries to solve, and provided details about the currently available set of

anomaly detection methods for time series data. We then discussed our framework’s

different components — several state-of-the-art machine learning pipelines as well as

a feedback integration mechanism — and how they interact with each other. We

demonstrated how effective our framework can be for practical tasks, and presented a

use case with a real-world application. Overall, we have shown how Orion can bridge

the gap between domain experts and machine learning engineers, thus contributing

heavily to the field of interactive machine learning.

Orion is currently in use by a large community that provides feedback, improve-

ments, and contributions. This wide adoption has made Orion more robust and

reliable to use. Continuous feedback has helped us create new features that users

deem beneficial, and has increased their satisfaction. It is open-source and available

at https://github.com/sintel-dev/Orion.
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10.1 Future Perspective

Working on this thesis, it became clear that Orion alone will not cover the nuances

in time series anomaly detection. Prior to using machine learning, we discovered that

transforming signals between domains can be useful to pinpoint anomalous regions,

which instantiated our endeavor for SigPro 1. SigPro is a python library covering

multiple signal processing techniques to convert raw time series into feature time

series that encode the knowledge of domain experts for solving tasks using machine

learning. Furthermore, to shift from the unsupervised setting of anomaly detection to

supervised setting (after collecting annotations), we rely on Draco 2, a python library

for supervised time series prediction tasks.

Overtime, we have closely observed the requirements of domain experts to under-

stand the general workflow of their operations and to design the right system to solve

their needs. To this end, we have created – Sintel 3 – an ecosystem for the general

purpose of extracting insights from time series data. It encompasses data preparation

and processing systems, three machine learning tasks, including: time series anomaly

detection; time series classification; and time series forecasting, a generalized bench-

marking framwork, RESTful APIs, and visualization & annotation tools. We are

trekking our path towards a broader vision of Sintel, where we hope to solve the

practical challenges faced by domain experts.

1https://github.com/sintel-dev/SigPro
2https://github.com/sintel-dev/Draco
3https://github.com/sintel-dev/
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Appendix A

Database

The database stores all necessary information for the system. This includes the found

anomalies and any outputs from the anomaly detection pipelines. Furthermore, we

store any annotations that the user of the system might provide through the visual

interface.

Figure A-1 demonstrates the use of Orion’s explorer, which connects directly to

the database and records the results of the experiment. Figure A-2 shows the database

collections and how they are related. The database is implemented in mongoDB and

allows flexibility and scalability. We store a total of seven collections.

Signal Signal is the collection where different time series signals are stored. Note

that we do not store any raw data in the database, but rather a link to the data

location. We also store a reference to the Dataset collection, as well as metadata about

the signal such as name, start and end time and in which columns the timestamps

and values are located.

Dataset Within the Dataset collection we only have a name field for the dataset.

However, as we store the reference to the Dataset collection within Signal, a Dataset

can be understood as a set of signals. This way we can group signals to datasets and

run pipelines on these sets.
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PipelineTemplate The PipelineTemplate collection contains all the templates from

which pipelines that will later be used to run experiments are generated. The template

includes all the default hyperparameter values, as well as the tunable hyperparameter

ranges.

Pipeline The Pipeline collection stores the pipeline JSON file, as required by ML-

Primitives. Each pipeline is related to one PipelineTemplate and defines the specific

hyperparameters that should be used.

Experiment As defined previously, an experiment is a the application of a pipeline

on a Dataset. Therefore an experiment is linked to the Dataset collection and the

PipelineTemplate collection. Furthermore, we add a project name to the experiment

such that we are able to group experiments based on project names. Optionally a

signalset can be specified, which can be a subset of the associated Dataset.

Datarun The Datarun objects represent single executions of an Experiment and

contain all the information about the environment and context where this execution

took place, which potentially allows later reproduction of the results in a new envi-

ronment. It also contains information about whether the execution was successful or

not, when it started and ended, and the number of events found in the experiment.

Signalrun Each Signalrun object represents a single execution of a Pipeline on a

Signal within a Datarun. It contains information about whether the execution was

successful or not, when it started and ended, the number of events that were found

by the Pipeline, and where the model and metrics are stored.

Event All details regarding found anomalies are stored in the Event collection.

Events have a reference to the Signalrun and contain a start-time, end-time and score

field.

Event Interaction The Event Interaction collection records all the interaction

history related to events.
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Annotation Each Event can have multiple Annotations from one or more users.

Annotations are inserted by domain experts after the Datarun has finished and they

analyze the results.
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from orion.db import OrionDBExplorer
from orion.runner import start_datarun

# connect to db
orex = OrionDBExplorer(user='username', database='db')

dataset = orex.add_dataset(
name='dataset',

)

# add signals to the dataset
orex.add_signals(

dataset=dataset,
signals_path='orion-data'

)

template = orex.add_template(
name='lstmdt',
template='lstm_dynamic_threshold',

)

# create an experiment
experiment = orex.add_experiment(

name='experiment',
template=template,
dataset=dataset,

)

# configure template's hyperparameters
new_hyperparameters = {

'keras.Sequential.LSTMTimeSeriesRegressor#1': {
'epochs': 5,
'verbose': True

}
}

pipeline = orex.add_pipeline(
name='lstmdt_5_epoch',
template=template,
hyperparameters=new_hyperparameters,

)

# run pipeline
start_datarun(orex, experiment, pipeline)

Figure A-1: Using python SDK. OrionDBExplorer allows users to run experiments
and store them in the database as well as query and retrieve information from the
database.
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Appendix B

Reproducibility

This section contains more information about some implementation details of Orion

and the extended results produced in this thesis.

B.1 Primitives

Type Count

Pre-processing 8
Modeling 6
Post-processing 4

Table B.1: Primitives in the curated catalog of the source library categorized by type.

As of the writing of this thesis, there are a total of 8 pre-processing primitives,

6 modeling primitives, and 4 post-processing primitives. Using these primitives we

assembled 6 different pipelines: ARIMA, LSTM DT, TadGAN, LSTM AE, Dense

AE, and MS Azure. In the next section we expand on these pipelines.

B.2 Pipelines

As mentioned in section 6.1.2 the current implementation of Orion contains six dis-

tinct pipelines. Some are machine learning pipelines, others are statistical based
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Figure B-1: Overview of the different anomaly detection pipelines

pipelines, and Azure [56] is a blackbox API integration. All pipelines consist of mul-

tiple steps. In addition to Figure 6-2, Figure B-1 showcases the remaining steps in

the pipeline.

B.2.1 ARIMA

Prediction-based. An autoregressive integrated moving average (ARIMA) model

is a popular statistical analysis model that learns autocorrelations in the time series

for future value prediction. We use point-wise prediction errors as the anomaly scores

to detect anomalies.

B.2.2 LSTM Dynamic Threshold (LSTM DT)

Prediction-based. A double stacked neural network consisting of two LSTM layers

with 80 units each, and a subsequent dense layer with one unit that predicts the

value at the next time step. This implementation is similar to the one proposed

by Hundman et al. [37]. Point-wise prediction errors are used for anomaly detection.
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B.2.3 Time Series Anomaly Detection using GAN (TadGAN)

Reconstruction-based. A Generative Adversarial Networks (GAN) containing mul-

tiple neural networks, including: an encoder, generator, critic x, and critic z with a

cycle consistency loss. This model assumes that anomalous sequences would not be

constructed as well as “normal” instances, making it easy to detect them. More details

about the TadGAN implementation are available in our paper [28].

B.2.4 LSTM based Autoencoder (LSTM AE)

Reconstruction-based. Standard sequence-to-sequence model with LSTM layers.

The LSTM autoencoder contains two LSTM layers, each with 60 units. A point-wise

reconstruction error is used to detect anomalies.

B.2.5 Dense based Autoencoder (Dense AE)

Reconstruction-based. Similar to the LSTM AE model, where we have a sequence-

to-sequence model with Dense layers. The dense autoencoder consists of three dense

layers with 60, 20 and 60 units respectively. We also use a point-wise reconstruction

error to detect anomalies.

B.2.6 MS Azure

AD Service. Microsoft Azure provides an anomaly detection service that uses Spec-

tral Residual Convolutional Neural Networks (SR-CNN) in which the models are

applied serially [56]. The SR model is responsible for saliency detection, and the

CNN is responsible for learning a discriminating threshold. The output of the model

is a sequence of binary labels (0 corresponding to “normal” and 1 to “anomalous”)

attributed to each timestamp.
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