
Enhancing Image Steganalysis with
Adversarially Generated Examples

Kevin Alex Zhang and Kalyan Veeramachaneni

MIT, Cambridge MA 02139, USA
{kevz,kalyanv}@mit.edu

Abstract. The goal of image steganalysis is to counter steganography
algorithms which attempt to hide a secret message within an image file.
We focus specifically on blind image steganalysis in the spatial domain
which involves detecting the presence of secret messages in image files
without knowing the exact algorithm used to embed them. In this paper,
we demonstrate that we can achieve better performance on the blind
steganalysis task by training the YeNet architecture with adversarially
generated examples provided by SteganoGAN.

Keywords: Steganalysis · Steganography · Deep Learning

1 Introduction

Modern image steganography has found applications in everything from malware,
where it can be used to transmit command-and-control instructions, to industrial
espionage, where it can be used to hide or exfiltrate information. Unlike cryptogra-
phy, which attempts to hide the content of the message, steganography attempts
to hide the presence of the message itself by embedding it within otherwise benign
content.

To combat image steganography, we can turn to image steganalysis algorithms
which attempt to detect steganographic images. In general, these techniques work
by analyzing the image file and identifying statistical anomalies in the pixel value
distribution. Examples of steganalysis techniques include Primary Sets [4], RS
analysis [7], Sample Pairs [5], and Spatial Rich Models [6]. Recently, new deep
learning-based techniques have been developed for this task and have achieved
state-of-the-art detection rates [11].

At the same time, new deep learning-based techniques have been developed
for image steganography, yielding impressive results and achieving higher relative
payloads as in [1, 10, 8, 13, 12]. Interestingly, since deep learning-based techniques
are learned from data (and a random initial state), a new instance of a deep
learning-based technique can be created simply by re-training the model, signif-
icantly reducing the cost of inventing a “new” steganography algorithm. This
further complicates our analysis since an effective steganalysis algorithm now
must not only defeat a specific instance of a steganography model but must, in
fact, defeat all possible instances. In this paper, we will focus specifically on two



2 K. Zhang and K. Veeramachaneni

YeNetPrimary Sets RS Analysis Sample Pairs
0

0.5

1 0.91
0.99 0.95 0.95

0.78

0.63 0.67 0.65 0.63
0.56 0.56 0.57

au
R
O
C

LSB

HiDDeN

SteganoGAN

Fig. 1: This figure shows the performance of four different steganalysis techniques
on steganographic images produced by the Least Significant Bits (LSB) algorithm,
HiDDeN [13], and SteganoGAN [12]. We examine three different static (e.g. non-
trainable) spatial steganalysis tools as well as one deep learning-based method
(YeNet) that was trained to detect LSB images. Based on these results, we see
that none of these techniques are particularly effective at detecting steganographic
images generated by HiDDeN or SteganoGAN, suggesting that models trained on
LSB steganography do not generalize well to deep learning-based steganography.

techniques, HiDDeN [13] and SteganoGAN [12], which use generative adversarial
networks to create hard-to-detect steganographic images.

Due to the simultaneous development of both improved steganography meth-
ods and improved steganalysis algorithms, we start by running a simple exper-
iment to determine the current state of steganography and steganalysis. We
generated steganographic images using the least significant bits (LSB) algorithm,
HiDDeN, and SteganoGAN; then, we used multiple steganalysis tools to try
and detect these steganographic images. Figure 1 presents the performance of
these steganalysis tools and we observe that although all the models are capable
of detecting images generated using the simple least significant bits algorithm,
none of them excel at detecting steganographic images generated by HiDDeN or
SteganoGAN. The results from this experiment raise several questions:

1. Existing steganalysis algorithms are not effective at detecting steganographic
images generated by methods not represented in the training set. Can we
overcome this limitation and build steganalysis systens that generalize better?

2. We can easily create new instances of deep learning-based steganography
algorithms by re-training the model with a different initial state. Can we
take advantage of the fact to build more robust steganalysis systems?

To address these questions, we will borrow existing steganography and ste-
ganalysis architectures and use them to investigate the implications of being
able to create new “instances” of steganography algorithms. In addition, we will



Enhancing Image Steganalysis with Adversarially Generated Examples 3

Fig. 2: Examples of cover images (top) and the corresponding steganographic
images generated using LSB (middle) and SteganoGAN (bottom) with a relative
payload of one bit per pixel. Both steganography techniques produce high quality
images which, to the human eye, appear identical to the cover images.

examine the behavior of the YeNet architecture as we change the composition of
the training dataset and evaluate its ability to generalize to previously unseen
steganography algorithms.

The paper is organized as follows: Section 2 presents the different steganog-
raphy methods used to generate our dataset, Section 3 presents the different
steganalysis methods used in our experiments, Section 4 describes our experi-
mental setup, and Section 5 presents our results.

2 Steganography

The standard image steganography task involves two operations: encoding and
decoding. The encoding operation takes a cover image and a secret message and
combines them to create a steganographic image which closely resembles the cover
image but has the secret message hidden inside. Then, after the steganographic
image is transmitted to the recipient, the decoding operation is applied to the
steganographic image and the secret message is extracted.

In our experiments, we will be using three different techniques to gen-
erate steganographic images: least significant bits (LSB), HiDDeN [13], and
SteganoGAN [12]. Examples of stenographic images generated by some of these
techniques are shown in Figure 2. Both HiDDeN and SteganoGAN use convo-
lutional neural networks and adversarial training to learn to produce realistic
steganographic images.

2.1 Least Significant Bits

The simplest way to embed data in images is to simply swap the least significant
bit of each pixel with the corresponding data bit. For example, given a standard



4 K. Zhang and K. Veeramachaneni

Fig. 3: The SteganoGAN architecture, reproduced with modifications from [12].
The encoder module maps a data tensor and a cover image to a steganographic
image, the decoder module maps a steganographic image to a data tensor, and
the critic module provides feedback on the quality of the steganographic image.
The trapezoids represent convolutional blocks which consist of a convolutional
layer, a leaky ReLU activation function, and a batch normalization operation.
Two or more arrows merging represent concatenation operations and the curly
bracket represents a batching operation.

RGB image and a sequence of data bits, we can simply loop from left-to-right,
from top-to-bottom, and over the color channels and replace the lowest bit of each
pixel value with the data bit. This naive approach is well-known by practitioners,
easy to create paired datasets for, and simple to defend against. Examples of
steganographic images generated by this technique are presented in the middle
row of Figure 2. We will use steganographic images generated by this technique
to initialize our steganalysis models and provide a baseline.

2.2 HiDDeN

The first deep learning-based steganography algorithm we will examine is HiDDeN
[13]. This model is designed to take a fixed-length bit vector and an arbitrarily
sized cover image and produce a steganographic image; note that a given model
is only capable of embedding a fixed number of bits into an image, regardless
of the size of the image. The HiDDeN architecture uses convolutional neural
networks to represent (1) the encoder, which learns to take the image and bit
vector and produces a steganographic image, (2) the decoder, which learns to take
the steganographic image and decode the bit vector, and (3) the adversary, which
learns to detect steganographic images and provides feedback to the encoder on
how to avoid detection.



Enhancing Image Steganalysis with Adversarially Generated Examples 5

2.3 SteganoGAN

We will also use SteganoGAN, a competing deep learning-based steganography
technique proposed in [12], to generate steganographic images. Examples of
steganographic images generated by this technique are presented in the bottom
row of Figure 2. This model is conceptually similar to [13] and features a
similar encoder-decoder-critic architecture, but is able to scale more effectively
to larger images while maintaining a constant embedding rate. The SteganoGAN
architecture, shown in Figure 3, is designed to take in a data tensor and an
arbitrarily sized cover image and create a steganographic image. Unlike the
HiDDeN architecture where the data vector is of a fixed length, the the size of
the data tensor in SteganoGAN scales with the size of the cover image so that
larger cover images will naturally be able to hold more data.

3 Steganalysis

Compared to the steganography task, the steganalysis task seems simple: given
an image, the goal is to identify whether it is cover image or a steganographic
image. We use two steganalysis tools, StegExpose [3] and YeNet [11], to evaluate
our ability to detect steganographic images. The former is a collection of static
steganalysis tools which does not need to be trained, whereas the latter is intended
to be trained on datasets containing examples of cover and steganographic images.

3.1 StegExpose

To set a baseline for detecting steganographic images, we use StegExpose [3],
a popular steganalysis tool which implements several different steganalysis al-
gorithms including Primary Sets [4], RS analysis [7], and Sample Pairs [5]. We
generate steganographic images using each of the techniques discussed in the
previous section and report the detection performance as measured by the area
under the receiver operating characteristic in Figure 1. Based on these results,
we see that the steganalysis algorithms all excel at detecting steganographic
images generated using the least significant bit algorithm but fail to detect images
generated by either HiDDeN or SteganoGAN.

3.2 YeNet

We also experiment with the YeNet architecture from [11], which can be trained
on paired datasets containing examples of cover images and the corresponding
steganographic images generated by various models. The YeNet architecture
is similar to standard image classification architectures but the first set of
convolutional layers are manually set to extract Spatial Rich Model [6] features.
Spatial Rich Models are, in their own right, an effective technique for detecting
steganographic images, but by embedding them into a convolutional neural
network, [11] is able to achieve even better detection performance against a wide
variety of steganography algorithms. We explore the performance of this model
on various tasks in more detail in the following section.



6 K. Zhang and K. Veeramachaneni

Test Performance

Base Datasets LSB HiDDeN SteganoGAN

LSB 0.914± 0.130 0.783± 0.067 0.629± 0.050
LSB + 1 SteganoGAN 0.929± 0.007 0.834± 0.019 0.815± 0.028
LSB + 2 SteganoGAN 0.940± 0.002 0.868± 0.013 0.890± 0.015
LSB + 3 SteganoGAN 0.950± 0.003 0.893± 0.002 0.892± 0.009
LSB + 4 SteganoGAN 0.946± 0.003 0.868± 0.007 0.939± 0.003
LSB + 5 SteganoGAN 0.952± 0.013 0.894± 0.009 0.940± 0.002
LSB + 6 SteganoGAN 0.955± 0.005 0.891± 0.009 0.962± 0.003
LSB + 7 SteganoGAN 0.965± 0.002 0.930± 0.020 0.958± 0.003
LSB + 8 SteganoGAN 0.962± 0.006 0.891± 0.009 0.973± 0.005
LSB + 9 SteganoGAN 0.971± 0.003 0.925± 0.007 0.971± 0.008

LSB + 10 SteganoGAN 0.965± 0.006 0.911± 0.004 0.978± 0.003

Table 1: This table shows the detection performance for YeNet models trained
on various subsets of our base training datasets. We report the performance on
the test sets which contain examples from LSB, HiDDeN, and SteganoGAN.

0 5 10 15 20 25 30 35 40 45 50 55 60

0.5

0.6

0.7

0.8

0.9

Epoch

au
R
O
C

0 2
4 6

Fig. 4: This figure shows the area under the ROC curve on the SteganoGAN test
set over time for models trained on different numbers of model instances. We see
that models trained on more instances generally outperform models trained on
fewer instances.

4 Experiments

To support our experiments, we start by creating two sets of cover images: base
and large. The base set is smaller and consists of 1,000 randomly selected images,
common objects and scenes from the COCO dataset [9]. The size of this base set
is on par with other steganalysis datasets such as the datasets used in the “break
our steganographic system” challenge [2]. The large set is also randomly selected



Enhancing Image Steganalysis with Adversarially Generated Examples 7

from the COCO dataset but contains 10,000 images. Both of these datasets are
partitioned into a train and test partition which contain 70% and 30% of the
images, respectively.

Train. To create our training datasets, we take the images in the base train
partition and generate the corresponding steganographic images using the least
significant bits algorithm as well as 10 different instances of SteganoGAN, giv-
ing us a total of 11 different base training datasets corresponding to different
steganography algorithms. We use an identical procedure to generate the large
training datasets.

Test. To create our test datasets, we take the images in the base test partition
and generate the corresponding steganographic images using the least signif-
icant bit algorithm, a secret instance of SteganoGAN, and a secret instance
of HiDDeN. Once again, we use an identical procedure to generate the large
test datasets. This procedure ensures that (1) the LSB test set contains images
that the model has never seen before, (2) the SteganoGAN test set contains
images generated by a specific set of neural network weights that the model
has never seen before, and (3) the HiDDeN test set contains images generated
by a entire class of steganography algorithms that the model has never seen before.

Optimization. To train the YeNet model, we use the Adam optimizer with a
batch size of 32 and an initial learning rate of 0.001, and decay the learning rate
when the loss plateaus for 10 epochs. We train the model for 64 epochs and report
the average of the area under the receiver operating characteristic over three
training runs for each of the test sets. By varying the number of SteganoGAN
instances used to train the YeNet model, we can measure the resulting change in
performance on each of the test datasets.

5 Analysis

The results on the base datasets are shown in Table 1. We immediately see
that a model trained solely on LSB images is not effective at detecting HiDDeN
or SteganoGAN images. However, we also observe that as we add examples of
steganographic images generated by different instances of SteganoGAN, the test
performance increases across the board. Not only does the model get better at
detecting steganographic images generated by a secret instance of SteganoGAN
that it has never seen before, but it also gets better at detecting steganographic
images generated by HiDDeN, a secret class of steganography algorithms that it
has never seen before.

To further establish the robustness of our results, we repeat these experiments
with the large datasets. The models trained on this dataset achieve dramatically
higher detection accuracy than the models trained on the base dataset. How-
ever, we still observe similar trends: as we add more instances of SteganoGAN,
our model becomes better at detecting images generated by previously unseen



8 K. Zhang and K. Veeramachaneni

Test Performance

Large Datasets LSB HiDDeN SteganoGAN

LSB 0.989± 0.002 0.895± 0.013 0.812± 0.009
LSB + 1 SteganoGAN 0.983± 0.004 0.952± 0.004 0.976± 0.003
LSB + 2 SteganoGAN 0.989± 0.001 0.967± 0.001 0.984± 0.003
LSB + 3 SteganoGAN 0.988± 0.001 0.964± 0.004 0.989± 0.001
LSB + 4 SteganoGAN 0.989± 0.002 0.970± 0.001 0.991± 0.001
LSB + 5 SteganoGAN 0.990± 0.002 0.962± 0.002 0.993± 0.001

Table 2: This table shows the detection performance for YeNet models trained
on various subsets of our large training datasets. We report the performance on
the test sets, which contain examples from LSB, HiDDeN, and SteganoGAN.

steganography algorithms. We find that despite not providing a single example
of a steganographic image generated by HiDDeN, we are able to detect them
with an auROC of 0.971. These results suggests that using a diverse set of adver-
sarially generated examples to train a steganalysis tool is a promising strategy
for enabling steganalysis models to generalize well to steganography algorithms
that it has never seen before.

6 Conclusion

In this paper, we explored the relationship between deep learning-based steganog-
raphy algorithms and steganalysis techniques. We examined the impact of using
multiple instances of the SteganoGAN steganography algorithm to train the
YeNet steganalysis tool and found significant improvements on all of our test sets.
Finally, we found evidence to suggest that by using a diverse set of adversarially
generated examples as our test set, we can train steganalysis models which
generalize well and are able to achieve high detection rates on steganography
algorithms that the model has not seen before.

References

1. Baluja, S.: Hiding images in plain sight: Deep steganography. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 30, pp. 2069–2079. Curran
Associates, Inc. (2017)

2. Bas, P., Filler, T., Pevnỳ, T.: “break our steganographic system”: the ins and outs
of organizing boss. In: International workshop on information hiding. pp. 59–70.
Springer (2011)

3. Boehm, B.: StegExpose - A tool for detecting LSB steganography. CoRR
abs/1410.6656 (2014)

4. Dumitrescu, S., Wu, X., Memon, N.: On steganalysis of random lsb em-
bedding in continuous-tone images. vol. 3, pp. 641 – 644 vol.3 (07 2002).
https://doi.org/10.1109/ICIP.2002.1039052



Enhancing Image Steganalysis with Adversarially Generated Examples 9

5. Dumitrescu, S., Wu, X., Wang, Z.: Detection of LSB steganography via sample pair
analysis. In: Information Hiding. pp. 355–372 (2003)

6. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE
Transactions on Information Forensics and Security 7(3), 868–882 (June 2012).
https://doi.org/10.1109/TIFS.2012.2190402

7. Fridrich, J., Goljan, M., Du, R.: Reliable detection of lsb steganography in color
and grayscale images. In: Proc. of the 2001 Workshop on Multimedia and Security:
New Challenges. pp. 27–30. ACM (2001). https://doi.org/10.1145/1232454.1232466

8. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training.
In: NIPS (2017)

9. Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona,
P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in
context. CoRR abs/1405.0312 (2014)

10. Wu, P., Yang, Y., Li, X.: Stegnet: Mega image steganography capac-
ity with deep convolutional network. Future Internet 10, 54 (06 2018).
https://doi.org/10.3390/fi10060054

11. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganal-
ysis. IEEE Trans. on Information Forensics and Security 12(11), 2545–2557 (Nov
2017). https://doi.org/10.1109/TIFS.2017.2710946

12. Zhang, K.A., Cuesta-Infante, A., Xu, L., Veeramachaneni, K.: SteganoGAN:
High capacity image steganography with gans. CoRR abs/1901.03892 (2019),
http://arxiv.org/abs/1901.03892

13. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: Hiding data with deep
networks. CoRR abs/1807.09937 (2018)


