
Deep Learning Approaches to Universal and

Practical Steganalysis

by

Ajinkya Kishore Nene

S.B., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2020

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Deep Learning Approaches to Universal and Practical

Steganalysis

by

Ajinkya Kishore Nene

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Steganography is the process of hiding data inside of files while steganalysis is the
process of detecting the presence of hidden data inside of files. As a concealment
system, steganography is effective at safeguarding the privacy and security of infor-
mation. Due to its effectiveness as a concealment system, bad actors have increas-
ingly begun using steganography to transmit exploits or other malicious information.
Steganography thus poses a significant security risk, demanding serious attention and
emphasizing a need for universal and practical steganalysis models that can defend
against steganography-based attack vectors. In this thesis, we provide a compre-
hensive review of steganography-enabled exploits and design a robust framework for
universal and practical deep-learning steganalysis. As part of our framework, we pro-
vide new and practical steganalysis architectures, propose several data augmentation
techniques which includes a novel adversarial-attack system, and develop a python li-
brary, StegBench, to enable dynamic and robust steganalysis evaluation. Altogether,
our framework enables the development of practical and universal steganalysis models
that can be used robustly in security applications to neutralize steganography-based
threat models.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

First and foremost, I would like to thank my advisor, Kalyan Veeramachaneni, for

the opportunity to work with his group and for providing his feedback and advice.

Kalyan’s advising has helped me grow as both a researcher and a student.

I would like to acknowledge the following people. Arash Akhgari for his amazing

help with figures in this thesis. Cara Giaimo, Max Suechting, and Kevin Zhang for

help with editing. Carles Sala for useful technical feedback on the StegBench system.

Ivan Ramirez Diaz for providing helpful technical feedback on the StegAttack system.

Without any of these people, this thesis would not have been possible. I would also

like to acknowledge the generous funding support from Accenture under their ‘Self

Healing Applications’ program.

Next, I would like to thank all my friends at MIT, especially the brothers of PKT,

for the constant support and friendship that they have given me these last few years.

During this COVID-era, I have found it resoundingly true that it is the people of

MIT that make it such a special place. Each of the friends I have made in these last

few years has helped make my four years at the institute some of the best years of

my life.

Last but not least, I want to acknowledge my parents and my sister for helping

me to get to this stage in life. They have always stood by me and continue to inspire

me every day. This thesis is a testament to all the support and love they have shown

me my entire life.

5

6

Contents

1 Introduction 23

1.1 Steganography and Steganalysis Ecosystem 24

1.1.1 Steganography . 24

1.1.2 Steganalysis . 25

1.2 Problem Definition and Challenges 26

1.3 Contributions . 27

1.4 Thesis Roadmap . 28

2 Background and Related Work 29

2.1 Deep Learning Overview . 29

2.1.1 Generative Adversarial Network 29

2.1.2 Convolutional Neural Network 30

2.1.3 Model Evaluation . 33

2.2 Steganography Techniques . 36

2.2.1 Frequency Domain . 36

2.2.2 Spatial Domain . 37

2.2.3 Deep Learning Domain . 38

2.3 Steganalysis Techniques . 39

2.3.1 Statistical Techniques . 40

2.3.2 Deep Learning Techniques . 41

2.4 Related Work . 41

7

3 Universal and Practical Steganalysis 45

3.1 Towards Universal Steganalysis . 45

3.2 Towards Practical Steganalysis . 46

3.3 Dataset Augmentation . 47

3.3.1 Source Diversity . 47

3.3.2 Steganographic Embedder Diversity 48

3.3.3 Embedding Ratio Diversity 48

3.4 Architectures . 49

3.4.1 ArbNet . 49

3.4.2 FastNet . 50

4 Benchmarking and Evaluation System for Steganalysis 53

4.1 System Criteria . 53

4.1.1 Steganographic Dataset Generation 54

4.1.2 Standard Steganalysis Evaluation 54

4.2 Design Goals . 55

4.3 Architecture . 55

4.3.1 Dataset Module . 55

4.3.2 Embedder Module . 58

4.3.3 Detector Module . 61

5 StegBench Experiments 65

5.1 Experimental Setup . 65

5.1.1 Performance Measurement . 66

5.2 Benchmark . 67

5.3 Image Size Mismatch Problem . 69

5.4 Source Mismatch Problem . 71

5.5 Steganographic Embedder Mismatch Problem 74

5.5.1 Single Steganographic Embedder 74

5.5.2 Multiple Steganographic Embedders 78

5.6 Summary . 79

8

6 Adversarial Attacks on Steganalyzers 81

6.1 StegAttack System Design . 82

6.1.1 Goals and Definitions . 82

6.1.2 StegAttack V1 . 83

6.1.3 StegAttack V2 . 84

6.1.4 StegAttack Process Flow . 85

6.2 StegAttack Effectiveness . 86

6.2.1 Example Adversarial Steganographic Images 86

6.2.2 Experiment Setup . 87

6.2.3 Effectiveness Compared to Naive Method 88

6.2.4 Effectiveness of Different Gradient-Descent Methods 89

6.3 Adversarial Training . 90

6.3.1 Defending Against StegAttack 91

6.3.2 Adversarial Training for Universal Steganalysis 92

7 Conclusions and Future Work 95

7.1 Robust Steganalysis Framework . 95

7.2 Security Controls Using Steganalysis 97

7.3 Future Work . 98

A Attacks via Steganography 99

A.1 Malware Systems . 99

A.1.1 Single-Pronged Attack Vector 100

A.1.2 Steganography-Enabled Botnets 101

A.2 StegWeb . 102

A.2.1 Attack Description . 102

A.2.2 Software Specification . 104

A.3 StegPlugin . 104

A.3.1 Attack Description . 104

A.3.2 Software Specification . 106

A.4 StegCron . 106

9

A.4.1 Attack Description . 106

A.4.2 Software Specification . 108

B Results Tables 109

C StegBench 113

C.1 Configuration Specification . 113

C.1.1 Embedder Configuration . 114

C.1.2 Detector Configuration . 115

C.1.3 Command Generation . 116

C.2 API Specification . 116

10

List of Figures

1-1 In a steganographic system, a secret message, M , is embedded into a

cover image X via a steganographic embedder to generate a stegano-

graphic image, XM . A steganographic decoder then decodes XM to

retrieve the message, M . 24

1-2 A steganographic embedder sends a message, M , by embedding it into

a cover image, X, to produce XM , and then transmits this image to

an steganographic decoder. Steganalysis combats steganography by

preventing images with steganographic content, XM , from being trans-

mitted. When steganalysis fails to filter out these images, the decoding

process continues as normal and the steganographic decoder decodes

the secret message, M . 25

2-1 Generative adversarial networks (GANs) are deep learning architec-

tures that are composed of a generator and a discriminator. The gen-

erator learns how to transform random noise into a target distribution,

while the discriminator attempts to identify if the generated images are

fake or real. This adversarial setup allows the generator to effectively

model target distributions . 30

2-2 Convolutional neural networks (CNNs) are deep learning architectures

that use convolutional layers and sub-sampling layers to extract and

classify meaningful signals from image data. 31

11

2-3 Convolutional layers extract spatially relevant data by convolving weights

with input data. Convolutions are defined by their kernel size, stride,

and padding. These parameters affect the types of spatial features the

convolution can extract. 31

2-4 Pooling layers down-sample input data by applying a function on sub-

regions. For example, max pooling applies a max function to extract

the strongest sub-region signals. Pooling is effective at reducing noise

and extracting larger features. 32

2-5 The left-hand side shows a non-robust classifier that uses noisy signal

to classify an image. The right-hand side of the figure shows how a

robust classifier uses human-meaningful features and signals to classify

an image. Even though non-robust classifiers achieve high accuracy,

their use of non-robust signal leaves them open to adversarial attacks.

In comparison, robust classifiers use meaningful signal and are reliable. 34

2-6 Non-robust classifiers can be attacked using tactics such as the fast

gradient sign method (FGSM). FGSM adds noise using the sign of the

loss gradient of the model with respect to the input image to create

an adversarial example. Non-robust models tend to misclassify these

adversarial examples (i.e. a panda as a gibbon), even though the image

is relatively unchanged. 35

2-7 In the frequency domain, image data is stored in quantized frequency

coefficients. Frequency-domain steganography embeds message data

by modifying the non-zero frequency coefficients of the image. 37

2-8 Least significant bit (LSB) steganography is a spatial technique that

replaces the last bit of the pixel with message content. For example, if

the value being encoded is a 1, the last pixel value bit is set to 1. . . 38

2-9 Deep learning-based steganography uses machine learning to embed

data inside images. This figure shows SteganoGAN, which is a genera-

tive adversarial network that embeds messages in a highly undetectable

way. 39

12

2-10 Steganographic embedders leave statistical artifacts in the stegano-

graphic image. In this figure, the F5 algorithm leaves a noticeable

effect on the quantized DCT histogram. Statistical steganalyzers use

statistical signals such as statistical moments to infer if an image is

steganographic. 40

2-11 Deep learning based steganalyzers use deep learning convolutional neu-

ral networks to extract useful signal from the image to determine if it

is steganographic or not. 41

3-1 A spatial pyramid pooling (SPP) layer is invariant to input size since

it fixes the output size of the pooling layer. Each SPP layer fixes how

many sections the input will be divided into for pooling. In this figure,

the third layer divides the convolution input into nine pooling sections. 50

3-2 ArbNet is a steganalysis CNN model that can be applied to arbitrary

image sizes. First, the input image is fed through 15 filters that are

initially initialized with 15 SRM HPF’s. Next, the input image and

filtered output are fed into a DenseNet structure. Finally, the residual

output from the DenseNet is combined with the original image and

fed into a spatial pyramid pooling layer, a fully-connected layer, and a

softmax function to output the steganographic and cover probabilities. 51

3-3 FastNet uses the EfficientNet-B0 structure and modifies the final few

layers to adapt the network to the steganalysis problem. FastNet is

composed of MBConv blocks which enable neural architecture search

and computational efficiency. 52

13

4-1 StegBench is divided into three modules: dataset, embedder, and de-

tector. The figure shows what assets each module consumes and pro-

duces as well as system requirements that each module satisfies. The

dataset module generates cover datasets. The embedder module gen-

erates steganographic datasets. The detector module evaluates ste-

ganalyzers on cover and steganographic datasets to produce summary

statistics. 56

4-2 The dataset module is used to produce diverse cover datasets. Usage of

the dataset module API involves loading or processing image datasets

and applying image or dataset operations to produce a cover dataset. 57

4-3 The dataset module generates cover datasets. The module provides

subroutines to either download or load public/proprietary datasets.

The module then applies any user-specified setup or image operations

to produce diverse cover datasets. The dataset module provides a

large set of modification operations and out-of-box access to several

large datasets to generate robust cover datasets. 57

4-4 The embedder module generates steganographic datasets. Using the

StegBench API, users can load steganographic embedders that are de-

fined in configuration files via the configuration manager as well as

specify any cover dataset(s). Next, using user-supplied embedding con-

figurations, the module applies steganographic embedders to generate

temporary steganographic images, which are then processed and com-

bined into a steganographic dataset. 58

4-5 An example configuration for SteganoGAN. Steganographic embedder

configurations specify compatibility requirements and embedding and

decoding commands. 59

4-6 Step by step code usage patterns for the embedder module. The em-

bedder module is used to generate and verify steganographic datasets.

UUIDs are used to select the cover datasets and steganographic em-

bedders used for embedding. 60

14

4-7 The detector module evaluates steganalyzers across cover and stegano-

graphic datasets. Using the StegBench API, users can load stegana-

lyzers that are defined in configuration files via the configuration man-

ager as well as specify any cover or steganographic dataset(s). Next,

the module evaluates each steganalyzer on the dataset images, col-

lects these results, and uses analysis subroutines to properly generate

summary statistics. 61

4-8 An example configuration for StegExpose. Steganalyzer configurations

specify compatibility requirements and detection commands. 62

4-9 Step by step code usage patterns for the detector module, which is

used to measure steganalyzer performance across user-supplied datasets. 63

5-1 Detection error for five steganalyzers on test sets embedded with three

different steganographic embedders. SRNet and ArbNet always per-

form the best across each test set configuration compared to the other

steganalyzers. YeNet, XuNet, and FastNet all perform similarly, ex-

cept for at higher embedding ratios where YeNet gets a slightly higher

detection error. 68

5-2 Performance gain from 256x256 to 1024x1024 across three different

steganalyzers for two steganographic embedders (WOW, HILL). The

performance gain is the difference in detection error between these two

test sets. Across the board, steganalyzers improved in performance

when detecting images of higher sizes. 70

5-3 Detection error for SRNet when trained on either BOSS, COCO, or

BOSS+COCO and tested on either BOSS or COCO. The left plot

shows the detection error for datasets embedded with WOW and the

right plot shows detection error for datasets embedded with HILL. . . 72

15

5-4 Total detection error for steganalyzers trained on the steganographic

embedder specified by the legend and tested on the steganographic em-

bedder specified by the x-axis. In all test situations, the lowest detec-

tion error was achieved by steganalyzers trained on the same stegano-

graphic embedder. SteganoGAN was by far the hardest steganographic

embedder to detect. 75

5-5 The relative increase in detection error for SRNet during the mismatch

steganographic embedder test scenario compared to the matching sce-

nario. 76

5-6 The gray bars show the detection error of SRNet trained on a single

steganographic embedder while the red bars show the detection error of

SRNet trained on multiple steganographic embedders. The detection

error is calculated on a COCO dataset embedded by the steganographic

embedder labeled on the x-axis. 79

6-1 StegAttack V1 uses the process flow shown in this figure to introduce

adversarial perturbations to a steganographic image to try to generate

an adversarial steganographic image. V1 first check that a stegano-

graphic image, XS, can already be detected by a steganalyzer. It then

introduces adversarial perturbations to create X
′
S. If X

′
S can fool the

steganalyzer and is still decodable, the attack is a success. 83

6-2 StegAttack V2, shown in the boxed area, expands on V1 by adding

steganographic content to non-decodable steganographic images that

can already fool the steganalyzer to try to create additional adversarial

steganographic images. StegAttack V2 ensures that all conditions for

an adversarial steganographic image still hold by checking if the re-

embedded image, X
′
S+S can still fool the steganalyzer. 84

16

6-3 Adversarial steganographic images that are generated using StegAttack

with FGSM(ε = 0.3). The adversarial steganographic image image

quality is low because the images are generated using a heavy attack

that modifies significant image content. Reducing the step size will

enable better image quality but reduce StegAttack efficacy. 87

6-4 The detection error of three different steganalyzers on a changed em-

bedder test set and changed source test set. SRNet is a normal SRNet

model, SRNet-MIX is a SRNet model updated with YeNet adversarial

steganographic images, and SRNet-ADV is a SRNet model updated

with SRNet adversarial steganographic images. 93

A-1 The single-pronged attack vector uses steganography to deliver unde-

tectable exploits. In the attack setup, a decoder must be preloaded

onto the victim machine. Next, during the attack: (1) a hacker trans-

mits an exploit-encoded file (i.e. an image) to the victim’s computer

and then (2) upon transmission, the decoder loads the file, extracts the

exploit, and executes it. The figure shows the browser variant of the

attack, in which the decoder is installed on the victim’s browser. . . . 100

A-2 In this botnet, bots communicate directly with a command and con-

trol (CNC) server using control channels to receive and transmit data.

Mitigation techniques try to stop the CNC server or control channels. 101

A-3 StegWeb is a proof-of-concept web application that demos the single-

pronged attack vector. First, a hacker encodes JavaScript (i.e. the

alert message in the figure) on a supplied image. Next, the image is

transmitted to the compromised web server, where a decoder extracts

the JavaScript and executes it on the web server. 103

17

A-4 StegPlugin is a proof-of-concept browser extension that demos the

single-pronged attack vector. First, the extension is loaded on the

victim machine. Next, the victim browses images (i.e. fish). Finally,

StegPlugin fetches all browsed images and attempts to extract and

execute any discovered steganographic content. 105

A-5 StegCron is a proof-of-concept cron job system that demos steganography-

enabled botnet communication channels. First, the cron system is in-

jected into the victim machine by the bot. Next, the cron system scans

any downloaded images for steganographic content, and if found, de-

livers them to the bot. Finally, the cron system can embed messages

and deliver them to the command node. 107

C-1 Configuration files are used to specify tool-specific information for em-

bedding algorithms. The figure shows configurations for two embed-

ders. Embedder configurations specify compatible image types, maxi-

mum embedding ratios, and skeleton commands for the generation and

verification of steganographic datasets. 114

C-2 Configuration files are used to specify tool-specific information for de-

tection algorithms. The figure shows configurations for two detectors.

Detector configurations specify compatible image types, skeleton com-

mands for steganalysis, and any result processing-specific requirements. 116

18

List of Tables

1.1 List of definitions of various components of the steganography and

steganalysis ecosystem. 24

4.1 List of public datasets that are supported by StegBench download rou-

tines. 56

5.1 Number of wins across each of the three steganographic embedders

(WOW, S UNIWARD, HILL) for a given embedding ratio. Bolded

numbers correspond to the steganalyzer that had the greatest number

of wins for a given embedding ratio across the three steganographic

embedders. 68

5.2 The source mismatch metric is the average increase in detection error

for a steganalyzer trained on a dataset, D, compared to a stegana-

lyzer trained on a dataset, D
′
, when both are tested on D

′
. In this

table, we show the comparisons between BOSS and COCO. The metric

shows how effective each source is for training when tested on another

source. A lower metric indicates that the training dataset is better for

overcoming the source mismatch problem. 73

6.1 Missed detection probability (PMD) on four steganalyzers using a stegano-

graphic image test set with either a naive Gaussian-based attack or

StegAttack. 88

19

6.2 Missed detection probability (PMD) on four steganalyzers using a stegano-

graphic image test set with one of two gradient-descent methods for

StegAttack. 90

6.3 Missed detection probability (PMD) on two steganalyzers using stegano-

graphic image test set against StegAttack. YeNet is a normal YeNet

steganalyzer and YeNet-ADV is a YeNet steganalyzer updated with

adversarial steganographic images. 91

7.1 List of security controls that employ steganalysis to mitigate steganography-

enabled threat models in an enterprise security setting. 98

B.1 Detection error of five steganalyzers on test sets with various embedders

and varying embedding ratios. Detectors are trained with the same

configuration as the test set. Bolded metrics correspond to the best

performing steganalyzers. 110

B.2 Detection error of three steganalyzers on test sets with various em-

bedders at 0.5 bpp on three different image resolutions. Detectors are

trained with the same configuration as the test set, except for Arb-

Net which is trained on a mixed-resolution dataset. Bolded metrics

correspond to the best performing steganalyzers. 110

B.3 Detection error of SRNet model trained on steganographic embedder

listed in the ‘training embedder’ column at 0.5 bpp using the dataset

listed in the ‘training dataset’ column and tested against the stegano-

graphic embedder listed in the ‘test’ column using the source specified

by the column header. Bolded metrics correspond to the best perform-

ing training dataset. 111

B.4 Detection error of two steganalyzers trained on embedders listed in

the ‘training embedder’ column at 0.5 bpp and tested against embed-

ders listed in the ‘test embedder’ column at 0.5 bpp. Bolded metrics

correspond to the hardest embedder to detect. 111

20

B.5 Detection error of two steganalyzers trained on embedders listed in

the ‘training embedders’ column at 0.5 bpp and tested against embed-

ders listed in the ‘test embedder’ column at 0.5 bpp. Bolded metrics

correspond to the hardest embedder to detect. 111

B.6 Detection error of YeNet model trained on embedder listed in the

’training embedder’ column using COCO images and tested against

the same embedder at 0.5 bpp using COCO or adversarial images.

Bolded metrics correspond to the worst performing source dataset. . . 112

B.7 Detection error of two steganalyzers trained on WOW 0.5 bpp using the

dataset listed in the ‘training dataset’ column and tested against em-

bedders listed in the ‘test embedder’ column using the BOSS dataset.

Bolded metrics correspond to the best performing training dataset. . 112

C.1 List of general algorithmic configurations. These configurations specify

tool compatibility and execution details and enable tool integration

with StegBench. 114

C.2 List of docker specific configurations. These configurations enable

StegBench integration with tools dependent on Docker. 114

C.3 List of embedder-specific configuration configurations. These specifi-

cations specify embedder compatibility and execution requirements. . 115

C.4 List of 18 embedders that have successfully worked with StegBench . 115

C.5 List of detector-specific configurations. These specifications specify

detector compatibility and execution modes. 115

C.6 List of 12 detectors that have successfully worked with StegBench . . 115

C.7 List of flags used in skeleton commands as part of tool configuration.

StegBench uses its orchestration engine and command generation pro-

tocols to substitute flags in skeleton commands with appropriate com-

mand parameters. 117

C.8 StegBench API for system initialization and integration. 117

C.9 StegBench API for algorithmic set generation processes. 118

21

C.10 StegBench API for the dataset pipeline. 118

C.11 StegBench API for the embedding pipeline. 119

C.12 StegBench API for the detection pipeline. 119

22

Chapter 1

Introduction

Steganography is the process of hiding data inside an ordinary (non-secret) file in order

to avoid detection. While encryption aims to hide the contents of data, steganogra-

phy aims to hide the presence of data. By hiding the presence of data, steganography

is also able to conceal communication behaviors and thereby provide behavioral se-

curity. The behavioral security provided by steganography thus plays a critical role

in safeguarding information privacy.

However, while steganographic concealment systems are regularly used for benign

tasks, they may also be used by bad actors to transmit malicious information using

ordinary files such as images, thereby posing a security risk. Since current network

defenses do not check images for steganographic content, they are unable to effec-

tively block the transmission of malicious steganographic content [25]. Thus, hackers

can leverage steganography to transmit exploits or other compromising information

across networks in an undetectable fashion [25]. Furthermore, the introduction of

deep learning techniques in steganography has greatly improved the effectiveness of

steganographic concealment systems, resulting in a significant increase in security

risks [47].

To combat this, researchers have turned to steganalysis, the process by which

steganographic content is detected. In theory, steganalysis can be used in a security

application that functions like a spam-filter to block malicious steganographic content

from being transmitted across networks [18]. However, even though newer steganal-

23

Component Usage
Steganographic Embedder Hides data
Steganographic Decoder Decodes hidden data

Steganalyzer Detects hidden data

Table 1.1: List of definitions of various components of the steganography and ste-
ganalysis ecosystem.

ysis methods have shown promising results, they remain both relatively non-robust

and impractical [6, 18]. In this thesis, we focus constructing a robust design and

evaluation framework for practical and universal steganalysis.

1.1 Steganography and Steganalysis Ecosystem

In this section, we briefly introduce the parts listed in Table 1.1 that compose the

steganography and steganalysis ecosystem.

1.1.1 Steganography

Secret
Message M

Secret
Message M

Steganographic
Image XM

Cover
Image X

Steganographic
Embedder

Steganographic
Decoder

Figure 1-1: In a steganographic system, a secret message, M , is embedded into a
cover image X via a steganographic embedder to generate a steganographic image,
XM . A steganographic decoder then decodes XM to retrieve the message, M .

As described earlier, steganography is the process of hiding data in common file

types. In this thesis, we are specifically concerned with image file types. Figure 1-1

shows a basic steganographic system, which uses the following process flow:

1. Embedding. A steganographic embedder is used to embed a secret message,

M , into a cover image, X, to produce a steganographic image, XM .

24

2. Transmission. The steganographic image XM is transmitted to a stegano-

graphic decoder.

3. Decoding. The steganographic decoder decodes the steganographic image,

XM , and extracts the secret message, M .

In steganography, the steganographic embedder aims to minimize the difference

between X and XM . Steganographic embedders can be categorized as one of three

types: (1) frequency [38], (2) spatial [15], and (3) deep learning [47]. The amount

of data a steganographic embedder can transmit is known as the embedding ratio,

which is the ratio between the sizes of M and X. Each steganographic embedder has

a corresponding steganographic decoder that can decode the steganographic image

generated by the steganographic embedder.

1.1.2 Steganalysis

Secret
Message M

Secret
Message M

Steganographic
Image XM

Cover
Image X

Steganographic
Embedder

Steganographic
Decoder

Communication
Channel
(Network,

Internet, Etc.)

Steganalyzer

Only If Image
Passes Filter

Channel Filter

Figure 1-2: A steganographic embedder sends a message, M , by embedding it into a
cover image, X, to produce XM , and then transmits this image to an steganographic
decoder. Steganalysis combats steganography by preventing images with stegano-
graphic content, XM , from being transmitted. When steganalysis fails to filter out
these images, the decoding process continues as normal and the steganographic de-
coder decodes the secret message, M .

Steganalysis is the process of detecting if a file contains steganographic content.

Figure 1-2 shows how steganalyzers could be used in real-world scenarios to block

the transmission of steganographic content. Steganalyzers often rely on either (1)

statistical techniques [37] or (2) deep learning methods [6]. In recent years, deep

learning steganalyzers have shown the most promising results and have significantly

outperformed statistical steganalyzers [6].

25

Finally, steganalyzers are also classified as either (1) discriminate or (2) universal

[6]. Discriminate steganalyzers can only detect a subset of steganographic embedders.

On the other hand, universal steganalyzers are successful at detecting all known and

unknown steganographic embedders. The eventual goal of steganalysis research is

to produce a universal steganalyzer [6]. Universal steganalyzers are the key towards

robust steganalysis for security applications.

1.2 Problem Definition and Challenges

In Appendix A, we show several steganography-enabled cybersecurity threat mod-

els along with applications that demonstrate the significant security risk posed by

steganography. These threat models underscore the serious need for effective ste-

ganalyzers. As security risks associated with steganography continue to increase,

researchers must focus on designing universal and practical steganalyzers that can be

robustly deployed in defense networks. Without these characteristics, steganalyzers

cannot effectively mitigate steganography-enabled threat models.

In this work, we only study deep learning based steganalysis since deep learning

methods have shown the most promising and accurate results [6, 18]. Thus, we focus

on identifying and solving critical problems that stand in the way of practical and

universal deep learning steganalysis. Specifically, we identify the following problems:

1. Training and Execution Efficiency Problem - Most steganalyzers are com-

putationally expensive to train and execute [6]. Practical steganalyzers should

be computationally efficient so they can be effectively deployed in applications.

2. Image Size Mismatch Problem Detection - Most steganalyzers can only

detect images of a certain size. Furthermore, even those that can detect images

of varying sizes tend to be less accurate [10]. Practical steganalyzers must be

effective at detecting images of all sizes.

3. Source Mismatch Problem - Steganalyzers commonly fail to detect stegano-

graphic images generated from a dataset the model has not been trained on [49].

26

Steganalyzers should be able to detect steganographic images regardless of the

source dataset.

4. Steganographic Embedder Mismatch Problem - Most steganalyzers are

discriminate steganalyzers and can only detect steganographic embedders they

are trained on [40]. Steganalyzers must be able to detect unseen steganographic

embedders to effectively mitigate steganography-enabled threat models.

5. Low Embedding Ratio Problem - Steganographic content is difficult to de-

tect at low embedding ratios, making universal steganalysis increasingly chal-

lenging [9]. To neutralize steganography-enabled threat models, steganalyzers

must be able to detect low embedding ratios effectively.

6. Practical and Robust Evaluation Problem - Current research only eval-

uates steganalysis in a limited context (i.e. steganalyzers are only tested on

certain image datasets) [43]. Steganalyzers must be evaluated in a diverse con-

text to ensure that they are robust and effective in real-world situations.

Each of these challenges must be solved in order to create practical and universal

deep learning steganalyzers that can be effectively deployed in cybersecurity applica-

tions.

1.3 Contributions

In this work, we aim to solve several challenges facing practical and universal deep

learning steganalysis. To this end, we explore several different robustness method-

ologies and draw insights from a comprehensive evaluation of state-of-the-art deep

learning steganalyzers. Specifically, we make the following contributions:

• Practical Steganalysis Architectures - We design two architectures, ArbNet

and FastNet, which enable image size mismatch problem detection and training

and execution efficiency, respectively.

27

• Robust Training Methodologies - We propose robust training methods that

help create more universal steganalyzers. These methods include data augmen-

tation techniques that also help overcome our novel adversarial attack system,

StegAttack.

• Robust Steganalysis Evaluation System - We develop a Python library,

StegBench, that enables comprehensive evaluation of steganalysis.

• Comprehensive Evaluation of Deep Learning Steganalyzers - We com-

prehensively evaluate state-of-the-art deep learning steganalyzers to discover

common failure modes and identify effective techniques.

1.4 Thesis Roadmap

The remainder of this thesis is organized as follows:

• Chapter 2 reviews key concepts and algorithms relevant for developing and

evaluating steganography and steganalysis procedures.

• Chapter 3 describes robust methodologies for universal and practical steganal-

ysis and proposes new deep learning steganalysis architectures.

• Chapter 4 covers the design of our steganalysis evaluation system, StegBench.

• Chapter 5 details and discusses extensive results generated by our experiments.

• Chapter 6 describes our novel adversarial attack system, StegAttack.

• Chapter 7 provides concluding remarks and future directions.

• Appendix A discusses our design of malware-based steganographic threat mod-

els and describes a suite of systems developed to demo these threat models.

• Appendix B contains raw data from our experiments.

• Appendix C gives details on StegBench configurations and the StegBench API.

28

Chapter 2

Background and Related Work

In this chapter, we provide the requisite background for the rest of the thesis. First,

we introduce deep learning methods and several deep learning architectures. Then,

we explain the fundamentals of steganography and steganalysis. Finally, we review

steganalysis research related to the work presented in this thesis.

2.1 Deep Learning Overview

Broadly, deep learning is defined as a class of machine learning algorithms that use

multi-layered neural networks to extract higher-level features from raw data [11].

These methods use large amounts of training data to extract complicated, feature-

rich data for either generative or classification tasks [11]. In this thesis, we use a

number of deep learning approaches to improve our steganalyzers.

2.1.1 Generative Adversarial Network

A generative adversarial network (GAN) is a deep learning architecture comprised

of two neural networks: a generator and a discriminator [12]. The generator learns

to generate plausible data, which act as negative training examples for the discrim-

inator. When training begins, the generator produces obviously fake data, and the

discriminator quickly learns to tell that it is fake, penalizing the generator for produc-

29

Generator

Discriminator
1
0

Real Data

Sample Data

Real
Fake

Latent Sample

Figure 2-1: Generative adversarial networks (GANs) are deep learning architectures
that are composed of a generator and a discriminator. The generator learns how to
transform random noise into a target distribution, while the discriminator attempts
to identify if the generated images are fake or real. This adversarial setup allows the
generator to effectively model target distributions.

ing implausible results. Over time, the generator gets better at generating realistic-

looking data while the discriminator learns to better distinguish the generator’s fake

data from real data.

Figure 2-1 shows an example GAN system in which the generator is learning

to produce fake handwritten Arabic numerals and the discriminator is tasked with

determining whether the images were produced by a human or the generator. GAN

systems are increasingly used in steganography since they are excellent at generating

hard-to-detect steganographic images [47].

2.1.2 Convolutional Neural Network

A convolutional neural network (CNN) is a deep learning architecture capable of

taking an input image, assigning importance (learnable weights and biases) to various

aspects/objects in the image, and then using these signals for image classification.

Figure 2-2 shows an example CNN, which is composed of several specialized layers.

CNNs are used extensively in steganalysis for their ability to learn important features

relevant to detecting steganographic images [6]. Since we use CNNs extensively in

30

Convolution + Relu Pooling Convolution + Relu

Feature Learning Classification

Pooling Flatten Fully
Connected

SoftmaxInput

Figure 2-2: Convolutional neural networks (CNNs) are deep learning architectures
that use convolutional layers and sub-sampling layers to extract and classify mean-
ingful signals from image data. Image Credit: MathWorks1

this thesis, we now describe several of the specialized layers shown in Figure 2-2.

Convolution Layer

Figure 2-3: Convolutional layers extract spatially relevant data by convolving weights
with input data. Convolutions are defined by their kernel size, stride, and padding.
These parameters affect the types of spatial features the convolution can extract.

The convolutional layer is the core building block of a CNN. The layer’s parameters

consist of a set of learnable filters (or kernels), each of which has a small receptive

field but extends through the full depth of the input volume. Figure 2-3 shows an

example convolution, showcasing how convolutions extract spatially-relevant data.

1https://www.mathworks.com/

31

https://www.mathworks.com/

Pooling Layer

Figure 2-4: Pooling layers down-sample input data by applying a function on sub-
regions. For example, max pooling applies a max function to extract the strongest
sub-region signals. Pooling is effective at reducing noise and extracting larger features.
Image Credit: CS Wiki2

The pooling layer is a form of non-linear down-sampling. There are several non-

linear functions for implementing pooling, among which max pooling is the most

common. It partitions the input image into a set of non-overlapping rectangles and

outputs the maximum for each such sub-region. Figure 2-4 shows how max pooling

extracts the maximal signal from its receptive field.

Activation Unit

f(x) = max(0, x) (2.1)

The activation unit aids in the non-linear decision making of the system by allowing

certain inputs to be sent forward. Traditionally, this unit is a rectified linear unit

(ReLU), which applies the non-saturating activation function shown in Eq. 2.1

TLU:

−T x < −T

x −T ≤ x ≤ T

T x > T

(2.2)

Even though ReLU is a popular choice for image classification, we also experiment

with the truncated linear unit (TLU) [44], shown in Eq. 2.2, where T is heuristically

chosen. TLU’s are much more effective at boosting weak signals, and thus well suited

2https://computersciencewiki.org/

32

https://computersciencewiki.org/

for a weak signal-to-noise ratio environment like steganalysis [44].

2.1.3 Model Evaluation

In this section, we review key details related to the evaluation of deep learning models.

Data

When evaluating models, it is important that data is generated or collected carefully.

Since a deep learning model’s success is directly related to the composition of the data

on which they are trained and tested, it is crucial that models are evaluated in the

context of their training/test data. For example, it is important to compare different

models across the same training/test data to enable a fair comparison. Furthermore,

careful consideration should be taken to create a diverse test set so that confounding

variables such as source distribution do not affect model performance. In summary,

models should always be evaluated in the context of the data that they were trained

and tested on.

Metrics

In our experiments, to measure steganalyzer performance, we report the blind detec-

tion error at an unoptimized threshold of 0.5. To calculate this error, we first classify

all the results using the threshold and then use the following equation:

ERROR =
FP + FN

FP + TP + FN + TN
(2.3)

Eq. 2.3 shows the calculation for the total detection error, where FP is the

number of false positives, FN is the number of false negatives, TP is the number of

true positives, and TN is the number of true negatives. The detection error represents

the percentage of incorrect classifications made by the model.

33

Figure 2-5: The left-hand side shows a non-robust classifier that uses noisy signal to
classify an image. The right-hand side of the figure shows how a robust classifier uses
human-meaningful features and signals to classify an image. Even though non-robust
classifiers achieve high accuracy, their use of non-robust signal leaves them open to
adversarial attacks. In comparison, robust classifiers use meaningful signal and are
reliable. Image Adapted from: Ref. [8]

Model Robustness

Robustness is akin to the mathematical concept of stability, which is defined as how

effective a model is when tested on a slightly perturbed version of a clean input,

where the outcome is supposed to be the same [32]. As found by Athalye et al.,

many machine learning models are relatively non-robust. Specifically, these models

pick up useful but non-robust signals that translate to noisy features [1]. Figure 2-5

shows how a robust classifier uses relevant features while a non-robust classifier uses

non-robust noise as its signal.

Because of this, it is possible to add small adversarial perturbations to input

data to generate adversarial images which the model misclassifies [1]. This technique

of adding adversarial perturbations to input data is known as an adversarial attack.

Figure 2-6 shows an example adversarial attack that uses the fast gradient sign method

to generate an adversarial image.

In this thesis, we make extensive use of adversarial attacks to generate adversarial

images for steganalyzers. Current research shows that adversarial images are useful as

training samples and help create robust models [51]. Researchers argue that training

on adversarial images allow deep learning models to learn which signals are robust

and which are not [51]. Below, we outline several adversarial attack methods that

34

Figure 2-6: Non-robust classifiers can be attacked using tactics such as the fast gradi-
ent sign method (FGSM). FGSM adds noise using the sign of the loss gradient of the
model with respect to the input image to create an adversarial example. Non-robust
models tend to misclassify these adversarial examples (i.e. a panda as a gibbon), even
though the image is relatively unchanged. Image Credit: OpenAI3

used in this thesis.

Xadv = X + ε · sign(∇θJ(X, θ)) (2.4)

Eq. 2.4 shows the fast gradient sign method (FGSM) [13], where X is the orig-

inal image, Xadv is the adversarial image, ε is the step-size, θ is the model, and

sign(∇θJ(X, θ)) is the sign of the deep learning model’s gradient along the input

image. FGSM uses a single-step to produce the adversarial image.

Xadv
N+1 = Xadv

N − ε · ΠX(Xadv
N −∇θJ(Xadv

N , θ)) (2.5)

Eq. 2.5 shows the projected gradient descent method (PGD) [24], where Xadv
i

is the ith iteration of the adversarial image, ε is the step-size, θ is the model,

∇θJ(Xadv
N , θ) is the deep learning model’s gradient along the Nth adversarial im-

age, and ΠX(...) is a function that projects onto the feasible set, X, which is usually a

constrained lp space. PGD is an iterative process that updates the adversarial image

with the projected gradient.

Each attack method is used to generate an adversarial perturbation that causes

3https://openai.com/

35

https://openai.com/

the model to incorrectly classify the adversarial input. PGD is much more effective

compared to FGSM since it iteratively uses the model’s gradient to find the most

effective adversarial perturbation.

2.2 Steganography Techniques

Steganography is the procedure of concealing data inside other file types. For the

purposes of this thesis, we focus exclusively on steganography in the image domain.

Most steganographic embedders can be categorized as (1) frequency, (2) spatial, or (3)

deep learning [26, 47]. Frequency domain steganographic embedders use statistical

techniques to hide information in the frequency coefficients of an image [20]. Spatial

domain steganographic embedders also use statistical techniques but hide information

in the raw pixel bits of an image [26]. In comparison, deep learning steganographic

embedders use deep learning architectures such as GANs to hide information in an

image [2, 47]. Deep learning steganographic embedders have been very effective at

hiding large quantities of data while avoiding detection from state-of-the-art stegana-

lyzers [47]. Finally, it is important to note that every steganographic embedder has a

corresponding steganographic decoder that decodes the embedded message from the

steganographic image.

Steganography is measured using an embedding ratio. This measurement specifies

the ratio between the embedded data size and the cover image size [20]. The units of

this measurement are specific to each type of steganography. We define the embedding

ratio units for each steganographic embedder type in the following sections.

2.2.1 Frequency Domain

The frequency domain refers to images represented by signal data, such as the JPEG

image format. In this domain, raw image data (pixel values) are translated to signal

data via some signal processing method (i.e. discrete cosine transform) to produce a

set of signal coefficients (i.e. discrete cosine transform coefficients).

Figure 2-7 shows how pixel values are translated into DCT coefficients. While spa-

36

8 x 8 pixel
block

DCT Basis Functions

8 x 8 coefficient
block

DC coefficient

AC coefficient

Figure 2-7: In the frequency domain, image data is stored in quantized frequency
coefficients. Frequency-domain steganography embeds message data by modifying
the non-zero frequency coefficients of the image. Image Credit: EE Times4

tial domain steganography operates on pixel values (the left array), frequency domain

steganography operates on DCT coefficients (the right array). Common methods in

frequency-based steganography include F5 [38], J UNIWARD [16], EBS [36], and

UED [14]. For the most part, these methods aim to minimize statistical distortions

in the steganographic image.

The embedding ratio of frequency domain steganography is measured in bits per

non-zero AC DCT coefficient (bpnzAC) [20]. The AC coefficients represent 63 total

coefficients in each coefficient block, excluding the coefficient at [0, 0] (i.e. 239 in

Fig. 2-7). Traditionally, the coefficient at [0, 0] holds the most signal in that coeffi-

cient block and is never modified. Furthermore, zero-valued coefficients are also not

counted, since most steganographic embedders avoid using these coefficients.

2.2.2 Spatial Domain

The spatial domain is defined as the raw image pixels that are used to define an image.

For png images, this is the RGB value used to represent each pixel. Spatial domain

steganography conceals the secret information within these pixel values, usually by

substituting secret bits inside them [20].

Figure 2-8 shows an example of the least-significant bit (LSB) method, which

4https://www.eetimes.com/baseline-jpeg-compression-juggles-image-quality-and-size/

37

https://www.eetimes.com/baseline-jpeg-compression-juggles-image-quality-and-size/

R = 1101101 X 110110111

Value to encode

LSB

0

1

0

1

0

Hidden Bit 0

Hidden Bit 1

Hidden Bit 2

11011010

10010111

10010110

10010101

10010100

G = 1001011 X

B = 1001010 X

Figure 2-8: Least significant bit (LSB) steganography is a spatial technique that
replaces the last bit of the pixel with message content. For example, if the value
being encoded is a 1, the last pixel value bit is set to 1. Image Credit: KitPloit5

embeds message content into the final bit of each of the RGB channels [20]. Other

methods include S UNIWARD [16], HUGO [29], WOW [15], and HILL [21]. These

methods use sophisticated techniques that minimize image distortion to better embed

data, thereby reducing the impact that the embedding operation has on the under-

lying source distribution of the cover image. The embedding ratio of spatial domain

steganography is measured in bits per pixel (bpp) [20].

2.2.3 Deep Learning Domain

The deep learning domain refers to steganographic embedders that make use of deep

learning methods to embed steganographic content. Even though deep learning tech-

niques operate on either the spatial or frequency domain, we have intentionally sepa-

rated them into their own category because they are functionally very different. Tradi-

tionally, steganographic embedders use generative deep learning networks to combine

an input message and cover image into a steganographic image [47]. Still, there are

many variations on network designs that have been proposed such as SteganoGAN

[47], HiDDeN [52], and BNet [2]. Figure 2-9 shows SteganoGAN [47], which makes

use of a GAN architecture to generate high-quality steganographic images.

The embedding ratio for deep learning steganography is specific to the architec-

ture that is being used. When reporting embedding ratios, researchers must be careful

5http://kitploit.com/

38

http://kitploit.com/

Figure 2-9: Machine learning-based steganography uses machine learning to embed
data inside images. This figure shows SteganoGAN, which is a generative adversarial
network that embeds messages in a highly undetectable way. Image Credit: Ref. [47]

to make sure that the deep learning embedding ratio is equivalent to the traditional

measures found in the spatial and frequency domain. For the purposes of this thesis,

we use Reed Solomon [39] bits per pixel, a measure introduced by [47], to measure the

embedding ratio of deep learning steganographic embedders. Reed Solomon bpp mea-

sures how much real data is transmitted by the steganographic image by calculating

the probability of a bit being recovered correctly by the deep learning steganographic

decoder [47]. This measure allows for equivalent comparison to the bpp measurement

found in the spatial domain.

2.3 Steganalysis Techniques

Steganalysis is the process that detects whether a file contains steganographic content.

Steganalysis procedures fall into one of two categories: (1) statistical steganalyzers or

(2) deep learning steganalyzers [6]. In general, statistical steganalyzers use extensive

feature engineering to exploit the fact that steganographic embedders introduce sta-

tistically significant artifacts (i.e. pixel bit values follow unnatural distributions) [37].

In comparison, deep learning steganalyzers use CNN architectures to learn the sta-

tistical imprints of different steganographic embedders [4, 44]. These methods have

39

proven to be very effective against spatial and frequency modes of steganography [6].

2.3.1 Statistical Techniques

Figure 2-10: steganographic embedders leave statistical artifacts in the stegano-
graphic image. In this figure, the F5 algorithm leaves a noticeable effect on the
quantized DCT histogram. Statistical steganalyzers use statistical signals such as
statistical moments to infer if an image is steganographic. Image credit: Ref. [48]

Statistical steganalyzers rely on detecting statistical abnormalities introduced via

steganographic embedders. For example, LSB steganography has been shown to

significantly modify an image’s natural pixel value distribution [6, 20]. Figure 2-

10 shows how, even for small embedding ratios in a JPEG image, steganographic

embedders such as F5 [38] introduce slight changes in the distribution of underlying

coefficient values [48].

Statistical steganalyzers are often augmented with support-vector machines and

specialized feature-engineering to pull out rich signal data from the underlying source

distribution [37]. In general, statistical steganalyzers are only effective against a

limited set of spatial and frequency-based steganographic embedders [23].

40

Image

...

...

Cover

Softmax

Stego

Figure 2-11: Deep learning based steganalyzers use deep learning convolutional neural
networks to extract useful signal from the images to determine if it is steganographic.

2.3.2 Deep Learning Techniques

Deep learning steganalyzers traditionally use CNN architectures to extract stegano-

graphic signal [6]. Figure 2-11 shows a simple CNN steganalyzer. In recent years,

many deep learning architectures have been proposed for steganalysis such as YeNet

[44], XuNet [42], SRNet [5], and CISNet [41].

Deep learning steganalyzers depend heavily on their training dataset [49]. They

have been shown to be the most effective tools for steganalysis when compared to

statistical steganalyzers [6]. Yet, even though deep learning steganalyzers have been

very effective at steganographic detection, they remain relatively non-robust. In fact,

recent papers have shown that deep learning steganalyzers have a large number of

failure modes [50]. Understanding and solving these failure modes remains one of the

more challenging obstacles facing deep learning steganalyzers.

2.4 Related Work

In recent years, the development of deep convolutional neural networks has pushed

the boundaries of steganalysis research [6]. CNN architectures provide steganalyzers

with a larger feature space to extract more useful signals from image data [40]. In

2015, Qian et al. published a simple deep learning model that showcased the potential

for CNN-based steganalysis [31]. Then, in 2016, Xu et al. was able to achieve state-of-

the art results using a more complicated network structure [42]. In 2018, researchers

released several new architectures, including Ye-Net [44], which used truncated linear

activation functions, Yedroudj-Net [45], which used a small network that could learn

41

with small datasets to reduce computational costs, and SRNet [5], which could be

adapted to spatial or frequency steganalysis.

To date, most research in the steganalysis domain has focused on (1) developing

architectures that boost steganographic signal, since steganalysis operates in a low

signal to noise ratio environment [40]; and (2) developing architectures with better

convergence guarantees and reduced computational costs [6]. Yet even though archi-

tectures have become progressively more sophisticated, model robustness has not seen

comparable improvements. Recently, researchers have found that many steganalyzers

previously considered to be state-of-the-art are particularly non-robust and have a

number of failure modes [46, 50]. Specifically, these steganalyzers fail at the source

mismatch problem, low embedding ratio problem, and steganographic embedder mis-

match problem. They are also prone to adversarial attacks.

Next, researchers have also worked on understanding how to robustly evaluate

steganalyzers. Recent work has taken two approaches to tackling the evaluation issue:

(1) formulating standardized methodologies that lead to robust evaluation, and (2)

the design and generation of steganographic datasets that allow for evaluation.

In the first approach, researchers have done comprehensive reviews of the current

steganographic evaluation ecosystem, summarized flaws regarding current evaluation

schemes, and proposed alternative methods for more robust evaluation [6, 23, 30,

46]. Zeng et al. finds that current steganalyzers are particularly bad at the source

mismatch problem and argues that steganalyzers should be evaluated on increasingly

diverse source distributions [46]. Prokhozhev et al. proposes several tactics to improve

evaluation methods involving steganographic embedder mismatch problem and the

use of large test datasets [30]. Finally, Chaumont et al. finds that researchers should

test steganalyzers on more diverse datasets (i.e. image source, image resolution, image

format) to evaluate how practical a steganalyzer is [6].

In the second approach, researchers focus on the design and generation of stegano-

graphic datasets. When designing these datasets, researchers focus on (1) cover image

sources and (2) steganographic embedder diversity. The most commonly used evalua-

tion dataset is the BOSS dataset [3], which contains gray-scale 512x512 images. More

42

recent work has criticized widespread use of BOSS since it contains limited image di-

versity [6]. Researchers have continued to develop a number of new datasets, including

SIG [35], StegoAppDB [27], and iStego100k [43]. Yet, because these datasets are un-

changed and static, their usability diminishes over time and they are rarely adopted

by the steganalysis research community.

In this thesis, we build off the related work discussed here and focus on designing

a robust framework for practical and universal steganalysis that includes practical

design considerations, robust training methodologies and a dynamic, effective evalu-

ation system. Our work builds on the insights of previous research and brings many

of their suggested ideas and methodologies into practice.

43

44

Chapter 3

Universal and Practical

Steganalysis

In this chapter, we focus on designing methodologies that help create universal and

practical steganalyzers. In section 3.1, we list the problems facing universal steganal-

ysis. In section 3.2, we list the problems facing practical steganalysis. In section 3.3,

we specify several data augmentation techniques that help train universal steganalyz-

ers. Finally, in section 3.4, we design two new deep learning architectures: ArbNet

and FastNet. ArbNet provides a solution to the image size mismatch problem while

FastNet provides a solution to the training and execution efficiency problem.

3.1 Towards Universal Steganalysis

Universal steganalysis is defined as a class of steganalyzers that can detect any known

or unknown steganographic embedder [6]. We identify the following problems that a

universal steganalysis solution must solve:

• Source Mismatch Problem - Universal steganalyzers must be able to detect

steganographic images regardless of the image source.

• Steganographic Embedder Mismatch Problem - Universal steganalyzers

must be able to detect steganographic images from any steganographic embed-

45

der, including those that they have not been seen before.

• Low Embedding Ratio Problem - Universal steganalyzers must be able to

detect steganographic images that are embedded with low embedding ratios.

By solving these problems, a steganalyzer would be able to function as a universal

steganalyzer in any context. Next, we find that from the perspective of deep learn-

ing, universal steganalysis is related to model robustness. Specifically, if we assume

that training on a constrained set of steganographic signals is sufficient for learning

any steganographic signal, then a deep learning steganalyzer’s robustness is related

to how effectively a model can detect unseen steganographic images based off a lim-

ited training dataset. Thus, to build universal deep learning-based steganalyzers, we

should pay close attention to training datasets, as they could be used to effectively

create universal steganalyzers.

3.2 Towards Practical Steganalysis

Practical steganalyzers must be effective in real-world situations. From a deep learn-

ing perspective, this means that models must be efficient and applicable in a diverse

set of contexts. Towards this goal, we identify the following problems that a practical

steganalysis solution must solve:

• Image Size Mismatch Problem - Practical steganalyzers must be able to

operate on arbitrary image sizes (i.e. 256x256, 512x512, etc.) so that they can

be usefully deployed in an application.

• Training and Execution Efficiency Problem - Practical steganalyzers must

be able to be trained and updated efficiently so that new training examples can

be quickly incorporated into the model. They must also be able to execute

efficiently so that they can process a large of number of images quickly.

46

3.3 Dataset Augmentation

In this section, we describe data augmentation procedures that generate datasets

that can be used to train universal deep learning steganalyzers. Data augmentation

is a technique used to artificially expand the training dataset by introducing image

modifications that increase the diversity of the dataset. Research in the last few

years has shown that data augmentation effectively improves the robustness of deep

learning models by providing useful training features [7, 51].

Through careful literature review and our own experiments, which we detail in

Chapter 5, we design the following data augmentation procedures that researchers

should consider using to augment their steganographic training datasets: (1) source

diversity, (2) steganographic embedder diversity, and (3) embedding ratio diversity.

3.3.1 Source Diversity

To solve for the source mismatch problem, we suggest augmenting training datasets

with a large sampling of source distributions. We suggest the following data augmen-

tations:

• A large variety of camera configurations should be present in the dataset to

ensure that that the training dataset contains many source distributions.

• A large variety of image sizes and image formats should be present in the dataset

to ensure that the training dataset contains a diverse set of source image types.

• Standard data augmentation techniques such as random crops, rotations, and

translations should be employed to artificially increase source diversity.

By using a diverse set of training images, source distribution signals that confound

steganographic signals will be less useful for prediction. Consequently, steganalyzers

trained on these datasets will better learn to use actual steganographic signals which

will allow them to effectively detect steganographic images from other sources, thereby

helping solve the source mismatch problem.

47

3.3.2 Steganographic Embedder Diversity

To solve for the steganographic embedder mismatch problem, we suggest augmenting

training datasets with a diverse set of steganographic embedders. We suggest the

following data augmentations:

• Datasets should skew towards using hard-to-detect steganographic embedders

(i.e. SteganoGAN [47]), since they create a more challenging steganalysis prob-

lem and provide more useful steganographic signal.

• To test universal steganalyzers, the test dataset should be augmented with

steganographic embedders that have not been trained on and, preferably, are

characteristically different from the training dataset steganographic embedders.

Following these guidelines will enable deep learning-based steganalysis architec-

tures to effectively learn to detect steganographic signals commonly found among var-

ious steganographic embedders. As steganography improves, the suggested stegano-

graphic embedder composition of these training datasets will also evolve.

3.3.3 Embedding Ratio Diversity

To solve for the low embedding ratio problem, we suggest augmenting training datasets

with a diverse set of embedding ratios. We suggest the following data augmentation:

• A large range of embedding ratios should be used for training so that models

do not over-fit to a specific embedding ratio. We suggest a range from 0.05 bpp

to 1.0 bpp. For deep learning steganographic embedders, researchers should

consider increasing the range of embedding ratios present in the training dataset.

Using a wide range of embedding ratios will force models to better learn to detect

steganographic signal and prevent overfitting for a specific embedding ratio. Having

the aid of steganographic images with larger embedding ratios during training will

enable steganalyzers to identify and boost steganographic signal present in stegano-

graphic images with lower embedding ratios.

48

3.4 Architectures

In this section, we describe two deep learning architectures that provide potential

solutions to the challenges facing practical steganalysis. In section 3.2, we identi-

fied that a practical deep learning steganalyzer must be able to solve the following

problems: the image size mismatch problem and the training and execution efficiency

problem.

To help realize these goals, we use modern CNN methods to design: (1) ArbNet,

which is compatible with arbitrary input image sizes using a modified DenseNet

architecture, and (2) FastNet, which uses a modified EfficientNet architecture to

improve computational efficiency.

3.4.1 ArbNet

To solve for the image size mismatch problem, we introduce ArbNet (Arbitrary Image

Network), which uses several modifications to the architecture presented in Singh et

al. [33]. Singh et al. presents a DenseNet [17] structure adapted to fit the steganalysis

problem. We use this architecture and modify it in the following ways:

1. TLU Activation Units. TLU activation units (section 2.12) are used instead

of ReLU to extract weak steganographic signal. The threshold is set to three

as per [44].

2. Modified ConvBlocks. The number of convolutional blocks and specific con-

volutional layer parameters are modified as shown in Figure 3-2.

3. Spatial Pyramid Pooling. Spatial pyramid pooling (SPP), shown in Figure

3-1, is used instead of global average pooling to boost steganographic signal and

enable arbitrary image size detection. SPP produces fixed-length representa-

tions at various scales that are invariant to input size.

Figure 3-2 shows the overall architecture of ArbNet. In the first part of the net-

work, we preprocess the input image with a set of learnable filters that are initialized

49

Convolutional Layer
Feature Maps
(Arbitrary size)

Spatial Pyramid Pooling Layer
(Fixed-Length Output)

Level 1 (1x1)

Level 2 (2x2)

Level 3 (3x3)

Level 4 (4x4)

...... ...

Figure 3-1: A spatial pyramid pooling (SPP) layer is invariant to input size since it
fixes the output size of the pooling layer. Each SPP layer fixes how many sections
the input will be divided into for pooling. In this figure, the third layer divides the
convolution input into nine pooling sections

as SRM high pass filters. We then combine this output with the raw input data

and feed it into the DenseNet structure. The DenseNet architecture extracts residual

signal using skip connections. Next, the residual output is combined with the original

image data and fed into the spatial pyramid pooling layer. Finally, the output from

the spatial pyramid pooling layer is fed into the fully connected layer to produce the

classification. Each step helps boost weak steganographic signal and makes the model

effective in a low signal-to-noise ratio environment. We believe that ArbNet holds a

key solution to the image scaling problem as it effectively avoids downsampling input

signal while enabling arbitrary image size detection.

3.4.2 FastNet

To solve for the training and execution efficiency problem, we introduce FastNet (Fast

Network), which adapts EfficientNets [34] to the steganalysis problem. EfficientNets

are a family of image classification models which achieve state-of-the-art accuracy but

are an order of magnitude smaller and faster than previous models [34]. EfficientNets

are trained by successively improving older models through a model-scaling process

that modifies network depth, width, and resolution [34]. EfficientNets use MBConv

blocks, which can be used for neural architectural search, enabling EfficientNet to use

the most effective neural architecture [34].

50

Image
(3, W, H)

Learnable filters
I: (3, W, H)

O: (15, W, H)

Filter Structure DenseNet Structure Pooling and Fully-Connected Layers

I: (18, W, H)
O: (64, W, H)

I: (64, W, H)
O: (64, W, H)

I: (x, W, H)
O: (4, W, H)
KS: (1 x 1)

=

I: (128, W, H)
O: (64, W, H)

I: (192, W, H)
O: (64, W, H)

I: (192, W, H)
O: (64, W, H)

I: (256, W, H)
O: (3, W, H)

SPP
(8, 4, 2, 1)

FC
(255, 2)

...

Softmax

I: (4, W, H)
O: (8, W, H)

KS: (2x 2)

I: (8, W, H)
O: (16, W, H)

KS: (3x 3)

I: (16, W, H)
O: (32, W, H)

KS: (4x 4)

I: (32, W, H)
O: (64, W, H)

KS: (5x 5)

+

Batch Normalization

Truncated Linear Unit

Figure 3-2: ArbNet is a steganalysis CNN model that can be applied to arbitrary
image sizes. First, the input image is fed through 15 filters that are initially initial-
ized with 15 SRM HPF’s. Next, the input image and filtered output are fed into
a DenseNet structure. Finally, the residual output from the DenseNet is combined
with the original image and fed into a spatial pyramid pooling layer, a fully-connected
layer, and a softmax function to output the steganographic and cover probabilities.

Figure 3-3 shows the overall architecture of FastNet. FastNet uses the EfficientNet-

B0 network presented in [34], which is the baseline EfficientNet architecture for Im-

ageNet classification. FastNet introduces slight modifications to the EfficientNet-B0

architecture to adapt the network to the steganalysis problem. Specifically, FastNet

modifies the number of channels in the final MBConv block and the number of nodes

in the fully connected layer.

Next, even though the best accuracy with EfficientNet is reported when the

model’s architecture is successively improved, we believe that using the original B0

network is a more effective means of showcasing the potential of EfficientNets. Specif-

ically, if the adapted-B0 network, FastNet, is able to perform reasonably on the ste-

ganalysis challenge, we can be quite confident that EfficientNets hold a key solution

to the training and execution efficiency problem.

51

Image
(3, 256, 256)

I: (H, W, F)
O: (H, W, 6F)

KS: (1 x 1)

I: (H, W, 6F)
O: (H, W, 6F)

KS: (5 x 5)

DWConv

I: (H, W, 6F)
O: (H, W, 6F)

Squeeze &
Excitation

I: (H, W, 6F)
O: (H, W, F)
KS: (1 x 1)

+

I: (256, 256, 3)
O: (128, 128, 32)

KS: (3x 3)

I: (128, 128, 32)
O: (128, 128, 16)

KS: (3x 3)

I: (128, 128, 16)
O: (64, 64, 24)

KS: (3x 3)

MConv1 KS (3x3) MBConv6 KS (3 x 3)

MBConv6 KS (5 x 5)

MBConv6 x2MBConv1

I: (8, 8, 192)
O: (8, 8, 256)

KS: (3x 3)

Global
Average
Pooling

MBConv6

I: (64, 64, 24)
O: (32, 32, 40)

KS: (5x 5)

MBConv6 x2

I: (32, 32, 40)
O: (32, 32, 80)

KS: (3x 3)

MBConv6 x3

I: (32, 32, 80)
O: (16, 16, 112)

KS: (5x 5)

MBConv6 x3

I: (16, 16, 112)
O: (8, 8, 192)

KS: (5x 5)

MBConv6 x4

I: (H, W, F)
O: (H, W, 6F)

KS: (1 x 1)

I: (H, W, 6F)
O: (H, W, 6F)

KS: (3 x 3)

DWConv

I: (H, W, 6F)
O: (H, W, 6F)

Squeeze &
Excitation

I: (H, W, 6F)
O: (H, W, F)
KS: (1 x 1)

+

I: (H, W, F)
O: (H, W, F)
KS: (3 x 3)

DWConv

I: (H, W, F)
O: (H, W, F)

Squeeze &
Excitation

+

I: (H, W, F)
O: (H, W, F)
KS: (1 x 1)

FC
(256, 2)

...

Softmax

Batch Normalization

Swich Activation Unit

Figure 3-3: FastNet uses the EfficientNet-B0 structure and modifies the final few
layers to adapt the network to the steganalysis problem. FastNet is composed of
MBConv blocks which enable neural architecture search and computational efficiency.

52

Chapter 4

Benchmarking and Evaluation

System for Steganalysis

In this chapter, we describe the development and usage of StegBench, a Python

library that enables the robust evaluation of steganalysis. StegBench can seamlessly

integrate into existing steganography and steganalysis evaluation setups through its

powerful and efficient configuration management platform. StegBench is currently

under active development and is available upon request.

In section 4.1, we outline the minimum system criteria that StegBench must sat-

isfy. In section 4.2, we list design goals that guide our overall implementation. In

section 4.3, we describe the architecture of StegBench along with extensive descrip-

tions and usage patterns for each of the core modules. For more information on the

StegBench system and API specifications, we refer the reader to Appendix C.

4.1 System Criteria

In this section, we detail specific system requirements that an effective steganalysis

evaluation system must satisfy. We find that a steganalysis evaluation system should

be able to effectively achieve the following: (1) steganographic dataset generation

and (2) standard steganalysis evaluation. For each of these requirements, we further

delineate a set of criteria that StegBench must satisfy. Together, these criteria are

53

sufficient for enabling effective steganalysis evaluation.

4.1.1 Steganographic Dataset Generation

Steganographic embedders and steganalyzers are evaluated by how well they either

embed or detect data in a transmission medium. Thus, proper data processing and

data generation is critical for effective evaluation since the transmission medium is

key to the steganographic system.

Steganalysis evaluation datasets are defined by three key parameters: the source

dataset, the steganographic embedder, and the embedding ratio. In our system, we

would like to generate diverse steganographic datasets by modifying each of these

parameters. Hence, we outline the following three criteria that our system must

meet:

1. Source Diversity: The system must be able to access a large, diverse set of

source distributions. In addition, the system must provide a large selection of

dataset and image processing tools for data augmentation.

2. Steganographic Embedder Diversity: The system must integrate with a

large and diverse set of steganographic embedders.

3. Embedding Ratio Diversity: The system must be able to apply stegano-

graphic embedders with a wide selection of embedding ratios.

4.1.2 Standard Steganalysis Evaluation

For a steganalysis evaluation system to be useful, it must adhere to standard evalu-

ation methodologies for binary classification tasks and produce reproducible metrics

that can be fairly compared to other steganalysis research. To achieve these require-

ments, we identify the following criteria:

1. Comparable Metrics: The system must produce standard binary classifica-

tion metrics that are accurate and comparable to other steganalysis research to

enable meaningful and fair comparisons.

54

2. Reproducible Metrics: The system must produce reproducible metrics so

that steganalysis performance can be fairly reviewed.

3. Steganalyzer Diversity: The system must integrate with a large and diverse

set of steganalyzers to enable comprehensive and robust comparisons.

4.2 Design Goals

In this section, we describe design goals for our steganalysis evaluation system,

StegBench. With the aim of producing a usable, effective, and highly-compatible

system, we adopt the following design goals:

• Modularity: StegBench must be properly subdivided into modules that are

easily modified and interchanged.

• Efficiency: StegBench must use modern computational practices.

• Compatibility: StegBench must be compatible with a large number of stegano-

graphic embedders, steganalyzers, and execution environments.

4.3 Architecture

In this section, we provide an architectural overview of StegBench. StegBench is com-

posed of three logically abstracted modules: dataset, embedder, and detector. Figure

4-1 shows which system requirements each module satisfies as well as which assets

each module consumes and produces. These modules provide system modularity

and high-usability as they effectively separate steganalysis workflows. In StegBench,

all assets (steganographic embedders, steganalyzers, datasets) are referred to by a

universally unique identifier (UUID).

4.3.1 Dataset Module

The dataset module is responsible for processing and downloading various image

datasets to generate diverse cover datasets. By providing a highly configurable dataset

55

Dataset

Module Criteria Consumes Produces

Detector

Embedder

Source
Diversity

Reproducible
Metrics

Comparable
Metrics

Detector
Diversity

Embedder
Diversity

Embedding
Ratio Diversity

Steganographic
Embedders

Public
Datasets

Proprietary
Datasets

Cover
Dataset

Steganographic
Dataset

Cover
Dataset

Steganalyzers
Cover +

Steganographic
Dataset

Summary
Statistics

Figure 4-1: StegBench is divided into three modules: dataset, embedder, and de-
tector. The figure shows what assets each module consumes and produces as well
as system requirements that each module satisfies. The dataset module generates
cover datasets. The embedder module generates steganographic datasets. The detec-
tor module evaluates steganalyzers on cover and steganographic datasets to produce
summary statistics.

ALASKA BOSS BOWS2 MSCOCO DIV2K

Table 4.1: List of public datasets that are supported by StegBench download routines.

management module, StegBench meets the source diversity requirement.

Figure 4-2 shows dataset module usage patterns using the StegBench API. In

Table C.10, we list API specifications for the dataset module. The dataset module

uses the following process flow, as shown in Figure 4-3:

1. Load Image Datasets: The dataset module can load datasets from either

public or proprietary sources. StegBench provides download routines that can

be found in the API specifications to access the public datasets listed in Table

4.1. For other datasets, the dataset must already exist on the local machine for

the module to be able to load the dataset images into the StegBench system.

2. Apply Dataset Setup Operations: Once the images from the dataset are

loaded into StegBench, the module applies any specified dataset setup oper-

56

1 import stegbench as steg

2

3 """"StegBench provides the download command to download

4 public datasets. This command encompasses steps 1-4"""

5 dwld_db_uuid = steg.download(download_routine , db_name ,

6 image_operations , setup_operations)

7

8 """"StegBench provides the process command to process

9 custom datasets. This command encompasses steps 1-4"""

10 local_db_uuid = steg.process(path_to_dir , db_name ,

11 image_operations , setup_operations)

Figure 4-2: The dataset module is used to produce diverse cover datasets. Usage of
the dataset module API involves loading or processing image datasets and applying
image or dataset operations to produce a cover dataset.

Download
Subroutines

Download
Subroutines

Setup
operations

Train/Test/Val
Limit
Mixture

Public
Datasets

Temp
Dataset

Proprietary
Datasets

Cover
Dataset

Image
Operations

Resizing
Crop
Noise

PNG/JPEG Conv
Gray Conv
Rotate

Figure 4-3: The dataset module generates cover datasets. The module provides
subroutines to either download or load public/proprietary datasets. The module
then applies any user-specified setup or image operations to produce diverse cover
datasets. The dataset module provides a large set of modification operations and
out-of-box access to several large datasets to generate robust cover datasets.

ations. These operations do not modify individual images but rather apply

operations to the entire dataset (i.e. limiting the size of the dataset). The list

of supported setup operations can be found in Table C.10. This step also gen-

erates a temporary dataset so that the original source dataset is not corrupted

when further image operations are applied.

3. Apply Image Operations: If any image operations are specified, the module

applies them efficiently to each image in the dataset. The list of supported

image operations can be found in Table C.10. Since multiple operations can be

applied at once, StegBench applies operations in a sequential manner to ensure

57

a deterministic output. Furthermore, all image operations are done in-place on

the temporary dataset.

4. Assign UUID and Extract Metadata: Once image operations have com-

pleted, the module assigns the dataset a UUID. This UUID is used by all

StegBench operations to refer to this specific cover dataset. Next, the mod-

ule extracts and saves all relevant metadata from the dataset such as its UUID,

the setup and image operations that were used for dataset generation, and the

source of the dataset. The metadata is stored separately to enable quick and

efficient lookup of dataset information.

4.3.2 Embedder Module

Steganographic
Dataset

 Steganographic
Embedders

Tool #1

Tool #2
Tool #3

Cover
Datasets

Embedding ratio

Embedding Stego Dataset
Processor

Configuration
Manager

Temp
Dataset

Figure 4-4: The embedder module generates steganographic datasets. Using the
StegBench API, users can load steganographic embedders that are defined in configu-
ration files via the configuration manager as well as specify any cover dataset(s). Next,
using user-supplied embedding configurations, the module applies steganographic em-
bedders to generate temporary steganographic images, which are then processed and
combined into a steganographic dataset.

The embedder module is responsible for the generation of steganographic datasets.

By providing a highly compatible and configurable embedder module, StegBench

seamlessly integrates with a large set of steganographic embedders and effectively uses

them with a wide range of embedding ratios, thereby satisfying the steganographic

embedder diversity and embedding ratio diversity system criteria.

Figure 4-6 shows embedder module usage patterns using the StegBench API.

In Table C.11, we list API specifications for the embedder module. The embedder

module uses the following process flow, as shown in Figure 4-4:

58

Figure 4-5: An example configuration for SteganoGAN. Steganographic embedder
configurations specify compatibility requirements and embedding and decoding com-
mands.

1. Satisfy Prerequisites: Steganographic embedders must already be installed

on the local machine. For example, SteganoGAN1 can be installed using pip2.

Next, all cover datasets must already have been processed and assigned a UUID.

2. Complete Setup Procedures

(a) Load Configurations: Once the steganographic embedders are installed,

the user must create a configuration for each of them. Figure 4-5 shows an

example configuration for SteganoGAN. Configurations detail compatibil-

ity requirements and execution specifications. For more details on configu-

ration files, we refer the reader to Appendix C. The embedder module uses

a configuration management system to load configuration files for stegano-

graphic embedders located on the user machine. During this process, each

steganographic embedder is assigned a UUID that can be used to refer to

it later on.

(b) Retrieve UUIDs: Using the info command found in Table C.8, the user

can retrieve UUIDs for steganographic embedders or cover datasets. For

example, in Figure 4-6, the user uses the info command to retrieve the

UUID for SteganoGAN and the BOSS dataset.

1https://github.com/DAI-Lab/SteganoGAN
2https://pip.pypa.io/

59

https://github.com/DAI-Lab/SteganoGAN
https://pip.pypa.io/

1 import stegbench as steg

2 """ Step 1: Satisfy Prerequisites """

3 """ Step 2(a): Load Configuration """

4 steg.add_config(config=[’ embeddor_cfg.ini ’])

5 """ Steg 2(b): Retrieve UUIDs """

6 steg.info()

7 >>> BOSS_COVER: uuid = ’76e9535b -eabd ’

8 >>> SteganoGAN: uuid = ’add568b9 -a0a3 ’

9 steganogan_uuid = ’add568b9 -a0a3 ’

10 boss_db_uuid = ’76e9535b -eabd ’

11

12 """"Step 3: Generate Steganographic Dataset """

13 embedding_ratio = 0.5

14 stego_db_uuid = steg.embed(steganogan_uuid , boss_db_uuid ,

15 embedding_ratio)

16

17 """ Step 4: Verify Steganographic Dataset """

18 steg.verify(stego_db_uuid)

19 >>> Database: 100% correctly embedded

Figure 4-6: Step by step code usage patterns for the embedder module. The embedder
module is used to generate and verify steganographic datasets. UUIDs are used to
select the cover datasets and steganographic embedders used for embedding.

3. Generate Steganographic Dataset

(a) Apply Embedding Procedure: Once steganographic embedders and

cover datasets are selected using UUIDs, the embedder module uses the

steganographic embedders to embed the cover dataset using a user-supplied

embedding ratio. To do this, the module uses each steganographic embed-

der’s configuration file to retrieve execution specifications. Then, using the

execution specifications, the module generates executable commands that

apply the steganographic embedder to the cover dataset. Finally, once all

the commands have been generated, the embedder module executes the

commands in parallel.

(b) Process Steganographic Dataset: Once all the commands have fin-

ished executing, the embedder module: (1) cleans up any unnecessary

files, (2) collects all the generated steganographic images into one direc-

tory, (3) assigns the steganographic dataset a UUID, and (4) extracts and

60

records all relevant metadata.

4. Verify Steganographic Dataset: For steganographic embedders that provide

a method to decode steganographic images, StegBench enables the verification

of steganographic datasets. To do this, StegBench uses steganographic decoder

configurations to generate decoding commands. Once it applies these decoding

commands, it verifies that the decoded steganographic content matches the data

that was originally embedded into each steganographic image in the dataset.

4.3.3 Detector Module

Summary
Statistics

Steganalyzers

Tool #1

Tool #2
Tool #3

Cover +
Steganographic

Datasets

Detection Analysis
Subroutines

Configuration
Manager

Results

Figure 4-7: The detector module evaluates steganalyzers across cover and stegano-
graphic datasets. Using the StegBench API, users can load steganalyzers that are
defined in configuration files via the configuration manager as well as specify any
cover or steganographic dataset(s). Next, the module evaluates each steganalyzer on
the dataset images, collects these results, and uses analysis subroutines to properly
generate summary statistics.

The detector module is responsible for the evaluation of steganalyzers. The mod-

ule consumes steganalyzers along with cover and steganographic datasets to produce

summary statistics. By providing seamless integration with a large array of stegan-

alyzers and also by generating reproducible and comparable metrics, the detector

module meets all evaluation criteria.

Figure 4-9 shows detector module usage patterns using the StegBench API. In

Table C.12, we list API specifications for the detector module. The detector module

uses the following process flow, as shown in Figure 4-7:

1. Satisfy Prerequisites: Steganalyzers must already be installed on the local

machine. For example, StegExpose3 can be installed from the source. Next, all

3https://github.com/b3dk7/StegExpose

61

https://github.com/b3dk7/StegExpose

Figure 4-8: An example configuration for StegExpose. Steganalyzer configurations
specify compatibility requirements and detection commands.

datasets must already have been processed and assigned a UUID.

2. Complete Setup Procedures

(a) Load Configurations: Once the steganalyzers are installed, the user

must create a configuration for each of them. Figure 4-8 shows an ex-

ample configuration for StegExpose. Configurations detail compatibility

requirements and execution specifications. For more details on configura-

tion files, we refer the reader to Appendix C. The detector module uses a

configuration management system to load configuration files for stegana-

lyzers located on the user machine. During this process, each steganalyzer

is assigned a UUID that can be used to refer to it later on.

(b) Retrieve UUIDs: Using the info command found in Table C.8, the user

can retrieve UUIDs for steganalyzers or datasets. For example, in Figure

4-9, the user uses the info command to retrieve the UUID for StegExpose

and a pair of cover and steganographic datasets.

3. Test Steganalysis Performance

(a) Apply Detection: Once steganalyzers and datasets are selected using

UUIDs, the detector module tests each steganalyzer on the datasets. To do

this, the module uses each steganalyzer’s configuration file to retrieve exe-

cution specifications. Then, using the execution specifications, the module

62

1 import stegbench as steg

2 """ Step 1: Satisfy Prerequisites """

3 """ Step 2(a): Load Configuration """

4 steg.add_config(config=[’ detector_cfg.ini ’])

5 """ Steg 2(b): Retrieve UUIDs """

6 steg.info()

7 >>> BOSS_COVER: uuid = ’76e9535b -eabd ’

8 >>> BOSS_STEGO: uuid = ’991f73fa -44c1 ’

9 >>> StegExpose: uuid = ’add568b9 -a0a3 ’

10 cover_db_uuid = ’76e9535b -eabd ’

11 stego_db_uuid = ’991f73fa -44c1’

12 stegexpose_uuid = ’add568b9 -a0a3 ’

13

14 """ Step 3: Test Steganalysis Performance """

15 datasets_to_detect_uuids = [cover_db_uuid , stego_db_uuid]

16 steg.detect(stegexpose_uuid , datasets_to_detect_uuids)

17 >>> StegExpose: 85% accuracy , ...

Figure 4-9: Step by step code usage patterns for the detector module, which is used
to measure steganalyzer performance across user-supplied datasets.

generates executable commands that have the steganalyzer detect whether

a given image is steganographic. Finally, once all the commands have been

generated, the module executes the commands in parallel.

(b) Process Results: The module collects the steganalysis results and cal-

culates binary-classification metrics such as accuracy rates and F1 scores.

The module then reports these summary statistics to the user.

63

64

Chapter 5

StegBench Experiments

In this chapter, we detail findings from several experiments carried out using the

StegBench system and discuss which strategies are effective for building universal

and practical steganalyzers. In section 5.1, we review our experimental setup. In

section 5.2, we benchmark our architectures against state-of-the-art steganalyzers.

In section 5.3, we conduct experiments to try to overcome the image size mismatch

problem. In section 5.4, we test different solutions for the source mismatch problem.

In section 5.5, we experiment with various training configurations to explore how

we can solve the steganographic embedder mismatch problem. In section 5.6, we

summarize our findings.

5.1 Experimental Setup

Each experiment follows a set of general specifications. If an experiment requires a

unique configuration, we detail the specifications in the corresponding section. The

following are the general specifications that we follow:

• Source Specification: For most experiments, we use 256x256 grayscale images

from the COCO [22] dataset. Datasets are split into training, validation and test

sets. Training and validation datasets are used to train deep learning models.

The validation dataset can be switched with the training dataset for cross-

validation. Test datasets are not seen during training and are used to test model

65

performance. For each experiment, we will lay out the source specifications.

Please note that when ‘x2’ is used to refer to dataset size, it denotes that each

image has a steganographic counterpart, thereby doubling the dataset size.

• Steganographic Embedder Specification: To simplify experiments, we use

only spatial and deep learning steganographic embedders. For each experi-

ment, we specify the steganographic embedders and embedding ratios used on

the dataset. For SteganoGAN, we report Reed Solomon bpp [47], which is an

equivalent measure to standard bpp.

• Training Specification: Models are trained for 100 epochs. Learning rate

is set to 0.001 which decays once the loss plateaus for 10 epochs. We use a

batch size of 32, which is composed of 16 cover images and 16 steganographic

counterparts.

• Software Specification: StegBench is leveraged as an evaluation orchestration

tool. PyTorch is used to implement deep learning models. Finally, we use the

MATLAB implementations for DDE Lab tools (WOW, S UNIWARD, HILL).

• Hardware Specification: We use an AWS Ubuntu Deep Learning AMI p2

machine with 8 Tesla K80 GPUs and 32 vCPUs.

5.1.1 Performance Measurement

We calculate the total detection error by setting an unoptimized threshold of 0.5 since

model output is in the range: [0,1]. We use the following decision tree on the output

of the deep learning steganalyzer to classify an input image:

• < 0.5: Normal

• ≥ 0.5: Steganographic

Once these classifications are made, we calculate the total detection error, which

is the proportion of incorrect classifications.

66

5.2 Benchmark

We first conduct an experiment to benchmark our steganalyzers, ArbNet and FastNet,

against several state-of-the-art steganalyzers. We use the following procedure:

1. Train YeNet steganalyzer using the following datasets:

• Source Specification: COCO: 9,000x2 training, 1,000x2 validation

• Steganographic Embedder Specification: WOW at 0.1 bpp

2. There will be one YeNet steganalyzer at the end of step 1. Test it on the

following dataset:

• Source Specification: COCO: 5,000x2 test. The test dataset is gener-

ated with the same steganographic embedder: WOW at 0.1 bpp

3. Repeat steps 1-2 for [0.2→ 0.5] bpp.

4. Repeat steps 1-3 for steganographic embedders: S UNIWARD and HILL.

5. Repeat steps 1-4 for XuNet, SRNet, ArbNet, and FastNet.

6. The resulting detection errors on the test sets can be found in Table B.1. The

detection error trend lines are shown in Figure 5-1. The number of times a

specific steganalyzer achieved the best performance for a given embedding ratio

across the three steganographic embedders is reported in Table 5.1.

Using the results from the experiment, we make the following observations:

• Trends agree with the literature - We find good agreement between the

trends in Figure 5-1 and the trends agreed upon in the literature [5, 41, 44].

Specifically, we find that YeNet and XuNet perform similarly across all stegano-

graphic embedders and embedding ratios. We also find that SRNet always has

a lower detection error across these configurations. These trends match with

those that have commonly been found in other steganalysis survey papers.

67

0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

Embedding Ratio

D
et
ec
ti
on

E
rr
or

WOW

YeNet
XuNet
SRNet
ArbNet
FastNet

0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

Embedding Ratio

D
et
ec
ti
on

E
rr
or

S UNIWARD

YeNet
XuNet
SRNet
ArbNet
FastNet

0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

Embedding Ratio

D
et
ec
ti
on

E
rr
or

HILL

YeNet
XuNet
SRNet
ArbNet
FastNet

Figure 5-1: Detection error for five steganalyzers on test sets embedded with three
different steganographic embedders. SRNet and ArbNet always perform the best
across each test set configuration compared to the other steganalyzers. YeNet, XuNet,
and FastNet all perform similarly, except for at higher embedding ratios where YeNet
gets a slightly higher detection error.

Detectors 0.1 0.2 0.3 0.4 0.5
YeNet 0 0 0 0 0
XuNet 0 0 0 0 0
SRNet 0 2 2 2 3
ArbNet 3 1 1 1 0
FastNet 0 0 0 0 0

Table 5.1: Number of wins across each of the three steganographic embedders (WOW,
S UNIWARD, HILL) for a given embedding ratio. Bolded numbers correspond to the
steganalyzer that had the greatest number of wins for a given embedding ratio across
the three steganographic embedders.

• SRNet and ArbNet are the best performing steganalyzers - SRNet and

ArbNet are the best performing models across all steganographic embedders

and embedding ratios. Compared to the other networks, SRNet and ArbNet

both use skip connections and are able to more effectively compute residual

noise signal.

• ArbNet is good at low embedding ratios - ArbNet shows stronger per-

formance at lower embedding ratios. Specifically, in Table 5.1, we see that

ArbNet shows its strongest performance at 0.1 bpp. This suggests that using

techniques found in ArbNet could help solve the low embedding ratio problem.

More research is needed to identify why these techniques are effective here.

• FastNet performs comparably to other steganalyzers - FastNet performs

68

comparably to other steganalyzers. FastNet is based on the EfficientNet archi-

tecture, which was designed specifically for the practical need of training and

execution efficiency. Thus, this result shows a promising sign that FastNet could

be a way to generate a steganalyzer that meets this practical need.

5.3 Image Size Mismatch Problem

Problem Definition: Most steganalyzers are limited to only detecting images of a

specific size. Those that do detect arbitrary image sizes use techniques such as global

average pooling that lead to less accurate results.

Proposed Solution: Train a steganalyzer which has a spatial pyramid pooling layer

such as ArbNet on multiple image sizes.

Experimental Procedure: To test this solution, we use the following steps:

1. Train SRNet and YeNet on the following datasets:

• Source Specification: COCO(256x256): 9,000x2 training, 1,000x2 vali-

dation

• Steganographic Embedder Specification: WOW at 0.5 bpp

2. Repeat step 1 for the following image sizes: 512x512 and 1024x1024

3. Train ArbNet on the following dataset:

• Source Specification: COCO(256x256,512x512, and 1024x1024): 9,000x2

training, 1,000x2 validation

• Steganographic Embedder Specification: WOW at 0.5 bpp

4. There will be three SRNet, three YeNet, and one ArbNet steganalyzer at the

end of steps 1-3. Test each one on the following datasets:

• Source Specification: COCO(256x256, 512x512, or 1024x1024): 5,000x2

test. The test dataset is generated with the same steganographic embed-

der: WOW at 0.5 bpp.

69

5. Repeat steps 1-4 for steganographic embedder HILL at 0.5 bpp

6. The resulting detection errors can be found in Table B.2.

7. For each steganalyzer, we subtract the 256x256 test set detection error from the

1024x1024 test set detection error. This number is reported in Figure 5-2.

WOW HILL
0

2

4

6

1.4

2.6

1.2 1.4

2.7
3.1

Steganographic Embedders

P
er
fo
rm

an
ce

Im
pr
ov
em

en
t
(%

)
Arbitrary Image Size Detection

YeNet
SRNet
ArbNet

Figure 5-2: Performance gain from 256x256 to 1024x1024 across three different ste-
ganalyzers for two steganographic embedders (WOW, HILL). The performance gain
is the difference in detection error between these two test sets. Across the board,
steganalyzers improved in performance when detecting images of higher sizes.

Using the results from the experiment, we make the following observations:

• Steganalyzer performance improves as image size increases - In Figure

5-2, we see that for both WOW and HILL, all three steganalyzers improve in

performance when tested on the 1024x1024 test set compared to the 256x256

test set. We believe that larger image sizes allow steganalyzers to capture larger

amounts of steganographic signal, which makes for easier steganalysis detection.

• ArbNet is an effective solution for the image size mismatch problem

- We find that ArbNet can be robustly applied to various image sizes, mak-

ing it an effective solution. Specifically, ArbNet is able to perform effectively

70

across all image sizes even though it was trained on a composite of image sizes.

Furthermore, ArbNet shows better performance gains than other steganalyzers

on larger image sizes. This suggests that using a spatial pyramid pooling layer

like we did in ArbNet is an effective way to avoid downsampling steganographic

signal when detecting larger images.

5.4 Source Mismatch Problem

Problem Definition: Steganalyzers perform poorly on datasets that come from a

different source than the dataset used to train the steganalyzers.

Proposed Solution: Increase source diversity in the training dataset.

Experimental Procedure: To test this solution, we use the following steps:

1. Train SRNet steganalyzers on the following datasets:

• Source Specification: COCO, BOSS, COCO + BOSS: 9,000x2 training,

1,000x2 validation

• Steganographic Embedder Specification: WOW at 0.5 bpp

2. There will be three SRNet steganalyzers at the end of step 1. Test each one on

the following datasets:

• Source Specification: COCO: 5,000x2 test. BOSS: 5,000x2 test. The

test datasets are generated using the same steganographic embedder: WOW

at 0.5 bpp.

3. Repeat steps 1 and 2 for steganographic embedder HILL at 0.5 bpp.

4. The detection errors on the test datasets are listed in Table B.3 and graphically

displayed in Figure 5-3.

5. Using the detection errors, we calculate a customized metric known as the source

mismatch metric, shown in Table 5.2, using the following steps:

71

BOSS COCO BOSS+COCO
0

0.2

0.4

0.6

0.13

0.27

0.16
0.18

0.11 0.13

Training Datasets

D
et
ec
ti
on

E
rr
or

WOW

BOSS-Test
COCO-Test

BOSS COCO BOSS+COCO
0

0.2

0.4

0.6

0.18

0.35

0.21
0.24

0.16 0.17

Training Datasets

D
et
ec
ti
on

E
rr
or

HILL

BOSS-Test
COCO-Test

Figure 5-3: Detection error for SRNet when trained on either BOSS, COCO, or
BOSS+COCO and tested on either BOSS or COCO. The left plot shows the detection
error for datasets embedded with WOW and the right plot shows detection error for
datasets embedded with HILL.

(a) Collect all detection errors for steganalyzers tested on the COCO dataset

and either trained on BOSS or COCO.

(b) Take the difference in the detection error between the BOSS-trained and

COCO-trained steganalyzers for WOW. In this case, this would be 0.18

(BOSS) - 0.11 (COCO) = 0.07.

(c) Take the difference in the detection error between the BOSS-trained and

COCO-trained steganalyzers for HILL. In this case, this would be 0.24

(BOSS) - 0.16 (COCO) = 0.08.

(d) Take the average of the two differences (0.08+0.07
2

= 0.075). This is the

source mismatch metric for BOSS-trained steganalyzers.

(e) Repeat steps 1-4 for steganalyzers tested on the BOSS dataset.

Using the results from the experiment, we make the following observations:

• Steganalyzers perform best when the training and test dataset sources

match - As seen in both plots of Figure 5-3, the best detection error is always

72

Train Set Source Mismatch Metric
BOSS 0.075
COCO 0.155

Table 5.2: The source mismatch metric is the average increase in detection error
for a steganalyzer trained on a dataset, D, compared to a steganalyzer trained on
a dataset, D

′
, when both are tested on D

′
. In this table, we show the comparisons

between BOSS and COCO. The metric shows how effective each source is for training
when tested on another source. A lower metric indicates that the training dataset is
better for overcoming the source mismatch problem.

achieved when the training and test datasets come from the same source. For

example, for WOW, the lowest detection error is achieved by SRNet trained on

COCO and tested on COCO. We expect this result since steganalyzers trained

and tested on the same dataset source can exploit source distribution signals.

• All steganalyzers trained and tested on different dataset sources suffer

from the source mismatch problem - In both plots of Figure 5-3, we see that

steganalyzers that are trained and tested on different dataset sources perform

poorly. For example, SRNet trained on COCO using HILL achieves a detection

error of 0.16 on a COCO test set, while it achieves a fairly poor detection error

of 0.35 on a BOSS test set.

• BOSS-trained steganalyzers overcome the source mismatch problem

more effectively than COCO-trained steganalyzers - Using the source

mismatch metrics from Table 5.2, we see that BOSS-trained steganalyzers achieve

a metric of 0.075 while COCO-trained steganalyzers achieve a metric of 0.155.

A lower source mismatch metric indicates that the training dataset helps a ste-

ganalyzer better overcome the source mismatch problem. We believe that this

result is likely because the BOSS dataset is more ‘textured’ (has more high-

frequency signal) and presents a harder steganalysis challenge [49].

• Increasing source diversity is useful in limited contexts - For stegana-

lyzers trained on the BOSS+COCO dataset, we see that the detection error on

BOSS and COCO decreased compared to just being trained on either BOSS or

73

COCO. Yet, steganalyzers that were trained on both datasets performed worse

compared to the matching train/test situations (i.e. COCO-train/COCO-test,

BOSS-train/BOSS-test). Still, to conclusively identify the effects of increasing

source diversity, we will need to test all steganalyzers on a third independent

dataset, which we have not done in this thesis.

5.5 Steganographic Embedder Mismatch Problem

In this section, we experiment with several proposed solutions to the steganographic

embedder mismatch problem. We define the problem as follows:

Problem Definition: Steganalyzers tend to fail at detecting steganographic images

that are created from a steganographic embedder that they have not been trained on.

5.5.1 Single Steganographic Embedder

Proposed Solution: Use deep learning steganographic embedders such as SteganoGAN

to create training datasets.

Experimental Procedure: To test this solution, we use the following steps:

1. Train SRNet steganalyzer on the following datasets:

• Source Specification: COCO; 9,000x2 training, 1,000x2 validation

• Steganographic Embedder Specification: WOW at 0.5 bpp.

2. Repeat step 1 for steganographic embedders: S UNIWARD, HILL, and SteganoGAN

at 0.5 bpp.

3. There will be four SRNet steganalyzers at the end of steps 1 and 2. Test each

one on the following datasets:

• Source Specification: COCO; 5,000x2 test.

• Steganographic Embedder Specification: Each steganalyzer is tested

on all the following steganographic embedders: WOW, S UNIWARD, HILL,

or SteganoGAN at 0.5 bpp

74

4. The resulting detection errors are listed in Table B.4 and graphically shown in

Figure 5-4.

5. For each steganographic embedder, we take the difference between the mismatched-

scenario detection error and the matching-scenario detection error to get the rel-

ative increase in detection error when the train/test steganographic embedders

are mismatched. These metrics are plotted in Figure 5-5.

WOW S UNIWARD HILL SteganoGAN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.11

0.18

0.32

0.37

0.16
0.14

0.29

0.37

0.27 0.28

0.16

0.35

0.29 0.31 0.32

0.21

Test Steganographic Embedders

D
et
ec
ti
on

E
rr
or

SRNet Performance

WOW-Train
S UNIWARD-Train
HILL-Train
SteganoGAN-Train

Figure 5-4: Total detection error for steganalyzers trained on the steganographic em-
bedder specified by the legend and tested on the steganographic embedder specified
by the x-axis. In all test situations, the lowest detection error was achieved by ste-
ganalyzers trained on the same steganographic embedder. SteganoGAN was by far
the hardest steganographic embedder to detect.

Using the results from the experiment, we make the following observations:

• Steganalyzers achieve the highest performance when the training and

test steganographic embedder are the same - In Figure 5-4, we see that

for each of the test sets, the lowest detection error is always achieved when

the training/test steganographic embedder are the same. For example, on the

75

S UNIWARD HILL SGAN
0.0

0.1

0.2

0.3

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

In
cr
ea
se

(∆
)

WOW-Trained

WOW HILL SGAN
0.0

0.1

0.2

0.3

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

In
cr
ea
se

(∆
)

S UNIWARD-Trained

WOW S UNIWARD SGAN
0.0

0.1

0.2

0.3

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

In
cr
ea
se

(∆
)

HILL-Trained

WOW S UNIWARD HILL
0.0

0.1

0.2

0.3

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

In
cr
ea
se

(∆
)

SteganoGAN-Trained

Figure 5-5: The relative increase in detection error for SRNet during the mismatch
steganographic embedder test scenario compared to the matching scenario.

WOW test set, the lowest detection error of 0.11 is achieved by a WOW-trained

steganalyzer. We expect this result since deep learning steganalyzers are opti-

mized for the steganographic embedder that they are trained on.

• Steganalyzers achieve good performance when the training and test

steganographic embedder are similar - In Figure 5-4 and Figure 5-5, we

see that WOW-trained steganalyzers perform reasonably well on S UNIWARD

test sets and vice versa. Specifically, these steganalyzers achieve comparable

detection errors. For example, on the WOW test set, the S UNIWARD-trained

76

steganalyzer achieves a detection error only 0.05 worse than the WOW-trained

steganalyzer. We believe this is because WOW and S UNIWARD use similar

distortion functions to embed steganographic content into images. Thus, stegan-

alyzers are able to accurately detect steganographic images from non-trained

steganographic embedders when the trained and non-trained steganographic

embedders work similarly.

• Steganographic images from SteganoGAN are the hardest to detect -

In Figure 5-4 and Figure 5-5, we can see that for the train/test mismatch situa-

tion, testing on SteganoGAN always produces the highest total detection error

and consequently the highest increase in detection error. For example, stegan-

alyzers trained on WOW, HILL, or S UNIWARD show an increase of at least

0.2 in detection error when detecting steganographic images from SteganoGAN.

This shows that SteganoGAN is the hardest steganographic embedder to detect

when it has not been trained on. Furthermore, it shows that SteganoGAN em-

beds steganographic signal in a more secure manner, as steganographic signals

from other steganographic embedders are not effective for classifying stegano-

graphic images generated by SteganoGAN.

• Steganalyzers trained on SteganoGAN seem to be better at over-

coming the steganographic embedder mismatch problem - We find that

steganalyzers trained on SteganoGAN do not show significant increases in de-

tection error when detecting steganographic images from other steganographic

embedders. Specifically, in the fourth plot of Figure 5-5, we see that detection

error does not increase much against other steganographic embedders. In this

plot, we see a relatively flat slope compared to the other plots which indicates

that SteganoGAN training datasets are useful at learning other steganographic

signals. Still, when looking at Figure 5-4, we see that SteganoGAN-trained ste-

ganalyzers get the highest detection error on all other steganographic embed-

ders. More research is needed to understand the effectiveness of SteganoGAN

training examples for the steganographic embedder mismatch problem.

77

5.5.2 Multiple Steganographic Embedders

Proposed Solution: Use multiple steganographic embedders to create training

datasets.

Experimental Procedure: To test this solution, we use the following steps:

1. Train SRNet steganalyzers on the following dataset:

• Source Specification: COCO; 9,000x2 training, 1,000x2 validation

• Steganographic Embedder Specification: WOW + HILL

2. Repeat step 1 for steganographic embedder: SteganoGAN + SteganoGAN at

0.5 bpp.

3. There will be two SRNet steganalyzers at the end of steps 1 and 2. Test each

one on the following datasets:

• Source Specification: COCO; 5,000x2 test

• Steganographic Embedder Specification: Each steganalyzer is tested

on all the following steganographic embedders: WOW, HILL, or SteganoGAN

at 0.5 bpp

4. The resulting detection errors are listed in Table B.5.

5. We graphically compare the results to the single steganographic embedder re-

sults from section 5.5.1 in Figure 5-6.

Using the results from the experiment, we make the following observations:

• Mixing spatial steganographic embedders mitigates the steganographic

embedder mismatch problem in limited contexts - In the left plot of

Figure 5-6, we see how the WOW+HILL-trained steganalyzer compares to the

WOW-trained steganalyzer. Increasing the spatial steganographic embedder di-

versity did allow the steganalyzer to effectively reduce detection error on HILL

but has relatively little impact on reducing detection error on SteganoGAN.

78

WOW HILL SGAN
0

0.2

0.4

0.6

0.11

0.32
0.37

0.12

0.18

0.34

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

WOW-Train
WOW+HILL-Train

WOW HILL SGAN
0

0.2

0.4

0.6

0.29
0.32

0.21

0.26 0.28

0.11

Test Steganographic Embedder

D
et
ec
ti
on

E
rr
or

SGAN-Train
SGAN+SGAN-Train

Figure 5-6: The gray bars show the detection error of SRNet trained on a single
steganographic embedder while the red bars show the detection error of SRNet trained
on multiple steganographic embedders. The detection error is calculated on a COCO
dataset embedded by the steganographic embedder labeled on the x-axis.

Thus, increasing spatial steganographic embedder diversity only shows improve-

ment against traditional steganographic embedders.

• Mixing deep learning steganographic embedders mitigates the stegano-

graphic embedder mismatch problem in all contexts - In the right plot

of Figure 5-6, we see that increasing SteganoGAN instances in the training

dataset reduces detection error in all contexts. This finding further emphasizes

the effectiveness of effectiveness of SteganoGAN training examples in helping

train a universal steganalyzer.

5.6 Summary

1. Training and Execution Efficiency Problem - FastNet provides a promis-

ing solution to improve efficiency since it achieves relatively accurate detection

results using an EfficientNet architecture.

2. Low Embedding Ratio Problem - DenseNet architectures seem to be more

effective than other techniques at detecting lower embedding ratios since they

more effectively boost steganographic signal.

79

3. Image Size Mismatch Problem - Spatial pyramid pooling layers in deep

learning architectures (i.e. ArbNet) enable and improve accuracy on arbitrary

image size detection.

4. Source Mismatch Problem - Source diversity in training datasets with a

preference for textured datasets like BOSS helps slightly mitigate this problem

but also leads to decreases in performance.

5. Steganographic Embedder Mismatch Problem - Training datasets gener-

ated by multiple deep learning steganographic embedders such as SteganoGAN

help steganalyzers better overcome this problem.

80

Chapter 6

Adversarial Attacks on

Steganalyzers

In the previous chapters, we focused on identifying failure modes common to ste-

ganalysis and building robust deep learning steganalyzers. However, we have not yet

discussed specific issues relevant to machine learning. Specifically, machine learning

models are particularly prone to a class of attacks known as adversarial attacks. In

these attacks, small changes known as adversarial perturbations are added to the input

data to create an adversarial example. These small changes are used to deliberately

fool a machine learning system into misclassifying the adversarial example. There

are several adversarial attack scenarios that can be used to generate these adversarial

perturbations. An exhaustive summary of different adversarial attack scenarios can

be found in [19]. We summarize two of them below:

• White Box - These adversarial attacks are able to use full knowledge of the

model including model type, model architecture, and values of all parameters

and weights to generate adversarial perturbations.

• Black Box - These adversarial attacks must use limited to no knowledge about

the model (for example, only the model outcome) to generate adversarial per-

turbations.

In this chapter, we only focus on the white box scenario since it is the most com-

81

monly researched attack scenario [19]. In this scenario, the most common methods

for generating adversarial perturbations use the gradient of the model’s loss function.

Two gradient-based methods are the fast gradient sign method (FGSM) [13] and the

projected gradient descent (PGD) method [24]. For additional detail on the exact

mechanics of these gradient-descent methods, we refer the reader to section 2.1.3.

Since white-box adversarial attacks are able to effectively create adversarial exam-

ples that fool deep learning models, we believe it is important to examine how they

can be used to fool a deep learning steganalyzer. Specifically, we aim to understand if

deep learning steganalyzers are also prone to these attacks and if so, what preventive

measures can be used to defend against them.

Thus, we must first explore how deep learning steganalyzers can be attacked using

a white-box adversarial approach. In section 6.1, we explain the design of our attack

system, StegAttack. In section 6.2, we conduct experiments to test the effectiveness

of StegAttack. Finally, in section 6.3, we study how adversarial training procedures

can be used to create universal and robust deep learning steganalyzers.

6.1 StegAttack System Design

6.1.1 Goals and Definitions

Using a white-box attack model, StegAttack aims to generate an adversarial stegano-

graphic image using a normal steganographic image. An adversarial steganographic

image is a special type of steganographic image that meets the following conditions

for a given deep learning steganalyzer:

• [Condition 1] Detected by Steganalyzer: It can be detected by the ste-

ganalyzer without the adversarial perturbation.

• [Condition 2] Fools Steganalyzer: It cannot be detected by the steganalyzer

with the adversarial perturbation.

• [Condition 3] Decodable: It must be decodable.

82

[Condition 1]
Detected by
Steganalyzer

[Condition 2]
Fools

Steganalyzer
[Condition 3]
DecodableX

Discard

Failure

No

Success
Yes Yes

s XsX Yes

No

Failure

No

Add
Adversarial

Perturbation

Add
Steganographic

Content

Figure 6-1: StegAttack V1 uses the process flow shown in this figure to introduce
adversarial perturbations to a steganographic image to try to generate an adversarial
steganographic image. V1 first check that a steganographic image, XS, can already
be detected by a steganalyzer. It then introduces adversarial perturbations to create
X

′
S. If X

′
S can fool the steganalyzer and is still decodable, the attack is a success.

6.1.2 StegAttack V1

In this subsection, we describe the first version of StegAttack, shown in Figure 6-1.

In this version, we use the following procedures:

1. Adding Steganographic Content - We first generate a normal stegano-

graphic image that can be used by StegAttack. To do this, we add stegano-

graphic content to an image, X, to create a steganographic image, XS

2. [Condition 1] Detected by Steganalyzer - The first condition of an adver-

sarial steganographic image requires that the steganographic image is detectable

by the steganalyzer prior to the addition of any adversarial perturbation. If the

steganographic image, XS, is already able to avoid detection, the attack is dis-

carded, since the steganographic image does not meet this condition and there

is no need to add any perturbation to it.

3. Generating and Adding Adversarial Perturbations - For a steganographic

image, XS, that can be detected by the steganalyzer, we add adversarial pertur-

bations. To generate the adversarial perturbation, StegAttack uses a gradient-

based method (for instance, FGSM). The adversarial perturbation is then added

to the steganographic image, XS, to create X
′
S

4. [Condition 2] Fools Steganalyzer - Once the adversarial perturbation is

added, StegAttack must check if the steganographic image, X
′
S, can fool the

83

Yes

Failure
No

No

Add Steganographic
Content

Xs+s

[Condition 1]
Detected by
Steganalyzer

[Condition 2]
Fools

Steganalyzer

[Condition 2]
Fools

Steganalyzer

[Condition 3]
DecodableX

Discard

Failure

No

Success
Yes Yes

s XsX Yes

No

Add
Adversarial

Perturbation

Add
Steganographic

Content

Figure 6-2: StegAttack V2, shown in the boxed area, expands on V1 by adding
steganographic content to non-decodable steganographic images that can already fool
the steganalyzer to try to create additional adversarial steganographic images. Ste-
gAttack V2 ensures that all conditions for an adversarial steganographic image still
hold by checking if the re-embedded image, X

′
S+S can still fool the steganalyzer.

steganalyzer. In this context, fooling the steganalyzer means that the stegana-

lyzer classifies X
′
S as a normal image. If the steganographic image X

′
S cannot

fool the steganalyzer, the attack fails, since X
′
S does not meet the second con-

ditional requirement of an adversarial steganographic image.

5. [Condition 3] Decodable - The steganographic image, X
′
S, must still be

decodable to be considered a steganographic image. This step is necessary

since adversarial perturbations might corrupt the content in the steganographic

image, thereby making the image undecodable. If the steganographic image

is undecodable, the steganographic image is considered a normal image and

does not meet the third condition for an adversarial steganographic image.

However, if the steganographic image is decodable, then X
′
S is an adversarial

steganographic image.

6.1.3 StegAttack V2

In the previous section, we used adversarial perturbations to generate adversarial

steganographic images. However, we may have been too quick to discard the non-

decodable X
′
S - after all, this image has already passed two of the three conditions

required for it to be an adversarial steganographic image. Thus, in this next iteration

of StegAttack, we focus on a procedure that tries to modify any non-decodable X
′
S

84

such that it satisfies the third condition. By doing this, we improve StegAttack’s

effectiveness at generating adversarial steganographic images.

As shown in the boxed area of Figure 6-2, we use the following procedure to

complete the StegAttack system:

1. StegAttack V1 - We follow all steps included in the V1 system. These steps

must still be followed to generate the adversarially-perturbed image, X
′
S. In

this part of StegAttack, we capture any image, X
′
S, that could not be decoded

but did meet the other two conditions for an adversarial steganographic image.

2. [Condition 3] Decodable - To satisfy condition three, we add steganographic

content to X
′
S to generate X

′
S+S. By adding the steganographic content again,

we can be sure that the steganographic image, X
′
S+S, is decodable. But by doing

this, we might also accidentally invalidate condition two since X
′
S+S might not

be able to fool the steganalyzer anymore.

3. [Condition 2] Fools Steganalyzer - To verify that condition two still holds,

StegAttack checks whether X
′
S+S can fool the steganalyzer. If it is able to

fool the steganalyzer, X
′
S+S is considered an adversarial steganographic image.

Otherwise, the attack fails since the steganographic image, X
′
S+S, does not meet

condition two.

6.1.4 StegAttack Process Flow

The entire StegAttack process flow, shown in Figure 6-2, can be described using the

following steps:

1. Action: Add steganographic content to an image X to produce XS.

2. Decision: DETECTABLE(XS, Steganalyzer):

2.1. Result: Yes - The attack proceeds.

2.2. Result: No - The attack is discarded.

85

3. Action: Generate and add adversarial perturbations to XS to produce X
′
S

using a gradient-based method.

4. Decision: FOOLS(X
′
S, Steganalyzer):

4.1. Result: Yes - The attack proceeds.

4.2. Result: No - The attack fails.

5. Decision: DECODABLE(X
′
S)

5.1. Result: Yes - The attack succeeds.

5.2. Result: No - The attack proceeds.

6. Action: Embed X
′
S with the same steganographic content from step 1, to

produce X
′
S+S.

7. Decision: FOOLS(X
′
S+S, Steganalyzer)

7.1. Result: Yes - The attack succeeds.

7.2. Result: No - The attack fails.

6.2 StegAttack Effectiveness

In this section, we test the effectiveness of StegAttack on different steganalyzers. In

section 6.2.1, we show example adversarial steganographic images. In section 6.2.2,

we detail the experiment setup that is common to each of the experiments conducted

in this section. In section 6.2.3, we test how effective StegAttack is compared to a

naive method. In section 6.2.4 we test how different gradient-descent methods affect

StegAttack effectiveness.

6.2.1 Example Adversarial Steganographic Images

Figure 6-3 shows example adversarial steganographic images generated using StegAt-

tack with FGSM as its gradient-based method. We note that this attack did not

86

Figure 6-3: Adversarial steganographic images that are generated using StegAttack
with FGSM(ε = 0.3). The adversarial steganographic image image quality is low
because the images are generated using a heavy attack that modifies significant image
content. Reducing the step size will enable better image quality but reduce StegAttack
efficacy.

create high quality images. This is likely because we configure FGSM with a step size

of ε = 0.3, which ends up heavily modifying the steganographic image. We are quite

confident that image quality can be improved by reducing the step size to reduce the

effect of the perturbation. It is important to note that reducing the step size will also

likely reduce StegAttack’s effectiveness.

6.2.2 Experiment Setup

For the experiments in section 6.2.3 and section 6.2.4, we follow the same setup

procedures described here. We use the following steps:

1. Train four steganalyzers (XuNet, YeNet, ArbNet, SRNet) using a COCO dataset

of 9,000x2 training, 1,000x2 validation images embedded with LSB at 0.5 bpp

2. Collect a test set of 2,000 other steganographic images using the COCO dataset

and LSB at 0.5 bpp. All images in the test set must meet condition 1 of

87

Steganalyzer Naive Attack StegAttack
XuNet 0% 75.2%
YeNet 0% 81.3%

ArbNet 0% 6.2%
SRNet 0% 4.8%

Table 6.1: Missed detection probability (PMD) on four steganalyzers using a stegano-
graphic image test set with either a naive Gaussian-based attack or StegAttack.

StegAttack (they already detectable) so that results are not biased by inherent

steganalyzer inaccuracies.

3. For each attack, the input steganographic image data is normalized to [0,1].

Attack parameters are scaled accordingly.

4. Each attack is then applied to the four steganalyzers using the test stegano-

graphic image dataset.

5. Upon attack completion, we record the percentage of adversarial steganographic

images that each attack method generated. This measurement corresponds to

each steganalyzer’s missed detection probability, PMD.

6.2.3 Effectiveness Compared to Naive Method

In this experiment, we compare the effectiveness between StegAttack and a naive

Gaussian-based attack method against four different steganalyzers. We use the fol-

lowing attack method specifications:

• StegAttack - We use the gradient-descent method, FGSM, with a step size of

ε = 0.3 to generate the adversarial perturbation.

• Naive Attack - The naive attack method uses the exact same attack pro-

cess flow as StegAttack but generates the adversarial perturbation by sampling

Gaussian noise w/ σ = 0.5.

Table 6.1 reports results from our effectiveness experiment. Using this data, we

make the following observations:

88

• Naive Gaussian-based attack method is ineffective - We find that the

Gaussian-based attack method is unable to produce any adversarial stegano-

graphic images. This result makes sense since the adversarial perturbation used

by the Gaussian-based attack method is nothing more than random noise that

does not introduce significant confounding signals. The random noise usually

ends up simply corrupting the steganographic signal even when the perturbed

image does fool the steganalyzer. Furthermore, re-embedding images that do

fool the steganalyzer end up making them detectable again.

• StegAttack generates adversarial steganographic images for all ste-

ganalyzers - For every steganalyzer, StegAttack was able to generate some

amount of adversarial steganographic images.

• StegAttack is less effective on certain steganalyzers - StegAttack’s effec-

tiveness is not consistent across steganalyzers. Specifically, StegAttack is highly

effective on XuNet and YeNet but not as much on ArbNet and SRNet. We find

that more robust steganalyzers tend to have the following architectural simi-

larities: (1) they disable pooling in the front part of the network; (2) they use

skip connections and other methods to better computes noise residuals; and (3)

they are deeper networks that more effectively extract steganographic signal.

Each of these features helps these steganalyzers avoid downsampling input data,

which might help them be more robust against StegAttack.

6.2.4 Effectiveness of Different Gradient-Descent Methods

In this experiment, we test how using different gradient-based methods impact the

effectiveness of StegAttack. We use the following gradient-based methods:

• FGSM w/ ε = 0.3

• PGD w/ 40 iterations, ε = 0.3

Table 6.2 lists the results from this experiment. Using these results, we make the

following observations:

89

Steganalyzer FGSM PGD
XuNet 75.2% 98.2%
YeNet 81.3% 97.8%

ArbNet 6.2% 27.4%
SRNet 4.8% 15.2%

Table 6.2: Missed detection probability (PMD) on four steganalyzers using a stegano-
graphic image test set with one of two gradient-descent methods for StegAttack.

• Stronger gradient-descent methods are more successful - As seen in

Table 6.2, PGD is more effective than FGSM at generating adversarial stegano-

graphic images.

• StegAttack is less effective on certain steganalyzers even with better

gradient-descent methods - In Table 6.2, we see that even though PGD pro-

duces more adversarial steganographic images, it still not very effective against

ArbNet and SRNet.

6.3 Adversarial Training

We now explore how adversarial training affects steganalyzer performance. Adversar-

ial training is the use of adversarial images as part of a training set to increase model

robustness [19]. In traditional adversarial training methods, the adversarial examples

are generated during training time and included as part of a modified loss function.

However, in our setup, we cannot use StegAttack to generate adversarial exam-

ples during training time. This is because StegAttack requires the steganalyzer to

already be able to detect steganographic images so that it can turn those images into

adversarial steganographic images. Doing this during training time is not feasible.

Instead, we generate adversarial steganographic images after training and then later

update the steganalyzer using these images.

In section 6.3.1, we experiment with how adversarial training affects a stegana-

lyzer’s resilience to StegAttack. In section 6.3.2, we experiment with how adversar-

ial training impacts steganalyzer performance on the source mismatch problem and

steganographic embedder mismatch problem.

90

Steganalyzer PMD

YeNet 97.8%
YeNet-ADV 63.1%

Table 6.3: Missed detection probability (PMD) on two steganalyzers using stegano-
graphic image test set against StegAttack. YeNet is a normal YeNet steganalyzer and
YeNet-ADV is a YeNet steganalyzer updated with adversarial steganographic images.

6.3.1 Defending Against StegAttack

In this experiment, we test whether adversarial training improves a steganalyzer’s

resilience to StegAttack. We use the following steps:

1. Train a YeNet steganalyzer using a COCO dataset of 9,000x2 training, 1,000x2

validation images embedded with LSB at 0.5 bpp.

2. Apply StegAttack using PGD(40 iterations, ε = 0.3) to produce adversarial

steganographic images.

3. Using a copy of YeNet, we update the copy with adversarial steganographic

images to create YeNet-ADV.

4. Collect a test set of 2,000 steganographic images from COCO with LSB at 0.5

bpp. All images in the test set must meet condition 1 of StegAttack.

5. Apply StegAttack using PGD(40 iterations, ε = 0.3) with the test set and report

PMD.

Table 6.3 lists the results of the defense experiment. Using these results, we make

the following observations:

• Adversarial training does improve steganalyzer resilience to StegAt-

tack - We find that adversarial training reduces StegAttack efficacy but not

to the point where the steganalyzer can be considered resilient to StegAttack.

Still, our results are not conclusive as we only test one attack parameter under

a constrained environment. Future experiments will need to further investi-

gate how effective these examples truly are at building steganalyzer resilience

to StegAttack.

91

• New training methods are needed for better resilience - In our current

setup, we cannot effectively generate adversarial examples during training time.

New methods are needed to do this in order to develop better steganalyzer

resilience to StegAttack.

6.3.2 Adversarial Training for Universal Steganalysis

Next, we explore how adversarial examples can be used to improve a model’s ability

for steganographic embedder mismatch problem and the source mismatch problem.

In this experiment, we use the following steps:

1. Train two steganalyzers, YeNet and SRNet, using a COCO dataset of 9,000x2

training, 1,000x2 validation images embedded with WOW at 0.5 bpp

2. Apply StegAttack using PGD(40 iterations, ε = 0.3) to both YeNet and SRNet

to produce two adversarial datasets: SA-YeNet and SA-SRNet.

3. Create two additional steganalyzers by doing the following:

• SRNet-MIX - Update the original SRNet using SA-YeNet.

• SRNet-ADV - Update the original SRNet using SA-SRNet.

4. Test all three steganalyzers (SRNet, SRNet-MIX, SRNet-ADV) on the two fol-

lowing datasets and report PMD:

• Change-Embedder Test - COCO: 5,000x2; HILL at 0.5 bpp

• Change-Source Test - BOSS: 5,000x2; WOW at 0.5 bpp.

Figure 6-4 shows a summary graph of the results from this experiment for SRNet.

All raw results can be found in Table B.7. Using these results, we can make the

following observations:

• Adversarial training slightly improves steganographic embedder mis-

match problem - The red line shows steganalyzer performance on the changed

92

SRNet SRNet-MIX SRNet-ADV
0.1

0.2

0.3

0.4

0.5

Steganalyzer

D
et
ec
ti
on

E
rr
or

Change-Embedder Test
Change-Source Test

Figure 6-4: The detection error of three different steganalyzers on a changed embedder
test set and changed source test set. SRNet is a normal SRNet model, SRNet-MIX is
a SRNet model updated with YeNet adversarial steganographic images, and SRNet-
ADV is a SRNet model updated with SRNet adversarial steganographic images.

embedder test set. We find that using adversarial training reduces the detec-

tion error for steganographic embedder mismatch problem, but not by a very

significant amount.

• Adversarial training does mitigate the source mismatch problem - The

blue line shows steganalyzer performance on the changed source test set. We

find that using adversarial training reduces the detection error, which suggests

that adversarial examples help prevent over-fitting to source distribution sig-

nals. Still, when we compare to reference results in section 5.4, we find that

steganalyzer performance is still the best when trained on the BOSS dataset.

This makes sense since steganalyzers trained on BOSS can exploit BOSS-specific

source distribution signals.

• Adversarial training using adversarial examples from another stegan-

alyzer provides marginal performance gain - Across both test sets, we find

that training SRNet-MIX on YeNet adversarial steganographic images slightly

reduces the detection error. Still, this result may be an effect of using more

training samples when training on the adversarial dataset.

93

• Adversarial training is a practical method to improve universal ste-

ganalysis - Using adversarial steganographic images from StegAttack is useful

for training universal steganalyzers in a practical situation, as they are easy

to generate compared to the difficult challenge of generating enough source di-

versity and steganographic embedder diversity in the training set to properly

encompass all possibilities.

94

Chapter 7

Conclusions and Future Work

In this chapter, we provide concluding remarks and propose several new directions

for future research. In section 7.1, we organize our findings into a robust framework

for universal and practical steganalysis. In section 7.2, we discuss security strategies

that use steganalysis to mitigate steganography-enabled threat models. In section

7.3, we propose exciting areas for future steganalysis research.

7.1 Robust Steganalysis Framework

Guided by the findings discussed in this thesis, we define a three-part framework for

universal and practical steganalysis composed of the following techniques:

• Design Considerations: Researchers should aim to design a universal stegan-

alyzer whose architecture meets the following requirements: (1) arbitrary image

size detection; (2) training and execution efficiency; and (3) robust stegano-

graphic signal extraction. The first two requirements allow a steganalyzer to

be practically applied while the third requirement allows a steganalyzer to be

reliably applied in a real-world situation. In this thesis, we provide promising

solutions for each of these requirements. ArbNet shows a promising result for

arbitrary image size detection by using a DenseNet architecture along with a

spatial pyramid pooling layer. FastNet shows a promising solution for training

95

and execution efficiency as it is a small network that can perform compara-

bly to state-of-the-art steganalyzers. Finally, steganalyzers like SRNet that

use residual-based architectures avoid downsampling steganographic signal, are

more performant, and are robust towards adversarial attacks, thereby suggest-

ing that these architectures hold a promising way forward towards meeting the

third requirement.

• Training Procedures: Researchers should use the following data augmenta-

tion techniques to improve their training datasets so that they can train uni-

versal steganalyzers: source diversity with an emphasis on textured datasets,

steganographic embedder diversity with an emphasis on deep learning-based

steganographic embedders, and adversarial steganographic images that can be

generated by the StegAttack system. In our experiments, we find that stegana-

lyzer robustness is directly affected by training configurations. Specifically, we

show that certain training configurations cause steganalyzers to have issues with

source mismatch, steganographic embedder mismatch, and adversarial attacks.

Researchers must re-evaluate the training configurations they use so that their

steganalyzers can be more universal.

• Evaluation Mechanisms: Researchers should leverage StegBench to robustly

evaluate steganalyzers in diverse contexts. Robust evaluation of steganalyzers

is necessary for the practical deployment of steganalysis. StegBench enables

robust steganalysis evaluation through its powerful orchestration and config-

uration management platform. It supports the comprehensive and practical

evaluation of steganalyzers through the use of adversarial attacks and diverse

datasets. Using StegBench, we find that current state-of-the-art steganalyzers

have a number of failure modes when they are evaluated in diverse contexts.

Since most steganalysis research evaluates steganalyzers in limited contexts,

their results do not properly capture model robustness. We believe that proper

StegBench usage will enable robust steganalysis evaluation.

96

7.2 Security Controls Using Steganalysis

In Appendix A, we design and demonstrate several steganography-enabled cyberse-

curity threat models. In general, we find that these threat models have the following

in common:

• Common Transmission Mediums. Since these threat models deliver mali-

cious information or exploits via steganography, they are by definition making

use of the same transmission mediums on which steganography operates - com-

mon file formats such as audio, image, and video.

• Reliance on Proper File Transmission to End Victim. These threat

models depend on the steganographic file reaching the end-victim so that the

attack can be completed via the extraction and eventual execution of malicious

content. If the steganographic file is not accessible or corrupted, the attack is

neutralized.

To defend against steganography-enabled attacks, we investigate how to properly

apply steganalysis in two settings: enterprise and personal. In the enterprise setting,

we identify critical controls that security systems can use to mitigate steganographic

threats. These controls are listed in Table 7.1. In the personal setting, even though

there are controls that can mitigate security vulnerabilities, we believe that these con-

trols impose strict usability limits by slowing down computing processes and limiting

other functionality. Thus, to mitigate steganalysis on a personal setting, we argue

that the best defense consists of network-level steganalysis that checks common trans-

mission medium services for steganographic content (i.e. Twitter1, Facebook2).

In any case, for any effective security mitigation technique to work, the stegan-

alyzers must conform to a robust design, training, and evaluation framework. Fur-

thermore, these models must be continuously updated with adversarial examples to

prevent against adversarial attacks. Finally, models must be robust in practical sit-

uations (i.e. against different image formats, image resolutions, unknown sources,

1https://twitter.com/
2https://www.facebook.com/

97

https://twitter.com/
https://www.facebook.com/

Control Mode Control Process Description
Stricter Firewall Steganalysis checks on all incoming transmissions

to block or flag potentially malicious content
Periodic Checks As steganalyzers improve, previous undetected

transmissions become detectable, and so periodic
checks are used to provide adaptive security

Transmission Modification Flagged malicious content is modified to neutral-
ize potential steganographic content and maintain
file usability (i.e. image modification methods).

Table 7.1: List of security controls that employ steganalysis to mitigate
steganography-enabled threat models in an enterprise security setting.

and unknown embedders). In the ideal case, a universal steganalyzer should be em-

ployed as part of the security infrastructure. However, we believe that ensembles of

discriminate steganalyzers can also prove relatively effective. In summary, we reason

that by generating robust steganalyzers using our framework along with our proposed

security controls, steganography-enabled threat models can be effectively mitigated.

7.3 Future Work

We have identified the following exciting avenues of research in steganalysis:

• Exploration of Adversarial Attack Methods - Researching new adversarial

attack methods will help identify additional failure modes and help researchers

better design and train steganalyzers.

• Comprehensive Evaluation of Deep Learning Steganographic Embed-

ders - Deep learning steganographic embedders hold a lot of promise as useful

training examples but are also much harder to detect. A comprehensive eval-

uation will uncover any steganalyzer failure modes that are specific to deep

learning steganographic embedders.

• Design of Steganalysis-Based Mitigation Strategies - As steganalyzers

improve, researchers must design better mitigation strategies that effectively

use steganalyzers to neutralize steganography-enabled threat models.

98

Appendix A

Attacks via Steganography

In this appendix section, we discuss several steganographic attack vectors we have

designed and developed. The significant security risks demonstrated by these at-

tack vectors emphasize the need for defense systems that employ robust steganalysis

models. We begin by describing steganographic malware systems, which are attack

vectors that rely on undetectable transmission. We then showcase proof-of-concept

applications to demonstrate how our theorized systems could be deployed in practice.

SteganoGAN [47] is used for all demonstrations to show how modern steganography

can be integrated into steganography-based attack vectors.

A.1 Malware Systems

In this section, we discuss how steganographic embedders can be applied to malware

systems. We identify two types of attack vector that are enabled via steganogra-

phy: (1) single-pronged attack vector, and (2) steganography-enabled botnets. In

the single-pronged attack vector method, we find that steganography aids attackers

in hijacking another machine by allowing for the transmission of exploits through

undetectable transmission mediums. In botnets, we find that steganography allows

for undetectable communication through a variety of transmission mediums, thereby

allowing for more powerful control channel communication.

99

A.1.1 Single-Pronged Attack Vector

The single-pronged attack vector operates by sending exploits to a victim through a

steganographic medium. First, as part of the attack setup, a hacker must inject a

decoder into the victim’s computer, in order to extract the exploit from the stegano-

graphic transmission medium. We argue that even though this attack vector depends

on such an injection, it is still a powerful and useful attack method, because the

decoder is a small piece of benign-looking software. Hackers can use a number of doc-

umented methods to do one-time-injection of such software onto a user machine, such

as a drive-by download or by including the software as part of an official application.

Encoded
image

Victim’s
computer Hacker

Decoder

2

Exploit

Browser

1

Figure A-1: The single-pronged attack vector uses steganography to deliver unde-
tectable exploits. In the attack setup, a decoder must be preloaded onto the victim
machine. Next, during the attack: (1) a hacker transmits an exploit-encoded file (i.e.
an image) to the victim’s computer and then (2) upon transmission, the decoder loads
the file, extracts the exploit, and executes it. The figure shows the browser variant
of the attack, in which the decoder is installed on the victim’s browser.

Once the decoder is loaded onto the victim machine, the hacker transmits an

exploit-encoded file to the victim. The transmission easily bypasses network defenses

since it looks like an ordinary file. Upon retrieving the file, the decoder loads the

file, extracts the exploit, and executes it. Since the decoder remains on the victim’s

computer, the hacker can keep sending various exploits through this mechanism to

exploit different parts of the victim’s machine. Figure A-1 shows an example of

this execution process via a browser-based attack. The single-pronged attack vector

provides two key features that are enabled by steganography:

1. Detection-less transmission of exploits. Steganography uses common and

100

relatively benign file formats that are only blocked by the strictest of firewalls.

2. Multiple exploit execution. Exploit-embedded files can be sent and executed

repeatedly until the decoder is neutralized by security defenses.

We demonstrate two applications of the single-pronged attack vector: StegWeb

(section A.2), which is a web server-based attack, and StegPlugin (section A.3), which

is a browser extension-based attack.

A.1.2 Steganography-Enabled Botnets

Bot Bot

Command and Control Node

Bot Bot

Figure A-2: In this botnet, bots communicate directly with a command and con-
trol (CNC) server using control channels to receive and transmit data. Mitigation
techniques try to stop the CNC server or control channels. Image Credit: CloudFare1

Traditionally, a bot network is a network of computers containing Trojan horses

or other malicious code that work together to perform tasks or retrieve compromised

user information as specified by the network’s controller [28]. Often, bots commu-

nicate with a command server via a control channel such as Internet Relay Chat to

retrieve tasks and send back user-information. Figure A-2 shows an example botnet

architecture where bots communicate with a command and control server.

In recent years, botnets have become more pervasive, prompting security spe-

cialists to design various mechanisms to defend against them. One method is to

neutralize the control channels that botnets rely on for communication. Neutralizing

these channels effectively mitigates the botnet attack vector since bots are unable to

communicate information to the control node or receive commands to execute. To

101

counter this, bot networks are now being designed with more sophisticated commu-

nication channels.

We argue that steganography is a powerful and sophisticated communication chan-

nel for botnets that poses significant risk. Steganography allows for detection-less

transmission of information through a variety of mediums. If botnets are able to

leverage steganographic communication channels, it will be very difficult for cur-

rent security defense mechanisms to block these communication mediums, as any file

format could become a transmission medium. We find that steganography-enabled

botnets have the following key advantages:

1. Detection-less transmission of commands and information. Current

bot mitigation techniques will find it difficult to differentiate benign files from

steganographic files since they do not employ steganalysis.

2. Availability of transmission mediums. Steganography operates on a large

variety of file types, giving botnets access to more communication channels.

In section A.4, we present StegCron, a proof-of-concept application that demos a

steganography-enabled bot communication channel.

A.2 StegWeb

StegWeb, shown in Figure A-3, is a proof-of-concept system showcasing a variant of

the single-pronged attack vector. The system enables a user to hide JavaScript code

in normal images, transmit them to a web server, and extract and execute the code

on the server.

A.2.1 Attack Description

We now describe the StegWeb attack flow. StegWeb demos a hijacked web service

that loads, extracts, and executes arbitrary JavaScript code sent by a bad actor.

1https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/

102

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/

Figure A-3: StegWeb is a proof-of-concept web application that demos the single-
pronged attack vector. First, a hacker encodes JavaScript (i.e. the alert message in
the figure) on a supplied image. Next, the image is transmitted to the compromised
web server, where a decoder extracts the JavaScript and executes it on the web server.

Exploit Transmission

StegWeb provides a web interface to upload and encode an image. Once encoded,

the image is transmitted to a file storage system located on the web service. This

transmission interface demonstrates how a hacker could use an upload service to

transmit the image to the compromised web server. The left-hand side of Figure

A-3 shows an example use case where the hacker embeds an alert function inside the

user-supplied image.

Exploit Execution

The decoding component extracts the exploit from the image and executes it. In our

system, the decoding script periodically checks the image database of the web server

and tries to extract messages from any image recently uploaded to the database.

If it successfully extracts an exploit from the image, the decoder will then execute

this exploit using an evaluate function. We can see the embedded alert message

being executed on the right-hand side of Figure A-3. Remember that the decoder

is assumed to have been injected into the web server as part of the attack setup.

103

StegWeb models this assumption by including the decoder in the web server’s image

handling subroutines.

Next, as long as the decoder remains on the web service, the hacker can repeatedly

send exploit-encoded images to hijack and exploit different parts of the web service.

Furthermore, steganography prevents modern network defense layers from detecting

that an exploit is being transmitted to the decoder. If the hacker was attempting to

send a plaintext exploit command to the web server, it is likely that their attempt

would be blocked by standard network defense mechanisms.

This attack flow demos how, in practice, a hacker could hijack a web service using

steganography. Furthermore, our implementation showcases the potential danger

hackers could inflict upon a server if they managed to inject a steganographic decoder.

A.2.2 Software Specification

We developed the demo application using Flask2 and standard Python libraries for

image handling such as DropZone3. The code and setup procedures can be found at

https://github.com/DAI-Lab/Stegosploit under the StegWeb folder.

A.3 StegPlugin

StegPlugin, shown in Figure A-4, is a proof-of-concept system that enables the single-

pronged attack vector through a Google Chrome4 extension. StegPlugin demonstrates

how this attack vector could be targeted at common user machines.

A.3.1 Attack Description

We now describe the StegPlugin attack flow. StegPlugin uses Google Chrome exten-

sions to extract, load, and execute arbitrary code from images found during browsing.

2https://flask.palletsprojects.com/en/1.1.x/
3https://www.dropzonejs.com/
4https://www.google.com/chrome/

104

https://github.com/DAI-Lab/Stegosploit
https://www.google.com/chrome/

Figure A-4: StegPlugin is a proof-of-concept browser extension that demos the single-
pronged attack vector. First, the extension is loaded on the victim machine. Next,
the victim browses images (i.e. fish). Finally, StegPlugin fetches all browsed images
and attempts to extract and execute any discovered steganographic content.

Extension Installation

As described earlier, the single-pronged attack vector assumes that the decoding script

is injected into the victim machine as part of the attack setup. In keeping with this

assumption, we assume that the hacker installs the Chrome extension onto the victim

machine via standard security exploits such as drive-by downloads.

Message Extraction

In the next part of the attack vector, the machine attempts to extract a message from

any image that the user views on their browser. Google Chrome allows extensions

to listen for image fetch requests that the browser makes when viewing images. This

allows StegPlugin to process all images that the user is looking at. For example, in

Figure A-4, the victim browses images of fish on Google Images which leads to a bulk

processing of these images by the SteganoGAN decoder. This process models how

hackers could easily transmit exploits to victim machines by posting steganographic

images on commonly-viewed social media channels.

105

Arbitrary Code Execution

Once the SteganoGAN decoder extracts an exploit from a browsed image, the ex-

tension executes the retrieved exploit, thereby completing the single-pronged attack

vector. In our modeling of this attack process, StegPlugin logs the exploit to the

console.

This implementation of the single-pronged attack vector shows how steganogra-

phy enables a powerful exploit-transmission channel for hackers. Since images posted

to the web are not checked for steganographic content, hackers can easily transmit

this content to the end-victim machine. Furthermore, as soon as the malicious plu-

gin is injected onto the victim browser, hackers can send a multitude of exploits to

compromise various parts of the victim machine. Thus, this attack vector further

underscores the dangers posed by steganography-enabled attack methods.

A.3.2 Software Specification

To enable SteganoGAN execution in the browser, we use WebGL, a JavaScript API

that enables GPU-accelerated execution in the browser. StegPlugin can be found at

https://github.com/DAI-Lab/Stegosploit under the StegPlugin folder.

A.4 StegCron

StegCron, shown in Figure A-5, is a proof-of-concept system that showcases steganography-

enabled botnet communication channels using cron procedures.

A.4.1 Attack Description

We now describe the StegCron attack flow. StegCron uses steganography-enabled

cron tasks to transmit and receive malicious information. StegCron underscores the

potential dangers of a steganography-enabled botnet communication channel as cur-

rent network defenses do not check common file types for steganographic content.

Figure A-5 gives a graphic description of the StegCron attack flow.

106

(A) Cron Injection (B) Inbound Command Extraction

Data
delivery

Data
encoding

Image

transmission

Image

transmission

Process 1

Injection

Process 2

Process 3

StegCron

...

Cron Tasks

Compromised
information

Command
encoding

Remote
Command

Encoded
Image

Data
extraction

Compromised
information

Encoded
Image

Encoded
Image

StegCron

Command node

Command node

Victim’s computer Victim’s computer

Victim’s computer

(C) Outbound Data Embedding

Command
extraction

Bot
delivery

Remote
Command

File
System StegCron

Figure A-5: StegCron is a proof-of-concept cron job system that demos
steganography-enabled botnet communication channels. First, the cron system is
injected into the victim machine by the bot. Next, the cron system scans any down-
loaded images for steganographic content, and if found, delivers them to the bot.
Finally, the cron system can embed messages and deliver them to the command
node.

Cron Injection

Traditionally, when botnets compromise a new machine, the bot comes preprogrammed

with procedures on how to communicate with the command node. In our attack setup,

we assume that StegCron injection into the user system is part of the bot’s prepro-

grammed hijacking procedure. To model this, we develop an OSX application that

when executed injects StegCron into the user system.

Inbound Message Extraction

To receive messages, StegCron uses the following process flow:

1. StegCron listens to a user’s file system for new image downloads

107

2. Newly downloaded images are checked for steganographic content

3. Any extracted steganographic content is delivered to the bot

Because we do not use actual bots, we model step three by having StegCron

write the message to a known location. This process flow models how a bot could

conceivably extract messages from inbound images. In practice, the communication

channel mechanisms would be more sophisticated to ensure the proper delivery of

steganographic images. For example, only images with certain attributes would be

checked to avoid expensive computational processing and possible detection.

Outbound Message Embedding

To transmit messages, StegCron uses the following process flow:

1. StegCron retrieves messages from the bot on the user machine

2. StegCron embeds messages using images that are already on the user machine

3. StegCron transmits the steganographic image to the command node

Because we do not use actual bots, we model step one by having StegCron period-

ically embed messages and we model step three by saving the steganographic image

to a known location. This process flow models how a bot could transmit messages

via steganography. In practice, bots would be careful in choosing the transmission

channel and have redundancies in place to ensure message transmission.

A.4.2 Software Specification

StegCron is a set of python scripts that are packaged as an OSX application. The

OSX application mimics a bot and injects StegCron using crontab. The code can be

found at https://github.com/DAI-Lab/Stegosploit under the StegCron folder.

108

Appendix B

Results Tables

109

Experiment Setup Embedding Ratios

Embedder Detectors 0.1 0.2 0.3 0.4 0.5

WOW

YeNet 36.3% 28.2% 23.8% 18.1% 16.2%
XuNet 36.8% 28.4% 22.4% 16.7% 14.0%
SRNet 34.4% 26.1% 19.2% 13.7% 11.4%
ArbNet 33.9% 26.8% 18.4% 14.2% 11.6%
FastNet 36.5% 28.1% 22.7% 17.3% 14.4%

S UNIWARD

YeNet 41.7% 33.2% 27.1% 22.2% 18.9%
XuNet 41.3% 33.0% 26.3% 20.1% 16.5%
SRNet 37.5% 29.3% 21.7% 15.5% 13.7%
ArbNet 37.1% 28.8% 22.3% 16.1% 14.3%
FastNet 41.6% 33.7% 26.8% 19.6% 16.3%

HILL

YeNet 43.1% 34.3% 28.7% 24.8% 21.7%
XuNet 43.3% 33.2% 26.5% 22.3% 18.5%
SRNet 38.8% 31.0% 23.1% 19.4% 15.8%
ArbNet 38.4% 31.8% 24.0% 18.8% 16.1%
FastNet 43.6% 33.7% 26.8% 22.4% 17.6%

Table B.1: Detection error of five steganalyzers on test sets with various embedders
and varying embedding ratios. Detectors are trained with the same configuration as
the test set. Bolded metrics correspond to the best performing steganalyzers.

Experiment Setup Test Image Size (HxW)

Embedder Detectors 256x256 512x512 1024x1024

WOW
YeNet 16.2% 15.7% 14.8%
SRNet 11.4% 10.9% 10.2%
ArbNet 12.1% 10.5% 9.4%

HILL
YeNet 21.7% 21.2% 19.1%
SRNet 15.8% 15.4% 14.4%
ArbNet 16.8% 15.6% 13.7%

Table B.2: Detection error of three steganalyzers on test sets with various embedders
at 0.5 bpp on three different image resolutions. Detectors are trained with the same
configuration as the test set, except for ArbNet which is trained on a mixed-resolution
dataset. Bolded metrics correspond to the best performing steganalyzers.

110

Experiment Setup Test [BOSS] Test [COCO]

Training Embedder Training Dataset WOW HILL WOW HILL

WOW
BOSS 12.8% 33.1% 17.9% 39.6%

BOSS+COCO 15.6% 36.5% 12.7% 32.1%
COCO 27.3% 44.7% 11.4% 31.6%

HILL
BOSS 28.8% 17.6% 35.1% 23.5%

BOSS+COCO 31.7% 20.8% 27.6% 16.6%
COCO 42.4% 35.3% 26.9% 15.8%

Table B.3: Detection error of SRNet model trained on steganographic embedder listed
in the ‘training embedder’ column at 0.5 bpp using the dataset listed in the ‘training
dataset’ column and tested against the steganographic embedder listed in the ‘test’
column using the source specified by the column header. Bolded metrics correspond
to the best performing training dataset.

Experiment Setup Test Embedder

Training Embedder Detector WOW S UNIWARD HILL S-GAN

WOW
YeNet 16.2% 22.2% 32.8% 37.8%
SRNet 11.4% 17.7% 31.6% 36.7%

S UNIWARD
YeNet 21.8% 18.9% 30.9% 38.3%
SRNet 16.2% 13.7% 29.3% 36.5%

HILL
YeNet 28.2% 30.0% 21.7% 37.3%
SRNet 26.9% 27.5% 15.8% 35.4%

S-GAN
YeNet 32.8% 33.6% 34.3% 24.6%
SRNet 29.3% 30.7% 31.8% 21.0%

Table B.4: Detection error of two steganalyzers trained on embedders listed in the
‘training embedder’ column at 0.5 bpp and tested against embedders listed in the ‘test
embedder’ column at 0.5 bpp. Bolded metrics correspond to the hardest embedder
to detect.

Experiment Setup Test Embedder

Training Embedders Detector WOW HILL S-GAN3 S-GAN4

WOW+HILL
YeNet 16.3% 22.7% 36.2% 36.9%
SRNet 12.4% 17.8% 34.2% 35.1%

S-GAN1+S-GAN2
YeNet 27.3% 30.7% 14.2% 12.4%
SRNet 26.4% 28.0% 11.1% 11.7%

Table B.5: Detection error of two steganalyzers trained on embedders listed in the
‘training embedders’ column at 0.5 bpp and tested against embedders listed in the
‘test embedder’ column at 0.5 bpp. Bolded metrics correspond to the hardest embed-
der to detect.

111

Training/Test Embedder COCO Enhanced

LSB/LSB 2.1% 50.0%
WOW+LSB/WOW 16.2% 31.6%
HILL+LSB/HILL 21.7% 35.1%

Table B.6: Detection error of YeNet model trained on embedder listed in the ’training
embedder’ column using COCO images and tested against the same embedder at 0.5
bpp using COCO or adversarial images. Bolded metrics correspond to the worst
performing source dataset.

Experiment Setup Test Embedder [BOSS]

Detector Training Dataset WOW HILL

YeNet
COCO 31.1% 46.1%

COCO + ENHANCED YeNet 21.4% 39.9%
BOSS 17.3% 34.3%

SRNet
COCO 27.3% 44.7%

COCO + ENHANCED YeNet 22.4% 41.1%
COCO + ENHANCED SRNet 16.1% 36.8%

BOSS 12.8% 33.1%

Table B.7: Detection error of two steganalyzers trained on WOW 0.5 bpp using the
dataset listed in the ‘training dataset’ column and tested against embedders listed in
the ‘test embedder’ column using the BOSS dataset. Bolded metrics correspond to
the best performing training dataset.

112

Appendix C

StegBench

C.1 Configuration Specification

In this section, we give an overview of the configuration file specification. For even

more detailed information, please read the instructions provided at http://github.com/DAI-

Lab/StegBench.

StegBench works by processing configuration files that contain information about

each of the tools in the system. Configurations enable StegBench to be a highly in-

teroperable and modular system that can seamlessly integrate into existing stegano-

graphic evaluation pipelines. Configurations specify how a specific steganographic or

steganalysis tool operates on a machine and detail the following:

1. Compatibility: The tool’s compatibility with different operating mechanisms

2. Command Execution: Command execution information related to how the

tool is executed on the machine

Configuration files are specified by the file format .ini. In any configuration file,

there can be a number of configurations for different tools. Each tool is uniquely

identified by its header in that file, which is the user-friendly name the system desig-

nates to that tool. We list the common configuration options available to each tool

in Table C.1.

113

Arguments

algorithm_type specifies whether the tool is an embedder or detector

compatible_types specifies the image formats the algorithm operates on

command_type specifies command execution environment

run specifies the skeleton command for execution

post_run specifies the skeleton command for post-processing

Table C.1: List of general algorithmic configurations. These configurations specify
tool compatibility and execution details and enable tool integration with StegBench.

Arguments

docker_image specifies the name of the docker image to us

working_dir specifies the directory to execute the command from

Table C.2: List of docker specific configurations. These configurations enable
StegBench integration with tools dependent on Docker.

Next, StegBench supports two different command execution modes: native and

docker. Native commands execute natively while docker commands enable integration

with platform-specific tools. Additional docker configurations are listed in Table C.2.

C.1.1 Embedder Configuration

Figure C-1: Configuration files are used to specify tool-specific information for em-
bedding algorithms. The figure shows configurations for two embedders. Embed-
der configurations specify compatible image types, maximum embedding ratios, and
skeleton commands for the generation and verification of steganographic datasets.

There are several embedder-specific configuration commands that StegBench al-

lows a user to specify for better compatibility with modern steganography tools.

Figure C-1 shows an example embedder configuration file. Table C.3 gives a list of

embedder configuration options along with their descriptions. Table C.4 gives a list

of embedders that have been shown to integrate with StegBench.

114

Arguments

max_embedding_ratio specifies the embedder’s max embedding ratio

verify specifies a skeleton command for decoding steganographic

content to verify proper embedding

Table C.3: List of embedder-specific configuration configurations. These specifica-
tions specify embedder compatibility and execution requirements.

Embedder Mode

F5 Frequency
J UNIWARD Frequency

JSteg Frequency
Outguess Frequency

UED Frequency
EBS Frequency

Embedder Mode

StegHide Frequency
WOW Spatial
HUGO Spatial

S UNIWARD Spatial
MiPOD Spatial
HILL Spatial

Embedder Mode

SteganoLSB Spatial
LSBR Spatial

CloackedPixel Spatial
OpenStego Spatial
HiDDeN DL

SteganoGAN DL

Table C.4: List of 18 embedders that have successfully worked with StegBench

C.1.2 Detector Configuration

There are several detector-specific configuration commands that StegBench allows

a user to specify to allow for better compatibility with modern steganalysis tools.

Figure C-2 shows an example detector configuration file. Table C.5 gives a list of

detector configuration options along with their descriptions. Table C.6 gives a list of

embedders that have been shown to integrate with StegBench.

Arguments

detector_type specifies if a detector is binary or probabilistic

regex_filter_yes specifies detector output on a steganographic image

regex_filter_no specifies detector output on a cover image

Table C.5: List of detector-specific configurations. These specifications specify detec-
tor compatibility and execution modes.

Detector Mode

RS Stat
SPA Stat

SVM Methods Stat
EC + RM Stat

Detector Mode

StegExpose Stat
Weighted-Stego Stat

Calibration Stat
QNet DL

Detector Mode

Yedroudj-Net DL
SRNet DL
XuNet DL
YeNet DL

Table C.6: List of 12 detectors that have successfully worked with StegBench

115

Figure C-2: Configuration files are used to specify tool-specific information for detec-
tion algorithms. The figure shows configurations for two detectors. Detector configu-
rations specify compatible image types, skeleton commands for steganalysis, and any
result processing-specific requirements.

C.1.3 Command Generation

In this section, we detail how StegBench processes command skeletons to generate

executable commands for steganographic and steganalysis processing. StegBench

provides a set of flags that are used to define skeleton commands. Skeleton commands

are then processed, and flags are substituted appropriately during run-time. These

flags can be categorized into three categories: (1) input flags, (2) embedding flags,

and (3) output flags. Table C.7 lists each of these flags along with their accompanying

descriptions.

C.2 API Specification

In this next section, we detail the API specification of StegBench.

116

Input Flags

INPUT_IMAGE_PATH Substituted for the path of the image that the

embedding/detection operation is being applied to

Embedding Flags

SECRET_TXT Substituted for the message to be embedded

PASSWORD Substituted with a password, which is most commonly used to

scramble the secret text

PAYLOAD Substituted with the embedding ratio required during the

embedding operation

Output Flags

OUTPUT_IMAGE_PATH Substituted for the path to the output image

RESULT_FILE Substituted for the path to a result file where the

detection result will be stored

Table C.7: List of flags used in skeleton commands as part of tool configuration.
StegBench uses its orchestration engine and command generation protocols to sub-
stitute flags in skeleton commands with appropriate command parameters.

initialize()

Purpose

Initializes the StegBench file system in the current working directory

Output

None

add_config(config=[], directory=[])

Purpose

Loads and processes tool configurations into the StegBench file system

Arguments

config list of paths to configuration files

directory list of paths to directories that contain config files

Output

None

info(all=True, dataset=True, embedder=True, detector=True)

Purpose

Provides StegBench system information including asset UUIDs

Arguments

all if true, shows all available StegBench asset information

dataset if true, shows all dataset asset information

embedder if true, shows all embedder asset information

detector if true, shows all detector asset information

Output

Requested system information including UUIDs of all requested assets

Table C.8: StegBench API for system initialization and integration.

117

add_embedder(embedder_uuids, set_uuid=None)

Purpose

Adds to or creates a new embedder set, which is a collection of embedders

Arguments

embedder_uuids a list of UUIDs, each of which specifies an embedder

set_uuid UUID that specifies an existing embedder set

Output

UUID of the generated embedder set

add_detector(detector_uuids, set_uuid=None)

Purpose

Adds to a or creates a new detector set, which is a collection of detectors

Arguments

detector_uuids a list of UUIDs, each of which specifies a detector

set_uuid UUID that specifies an existing detector set.

Output

UUID of the generated detector set

Table C.9: StegBench API for algorithmic set generation processes.

download(routine, name, operation_dict={}, metadata_dict={})
Purpose

Downloads a specified dataset and applies image/dataset operations to it

Arguments

routine specifies a pre-loaded download routine

[ALASKA|BOSS|BOWS2|COCO|DIV2K]

name specifies a user-friendly name for the dataset

operation_dict applies specified operation(s) to each image [noise |

resize | rotate | center_crop | rgb2gray]

metadata_dict applies operation(s) on the dataset-level [ttv_split|limit]

Output

UUID of the downloaded dataset

process(directory, name, operation_dict={}, metadata_dict={})
Purpose

Processes a local dataset and applies image/dataset operations to it

Arguments

directory specifies the path to the dataset to process

name specifies a user-friendly name for the dataset

operation_dict applies specified operation(s) to each image [noise |

resize | rotate | center_crop | rgb2gray]

metadata_dict applies operation(s) on the dataset-level [ttv_split|limit]

Output

UUID of the processed dataset

Table C.10: StegBench API for the dataset pipeline.

118

embed(embedder_set_uuid, dataset_uuid, ratio, name)

Purpose

Embeds a cover dataset with a set of embedders at a specified embedding ratio

Arguments

embedder_set_uuid UUID of the embedder set being used

dataset_uuid UUID of the cover dataset being used

ratio specifies an embedding ratio

name specifies a user-friendly name for the steganographic db

Output

UUID of the generated steganographic dataset

verify(stego_db_uuid)

Purpose

Verifies a steganographic dataset

Arguments

stego_db_uuid UUID of the steganographic db to verify

Output

Results detailing if steganographic images were embedded correctly

Table C.11: StegBench API for the embedding pipeline.

detect(detector_set_uuid, dataset_uuids)

Purpose

Analyzes a set of detectors on a set of datasets.

Arguments

detector_set_uuid UUID of the detector set being used

dataset_uuids list of UUIDs of cover or steganographic datasets to be

detected

Output

Summary statistics that detail steganalysis results over the supplied datasets

adv_attack(model_path, dataset_uuids, configurations)

Purpose

Applies StegAttack to generate adversarial images against a steganalysis model

Arguments

model_path path to the deep-learning steganalysis model, only

PyTorch is currently supported

dataset_uuids list of UUIDs of steganographic dataset to use as source

images for the attack

configurations specifies attack system configurations including which

robustness attack to use [FGSM | EAD | BIM | PGD | UPD]

and other attack-specific parameters.

Output

UUID of adversarially-generated image dataset

Table C.12: StegBench API for the detection pipeline.

119

120

Bibliography

[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples, 2017.

[2] Shumeet Baluja. Hiding images in plain sight: Deep steganography. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages
2069–2079. Curran Associates, Inc., 2017.

[3] Patrick Bas, Tomáš Filler, and Tomáš Pevný. ”break our steganographic sys-
tem”: The ins and outs of organizing boss. In Tomáš Filler, Tomáš Pevný, Scott
Craver, and Andrew Ker, editors, Information Hiding, pages 59–70, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[4] M. Boroumand, M. Chen, and J. Fridrich. Deep residual network for steganalysis
of digital images. IEEE Transactions on Information Forensics and Security,
14(5):1181–1193, May 2019.

[5] M. Boroumand, M. Chen, and J. Fridrich. Deep residual network for steganalysis
of digital images. IEEE Transactions on Information Forensics and Security,
14(5):1181–1193, 2019.

[6] Marc Chaumont. Deep learning in steganography and steganalysis from 2015 to
2018. ArXiv, abs/1904.01444, 2019.

[7] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understand-
ing the robustness of adversarial logit pairing, 2018.

[8] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon
Tran, and Aleksander Madry. Learning perceptually-aligned representations via
adversarial robustness. ArXiv, abs/1906.00945, 2019.

[9] F. Farhat and S. Ghaemmaghami. Towards blind detection of low-rate spatial
embedding in image steganalysis. IET Image Processing, 9(1):31–42, 2015.

[10] Clément Fuji Tsang and Jessica Fridrich. Steganalyzing images of arbitrary size
with cnns. volume 2018, 01 2018.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016.

121

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2014.

[14] L. Guo, J. Ni, and Y. Q. Shi. An efficient jpeg steganographic scheme us-
ing uniform embedding. In 2012 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 169–174, 2012.

[15] Vojtech Holub and Jessica J. Fridrich. Designing steganographic distortion using
directional filters. 2012 IEEE International Workshop on Information Forensics
and Security (WIFS), pages 234–239, 2012.

[16] Vojtech Holub, Jessica J. Fridrich, and Tomás Denemark. Universal distortion
function for steganography in an arbitrary domain. EURASIP Journal on In-
formation Security, 2014:1–13, 2014.

[17] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected con-
volutional networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2261–2269, 2017.

[18] Andrew D. Ker, Patrick Bas, Rainer Böhme, Rémi Cogranne, Scott Craver,
Tomás Filler, Jessica J. Fridrich, and Tomás Pevný. Moving steganography and
steganalysis from the laboratory into the real world. In IHMMSec ’13, 2013.

[19] Alexey Kurakin, Ian J. Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao,
Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jianyu Wang,
Zhishuai Zhang, Zhou Ren, Alan L. Yuille, Sangxia Huang, Yao Zhao, Yuzhe
Zhao, Zhonglin Han, Junjiajia Long, Yerkebulan Berdibekov, Takuya Akiba,
Seiya Tokui, and Motoki Abe. Adversarial attacks and defences competition.
ArXiv, abs/1804.00097, 2018.

[20] Bin Li, Junhui He, Jiwu Huang, and Y.Q. Shi. A survey on image steganog-
raphy and steganalysis. Journal of Information Hiding and Multimedia Signal
Processing, 2, 05 2011.

[21] Bin Li, Ming Wang, Jiwu Huang, and Xiaolong Li. A new cost function for
spatial image steganography. 2014 IEEE International Conference on Image
Processing (ICIP), pages 4206–4210, 2014.

[22] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common
objects in context. ArXiv, abs/1405.0312, 2014.

122

[23] Ivans Lubenko. Towards robust steganalysis: binary classifiers and large, het-
erogeneous data. 2013.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks,
2017.

[25] W. Mazurczyk and L. Caviglione. Information hiding as a challenge for malware
detection. IEEE Security Privacy, 13(2):89–93, 2015.

[26] R. Mishra and P. Bhanodiya. A review on steganography and cryptography.
In 2015 International Conference on Advances in Computer Engineering and
Applications, pages 119–122, 2015.

[27] Jennifer Newman, Li Lin, Wenhao Chen, Stephanie Reinders, Yangxiao Wang,
Min Wu, and Yong Guan. Stegoappdb: a steganography apps forensics image
database, 2019.

[28] Norton. Bot network. http://us.norton.com/online-threats/glossary/b/

bot-network.html., 2020.

[29] Tomáš Pevný, Tomáš Filler, and Patrick Bas. Using high-dimensional image
models to perform highly undetectable steganography. In Rainer Böhme, Philip
W. L. Fong, and Reihaneh Safavi-Naini, editors, Information Hiding, pages 161–
177, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[30] N. Prokhozhev, O. Mikhailichenko, A. Sivachev, D. Bashmakov, and A. Ko-
robeynikov. Passive steganalysis evaluation: Reliabilities of modern quantitative
steganalysis algorithms. In Ajith Abraham, Sergey Kovalev, Valery Tarassov, and
Václav Snášel, editors, Proceedings of the First International Scientific Confer-
ence “Intelligent Information Technologies for Industry” (IITI’16), pages 89–94,
Cham, 2016. Springer International Publishing.

[31] Yinlong Qian, Jing Dong, Wei Wang, and Tieniu Tan. Deep learning for ste-
ganalysis via convolutional neural networks. In Adnan M. Alattar, Nasir D.
Memon, and Chad D. Heitzenrater, editors, Media Watermarking, Security, and
Forensics 2015, volume 9409, pages 171 – 180. International Society for Optics
and Photonics, SPIE, 2015.

[32] Uri Shaham, Yutaro Yamada, and Sahand N. Negahban. Understanding adver-
sarial training: Increasing local stability of supervised models through robust
optimization. Neurocomputing, 307:195–204, 2018.

[33] Brijesh Singh, Prasen Kumar Sharma, Rupal Saxena, Arijit Sur, and Pinaki Mi-
tra. A new steganalysis method using densely connected convnets. In Bhabesh
Deka, Pradipta Maji, Sushmita Mitra, Dhruba Kumar Bhattacharyya, Pra-
bin Kumar Bora, and Sankar Kumar Pal, editors, Pattern Recognition and Ma-
chine Intelligence, pages 277–285, Cham, 2019. Springer International Publish-
ing.

123

http://us.norton.com/online-threats/glossary/b/bot-network.html.
http://us.norton.com/online-threats/glossary/b/bot-network.html.

[34] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In ICML, 2019.

[35] P. Thiyagarajan, G. Aghila, and V. Prasanna Venkatesan. Stego-image generator
(SIG) - building steganography image database. CoRR, abs/1206.2586, 2012.

[36] Chang Wang and Jiangqun Ni. An efficient jpeg steganographic scheme based
on the block entropy of dct coefficients. pages 1785–1788, 03 2012.

[37] Pengfei Wang, Zhihui Wei, and Liang Xiao. Spatial rich model steganalysis
feature normalization on random feature-subsets. Soft Computing, 12 2016.

[38] Andreas Westfeld. F5—a steganographic algorithm. In Ira S. Moskowitz, editor,
Information Hiding, pages 289–302, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[39] Stephen B. Wicker. Reed-Solomon Codes and Their Applications. IEEE Press,
1994.

[40] S. Wu, S. Zhong, and Y. Liu. A novel convolutional neural network for im-
age steganalysis with shared normalization. IEEE Transactions on Multimedia,
22(1):256–270, 2020.

[41] Shengli Wu, Sheng hua Zhong, Yan Liu, and Mengyuan Liu. Cis-net: A novel
cnn model for spatial image steganalysis via cover image suppression. ArXiv,
abs/1912.06540, 2019.

[42] Guanshuo Xu. Deep convolutional neural network to detect j-uniward. In IH-
MMSec ’17, 2017.

[43] Zhongliang Yang, Ke Wang, Sai Ma, Yongfeng Huang, Xiangui Kang, and Xi-
anfeng Zhao. Istego100k: Large-scale image steganalysis dataset. In IWDW,
2019.

[44] J. Ye, J. Ni, and Y. Yi. Deep learning hierarchical representations for im-
age steganalysis. IEEE Transactions on Information Forensics and Security,
12(11):2545–2557, Nov 2017.

[45] Mehdi Yedroudj, Frédéric Comby, and Marc Chaumont. Yedroudj-net: An effi-
cient cnn for spatial steganalysis. 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 2092–2096, 2018.

[46] J. Zeng, S. Tan, B. Li, and J. Huang. Large-scale jpeg image steganalysis using
hybrid deep-learning framework. IEEE Transactions on Information Forensics
and Security, 13(5):1200–1214, 2018.

[47] Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni.
Steganogan: High capacity image steganography with gans, 2019.

124

[48] Xinpeng Zhang, Shuozhong Wang, and Kaiwen Zhang. Steganography with least
histogram abnormality. pages 395–406, 09 2003.

[49] Xunpeng Zhang, Xiangwei Kong, Pengda Wang, and Bo Wang. Cover-source
mismatch in deep spatial steganalysis. In Hongxia Wang, Xianfeng Zhao, Yun-
qing Shi, Hyoung Joong Kim, and Alessandro Piva, editors, Digital Forensics and
Watermarking, pages 71–83, Cham, 2020. Springer International Publishing.

[50] Yiwei Zhang, Weiming Zhang, Kejiang Chen, Jiayang Liu, Yujia Liu, and Neng-
hai Yu. Adversarial examples against deep neural network based steganalysis.
pages 67–72, 06 2018.

[51] Stephan Zheng, Yang Song, Thomas Leung, and Ian J. Goodfellow. Improving
the robustness of deep neural networks via stability training. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 4480–4488,
2016.

[52] Jiren Zhu, Russell Kaplan, Johanna E. Johnson, and Li Fei-Fei. Hidden: Hiding
data with deep networks. ArXiv, abs/1807.09937, 2018.

125

	Introduction
	Steganography and Steganalysis Ecosystem
	Steganography
	Steganalysis

	Problem Definition and Challenges
	Contributions
	Thesis Roadmap

	Background and Related Work
	Deep Learning Overview
	Generative Adversarial Network
	Convolutional Neural Network
	Model Evaluation

	Steganography Techniques
	Frequency Domain
	Spatial Domain
	Deep Learning Domain

	Steganalysis Techniques
	Statistical Techniques
	Deep Learning Techniques

	Related Work

	Universal and Practical Steganalysis
	Towards Universal Steganalysis
	Towards Practical Steganalysis
	Dataset Augmentation
	Source Diversity
	Steganographic Embedder Diversity
	Embedding Ratio Diversity

	Architectures
	ArbNet
	FastNet

	Benchmarking and Evaluation System for Steganalysis
	System Criteria
	Steganographic Dataset Generation
	Standard Steganalysis Evaluation

	Design Goals
	Architecture
	Dataset Module
	Embedder Module
	Detector Module

	StegBench Experiments
	Experimental Setup
	Performance Measurement

	Benchmark
	Image Size Mismatch Problem
	Source Mismatch Problem
	Steganographic Embedder Mismatch Problem
	Single Steganographic Embedder
	Multiple Steganographic Embedders

	Summary

	Adversarial Attacks on Steganalyzers
	StegAttack System Design
	Goals and Definitions
	StegAttack V1
	StegAttack V2
	StegAttack Process Flow

	StegAttack Effectiveness
	Example Adversarial Steganographic Images
	Experiment Setup
	Effectiveness Compared to Naive Method
	Effectiveness of Different Gradient-Descent Methods

	Adversarial Training
	Defending Against StegAttack
	Adversarial Training for Universal Steganalysis

	Conclusions and Future Work
	Robust Steganalysis Framework
	Security Controls Using Steganalysis
	Future Work

	Attacks via Steganography
	Malware Systems
	Single-Pronged Attack Vector
	Steganography-Enabled Botnets

	StegWeb
	Attack Description
	Software Specification

	StegPlugin
	Attack Description
	Software Specification

	StegCron
	Attack Description
	Software Specification

	Results Tables
	StegBench
	Configuration Specification
	Embedder Configuration
	Detector Configuration
	Command Generation

	API Specification

