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Abstract

Over the last few years, cyber attacks have become increasingly sophisticated. In
an effort to defend themselves, corporations often look to machine learning, aiming
to use the large amount of data collected on cyber attacks and software systems
to defend systems at scale. Within the field of machine learning in cybersecurity,
PDF malware is a popular target of study, as the difficulty of classifying malicious
files makes it a continuously effective method of attack. The obstacles are many:
Datasets change over time as attackers change their behavior, and the deployment
of a malware detection system in a resource-constrained environment has minimum
throughput requirements, meaning that an accurate but time-consuming classifier
cannot be deployed. Recent work has also shown how automated malicious file cre-
ation methods are being used to evade classification.

Motivated by these challenges, we propose an active defender system to adapt to
evasive PDF malware in a resource-constrained environment. We observe this system
to improve the f1 score from 0.17535 to 0.4562 over five stages of receiving PDF files
that the system considers unlabeled. Furthermore, average classification time per file
is low across all 5 stages, and is reduced from an average of 1.16908 seconds per file
to 1.09649 seconds per file.

Beyond classifying malware, we provide a general active defender framework that
can be used to deploy decision systems for a variety of resource-constrained adversarial
problems.

Thesis Supervisor: Kalyan Veeramchaneni
Title: Principle Research Scientist
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Chapter 1

Introduction

In recent years, cyber attacks have increased dramatically in scale and sophistication.

Last spring brought the WannaCry ransomware attack, which crippled the comput-

ers of both users and institutions around the world[12]. Soon after came attacks on

the Equifax credit reporting agency, which resulted in the release of the personal

information of millions of users [24]. In addition, banks and Bitcoin exchanges have

been subject to an increasing number of attacks throughout the last few years [2]. A

common trend across recent attacks is the increasing sophistication of the attackers.

Recent cyber attacks are increasingly attributed to Nation-State actors, or Nation-

State sponsored cyber-gangs. These powerful attackers often target individuals or

small-scale enterprises. The asymmetry between the resources an adversary can de-

vote to attacking a system and the resources a corporation can devote to preventing

such an attack presents a challenging problem.

In addition, the increasing scale of software systems makes it even more difficult

to defend against attacks. Even a small social media platform cannot comb through

every user’s behaviour manually to see if an account has been compromised. As

enterprises collect and store more and more data, machine learning is being used

to help teams ranging from marketing and sales and human resources to product

development and execution. As a result, the interest in developing machine learning-

based solutions has increased exponentially[5].

These enterprises also seek a better answer to the question “Can we use machine
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learning to detect, predict and defend against cyber attacks?” As researchers study

the problem, we have begun to realize that developing solutions for cyber security is

one of the most complex machine learning endeavors we can undertake.

Many significant challenges stand in the way of automating security. The first is

the evolving nature of cyber attacks. Traditional machine learning operates under

the assumption that the data used to model behaviour is similar to what arrives when

the system is deployed. This doesn’t hold in cybersecurity. As a researcher is design-

ing a defense system by modeling data, attackers are designing automated evasive

algorithms to evade these deployed models. This means that machine learning mod-

els based on past attacks will quickly become outdated if they cannot automatically

adapt to a changing environment.

The second challenge stems from the complex dynamics of the security ecosystem.

The actors in a given security problem generally include enterprises who want to

defend themselves, sophisticated attackers, overburdened security analysts, and end-

users with a limited knowledge of how to protect themselves and subsequently the

enterprise. Complications might include detection strategies being public knowledge,

or the limited availability of computational resources. Such a dynamic and complex

environment means that solutions can fall short in a number of ways. For instance,

a highly optimized and accurate attack detection solution could be useless if the

enterprise does not have the resources to deploy it.

In the large space of machine learning in cybersecurity, recent research has focused

both on the sub-problem of PDF malware detection and, more recently, the automated

evasion of detection. 91% of security breaches are caused by low volume phishing

attacks1. These attacks typically use social engineered messages in combination with

malicious URLs or files to gain entry into a system. PDFs are an especially popular

method of attack. PDFs appear commonplace, and end users are used to receiving a

variety of benign documents as PDFs, including e-books, papers, syllabi, and reports.

While users inherently trust PDFs, they are an incredibly flexible document format

that make it easy to embed and disguise a variety of malicious code. This makes

1http://info.greathorn.com/2017-spear-phishing-report
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them a promising method of attack. While PDFs have been used for years as an

attack vector, PDF-based malware is a continuous form of attack as vulnerabilities

are found in PDF readers such as Google Chrome 2. Furthermore, document-based

malware can be a powerful entry point and has been shown to be able to download

other malware, hide malicious scripts within the document, spy on users, or encrypt

an end user’s computer in a ransomware attack [4].

Because PDF malware is so dangerous, a variety of solutions have been proposed

for preventing these attacks, using different methods of classification. Starting at

the delivery mechanism, network analysis is used to detect an unusual volume of

emails. Next, static classifiers are used to check for known malicious bit-strings or to

extract the simple features used in machine learning classifiers. Dynamic classifiers

put the file in an isolated environment and look for malicious behaviour. API-based

classifiers allow files to be submitted and analyzed across a suite of different and

powerful detection methods. Finally, human analysts can manually inspect a file

using a variety of software and hardware tools.

These solutions have two problems. First, in a resource-constrained environment,

a defense system does not have the time necessary to send every file it receives to an

accurate classifier such as a human analyst, and must choose a faster, less accurate

option. Second, automated classifiers can be evaded by sophisticated attackers, and

such a system can become obsolete if an attacker’s behaviour changes after it is

deployed [39].

Motivated by these problems, we designed the SMDA framework. We aimed to

design a framework that could provide accurate detection in a resource-constrained,

adversarial environment. A system that can intelligently handle resource limitations

and remain robust to a changing environment can be widely deployed. Furthermore,

our system uses active learning to provide accurate results in the presence of adver-

sarial evasion algorithms. In this project, we also propose a software system that can

generalize to a variety of adversarial problems, and unify researchers and developers

in developing active defense solutions.

2https://thestack.com/security/2016/06/09/pdf-exploit-found-in-default-google-chrome-reader/
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The SMDA framework provides four modules – Synthesize, Model, Decide, Adapt

– to generate data, develop machine learning models of the data and true labels,

classify input data, and adapt to improve the system over time. By developing a

general framework, we can use this software system for a variety of use cases and

easily benchmark, improve, and deploy classification systems.

Figure 1-1: Modules of the SMDA framework for building adaptive models in adver-
sarial environments.

For the PDF malware use case, we explored how the SMDA framework could

be used to build the Active Defender PDF malware classification system. Several

recent studies suggest automated methods for PDF malware classification evasion

[39, 11, 14, 28]. By deploying the model in the PDF use case and generating evasive

data, we are able to easily test how the algorithm performs against evasive adversaries.

1.1 Contributions

In this thesis, we make the following contributions to enable machine learning in

cybersecurity.

1. We provide an active learning decision system to maintain high accuracy in the
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presence of motivated adversaries using evasive strategies.

2. We propose a resource allocation algorithm to optimize the use of available

detection methods in a resource-constrained environment.

3. We provide a general purpose SMDA framework to enable the building, evalu-

ating, and deploying of decision systems in an adversarial environment.

4. We present the Max-Diff algorithm, which is shown to confuse even the most

sophisticated automated classifier.

1.2 Thesis Organization

The remaining chapters of this thesis are organized as follows:

• Chapter 2 describes PDF malware and the data set used in this project.

• Chapter 3: introduces the SMDA logical framework.

• Chapter 4: describes the Synthesize module of SMDA.

• Chapter 5: describes the Learn module of SMDA.

• Chapter 6: describes the Decision module of SMDA.

• Chapter 7: describes the Adapt module of SMDA.

• Chapter 8: describes the experimental results and performance of the active

defender system.

• Chapter 9: describes our key findings and future directions.
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Chapter 2

Malware through PDFs

The portable document format (PDF for short) is the most popular format for doc-

ument sharing. As a result, PDFs are often passed through emails as attachments.

Many applications also support PDF uploads, which are used for everything from

academic conference paper submissions to government agencies accepting tax forms.

Because PDFs are so common, end users often trust them. However, this unassum-

ing document contains a powerful format that enables attackers to embed and hide

malicious code. In this thesis, we will focus on PDFs to create an active defender

using our smda framework. This chapter will cover the following core concepts:

• The structure of PDFs

• How malware is embedded in PDFs

• The current detection techniques available

2.1 Structure of a PDF

The PDF file that we see on a daily basis is a rendered version of PDF source code.

PDFs use a hierarchical tree structure to store objects. The high-level structure of a

PDF contains four main sections.

• Header: The header contains the PDF number and format information.
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• Body: The body is the essential element of PDF files. It contains objects of the

8 basic types, namely: Boolean, Numeric, String, Null, Names – representing

key labels or name such as ”//Page”, Arrays, Dictionaries, and Streams, cor-

responding to an dictionary and sequence of bytes. The objects are organized

in a hierarchical tree structure, storing the relations between various objects.

This tree structure enables the storage of complex relationships.

• Cross Reference Table (CRT): The CRT indexes the components in the body

• Trailer: The trailer specifies how to find the CRT and other special objects

Figure 2-1: Source for a simple hello world PDF

For example, we analyze the simple Hello World PDF described in an IDR solu-

tions tutorial1. In this example, we view the source in a text editor in Figure 2-1

and the rendered version in Figure 2-2.

1https://blog.idrsolutions.com/2010/10/make-your-own-pdf-file-part-4-hello-world-pdf/
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Figure 2-2: Rendered version of simple hello world PDF

In looking through the PDF source in Figure 2-1 we see the header in line 1, the

body in lines 3 through 18, the cross reference table (CRT) in lines 19 through 27 and

the trailer from lines 31 to 33. The header simply describes the version of PDF used.

In the body, the nodes of the tree and the corresponding objects at nodes 1 through

6 are described. In the cross reference table we see “xref” followed by 0, indicating

the special node that marks the head of the list and 7, representing the total number

of objects in the list including the head of the list. In lines 21 through 27 we see the

base list of objects described with the offset, and whether each object is in the body

section (lines ending in n) or not. In lines 29 through 33, we see the trailer section

which describes the byte offset to the xref key work.

While this is one source code representation that can generate the rendered version

shown in Figure 2-2, many other source implementations can result in the same visual

document.
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2.2 Malware in PDFs

The flexible structure of PDFs means it is easy to manipulate them by changing the

file slightly and hiding code deep within branches of the tree structure. Furthermore,

the hierarchical structure enables easy mutation by inserting, swapping or deleting

elements across multiple files [32].

PDF malware is an effective way for adversaries to gain access to a computer

system. Since end users trust PDFs and open them more frequently than other files,

they provide a conduit for attackers to gain access to a system using a static document

linked to on a website or sent as a shared file. While PDF reader vulnerabilities have

been reported for years, new threats are continuously discovered as attackers become

more sophisticated, targeting vulnerabilities and hiding their approaches [34]. In the

past year alone, over a hundred new vulnerabilities were reported for PDFs on a

variety of targets from Acrobat to Chrome [39, 3].

Figure 2-3: Example of un-obfuscated code as a PDF object

Due to the expressive nature of the PDF format, there are many places to hide

malicious functionality within a PDF. Most, but not all, PDF exploits are based

on Javascript. Javascript is often buried within deep branches of the PDF object

structure. These scripts can also be disguised and encoded in streams that are only

interpreted as Javascript through the eval() function, so that even with manual in-

spection of the PDF source and Javascript, the purpose may be unclear [31]. Even if
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Figure 2-4: Example of obfuscated code as a PDF object

the injected code is the same, attackers can mutate other aspects of the file, such as

the length and contents, to change the file and confuse classifiers.

Javascript can be embedded as a stream object in a PDF file2. In Figure 2-3, we

see a representation of a Javascript stream object. In this case, it is a benign alert

box. However, using character encoding, adversaries can disguise the purpose of the

code used. In Figure 2-4, we see the same code represented as an encoded stream,

which is then called in a later object. Here it is unclear what the purpose of the code

is, which makes it more difficult to scan a file for known malicious Javascript code.

In practice, attackers may use automated tools to inject code to attack known PDF

reader vulnerabilities [26].

2.3 Our dataset

To demonstrate the efficacy of different detection techniques in Section 4 we have

currently generated a repository of 207,119 total PDFs. From these files, we collected

2https://www.cyren.com/blog/articles/how-pdf-files-hide-malware-example-pdf-scan-from-
xerox-1247
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classifier scores for 79,949 files and created a labeled set. Of these files, 35,269 are

malicious files and 44,680 are benign. We created the dataset from a combination of

existing, externally provided PDF files, and variations of these PDF files generated

via a process we call mutation. Here is a list of sources we used to gather these PDFs:

– Contagio: External PDFs were downloaded from the Contagio dataset. The

Contagio dataset provided a corpus of 9,000 benign PDFs and 10,597 malicious

files[1].

– EvadeML: Evade ML data provided by Weilin Xu contains 16440 malicious

PDF files developed using the “EvadeML” algorithm. These files are based off

of 500 malicious files in the Contagio data set and are designed to confuse the

PDFRate classifier [39].

– Self-generated: PDFs can be generated from existing PDFs according to the

“Random-Mutation”,“Evade-M” [39] or“Max-Dif” algorithms. These are de-

scribed in more detail in the Chapter 4. Both the “Evade-ML” and ”Max-Diff”

algorithms are based on genetic programming. These algorithms create pools

of samples, score them, and select the best-scoring samples to mutate to create

more malicious files. In this data set, we generated 8232 malicious files using

the “Max-Diff” algorithm and 35,680 benign files using random mutation.

Base PDF Information We keep the following base information for each PDF in

the dataset:

• Filepath: the local location of the file

• Malicious Source: Boolean flag indicating if this is derived from a malicious or

benign file

• hash: sha1 hash of the file to uniquely identify the sample

• can parse: Boolean flag indicating if this is parseable by a PDFRW PDF reader

which reads in a PDF file into a JSON tree structure. In practice, most benign
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PDFs are parsable, but many malicious PDFs are malformed and while they

can be used to exploit a system, cannot be read by the PDFRW parser used to

create mutants of files.

2.4 PDF Malware Detection

There have been many approaches to detecting malware within PDFs, operating off

of various software security designs. Throughout the many implementations of such

detection, there are three main types of PDF malware detection and prevention: net-

work features, static file features, and dynamic behavioural analysis. Other methods

use a combination of detection methods to give a final prediction.

2.4.1 Using Network Features

Network detection is the first line of defense, and aims to prevent delivery of malicious

content before a user has a chance to download it. Through email analysis such as

spam detection or network frequency methods, enterprises can filter out anomalous

behaviour and limit the phishing emails and attached malware that makes it to the

end-user [15, 21]. This is usually done in combination with static or dynamic analysis.

2.4.2 Using Static Features

Static detection uses static features of the PDF data to process files quickly before

passing them on to the users. These methods are preferred for their low latency, but

have higher error rates than dynamic methods. Static classification methods include

signature based detection methods which could search a received file for unique bit

string of known malicious files. Other methods attempt to utilize higher level features

of the file. Early solutions were based off of n-gram analysis or javascript pattern

recognition [20, 22]. However the most successful static PDF feature based classifiers,

have been PDFRate which operates off of PDF meta-data and byte-level filestructure

and Hidost operating off of structural paths.

29



Feature Name
pdfrate 0 author dot
pdfrate 1 author lc
pdfrate 2 author len
pdfrate 3 author mismatch
pdfrate 4 author num
pdfrate 5 author oth
pdfrate 6 author uc
pdfrate 7 box nonother types
pdfrate 8 box other only
pdfrate 9 company mismatch
pdfrate 10 count acroform

Table 2.1: Subset of features used by the PDFRate classifier. The full set of PDFRAte
features is available in Apprendix A

PDFRate classifier: The PDFRate classifier is a static machine learning classifier

which collects features based on the structure and meta data of a PDF document

[30]. Once the model is trained, it is fast, taking less than a second to classify a

document. However it has been shown to be evaded by adversarial algorithms using

genetic programming methods [39]. The classifier works as follows:

– Extract features/attributes: We extract 135 features, described in the PDFRate

documentation [6],[29]. The PDFRate features are considered to be set of fea-

tures for static classification [39]. The features describes statistics and attributes

of the of the PDF structure such as sown in Table 2.1 and Appendix A.

– Train a machine learning classifier: The standard PDFRate classifier is a ran-

dom forest machine learning classifier trained on a labeled features from 5,000

malicious and 5,000 benign files from the Contagio dataset [6, 29]. The classi-

fication score is a floating point value where scores close to -1 indicate benign

files and scores close to 1 correspond to malicious files. This data is separate

from the main dataset we use in for our experiments.

– For a new PDF the detection is made by:

– Extracting the features
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– Generating a score using the trained classifier

– Thresholding a score and making a decision

How good is this classifier? In reviewing the distribution of PDFRate classifica-

tion scores Figure 2-5,we observe that the distribution does not have clear separation

between the benign and malicious scores. The PDFRate classifier is able to separate

a portion of the malicious files, however a large portion of the files are misclassified

and receive similar scores as the benign files.

Figure 2-5: KDE approximation of Probability Density for scores generated using
the PDFRate classifier. This plot shows the malicious variants in pink and benign
variants in blue. The KDE plot was generated with a Gaussian kernel of width 0.1

2.4.3 Dynamic Behavioural Analysis

These methods have been found to have remarkably high accuracy compared to static

approaches. Dynamic methods observe the behaviour of a file on an isolated virtual

machine or hardware sandbox. Since they monitor the behaviour of a file, rather than

31



features they can be more difficult to evade. However they can be evaded through en-

vironmental detection, delaying malicious behaviour or other methods. Furthermore,

these methods have high latency and would significantly reduce performance if they

were the only source of detection [31]. Sandboxes such as the Cuckoo dynamic sand-

box detection framework works well for an Oracle to ensure a mutated file maintains

the malicious behaviour of the source file. However, for use in deployed detection

systems, this solution has latency that can range from 5 seconds to several minutes

to get results. [39].

Cuckoo The Cuckoo Sandbox runs each PDF dynamic analysis sandbox on an iso-

lated “sandboxed” environment. The isolated environment could be virtual machines

or an isolated computer. A Cuckoo server runs on the host computer receives files and

sends them to a virtual machine for analysis. In the virtual machine, Cuckoo simu-

lates opening PDFs in vulnerable version of Adobe Acrobat, and collects information

and compares to a set of known behavioural signatures. Cuckoo is fairly accurate for

known malicious signatures, and usually requires 30 seconds of simulation time in a

virtual machine. For our experiments we used virtual machines set up in VMWare,

running Windows XP and a vulnerable version of Adobe Acrobat Reader 8.1.1. From

the results of the Cuckoo classification, we recorded the following outputs for each

PDF:

• Signatures observed : This is a list of the known malicious behavioural signa-

tures observed on the virtual machine when the PDF was processed. If the list

is empty, no signatures were observed in Cuckoo.

• Cuckoo Decision: This is a Boolean variable describing if any signatures were

observed

How good is this detector? The Cuckoo classifier also is shown to achieve better

separation in malicious and benign scores than the PDFRate classifier, as shown in

Figure 2-6. However, we still observe a portion of the malicious files achieve the

classification scores as benign files.
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Figure 2-6: KDE approximation of Probability Density for binary Cuckoo classifier
scores. This plot shows the malicious variants in pink and benign variants in blue.
The KDE plot was generated with a Gaussian kernel of width 0.1

2.4.4 Publicly available APIs

Virus Total is an API based classifier that runs a suite of static classifiers anti-

virus engines that run on a submitted PDF. These anti-virus engines often use a

combination of classification techniques to return results. Aggregating these results

can result in a highly accurate classification, but can be time and resource intensive.

We typically observed classification to take about two minutes, but in times of high

server load this can be longer. Furthermore corporations may be rate limited by the

API and may have to pay for uploads.

We collect the following information for each file from the Virus Total results:

• Percent Malicious : This is the aggregate percent of antivirus engines that

classified the uploaded PDF as malicious

• Classifier Results. For each of the scanners used by Virus Total we collect
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the following classification attributes: version of scanner used, scan result, and

malicious classification. Some of the classifiers used by Virus Total include

Endgame, Kaspersky Antivirus, Symantec, and Sophos. See full set of Virus

Total Classifiers in appendix [B]

How good is this detector?: Virus Total is considered to be state of art in malicious

file scanning and is operated by Google. It runs up to 59 other static dynamic and

antivirus classifiers and returns the results of classification. Furthermore it collects a

large data set of files from submitters around the world. In 2007 it was listed as one

of the best products developed that year 3. Virus Total is shown to perform the best

of all the classifiers and is able to catch many evasive files as shown in Figure 2-7.

It performs better than PDFRate and Cuckoo is able to distinguish most malicious

files, however there are still some malicious files that receive the same classification

scores as benign files.

2.4.5 Human expert analysis

Using human analysts to inspect malware samples is the most accurate form of de-

tection. Analysts can compare samples through a variety of methods comparing

networks calls, memory access, or running the sample on a hardware sandbox or

comparing activity on a device through a firewall. This is an extremely accurate form

of classification; however, the scale of incoming PDFs requires other methods to be

used.

How good are humans?: In addition to the automated classifiers we model a

human classifier with access to a variety of software an hardware tools. The human is

100% accurate in classification, but is very time intensive and can take several hours

to return a result.

3https://www.google.com/search?q=best+products+2007+virus+totaloq=best+products+2007
+virus+totalaqs=chrome..69i57j69i64.3734j0j4sourceid=chromeie=UTF-8
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Figure 2-7: KDE approximation of Probability Density for percent of Virus Total
classifiers that classify a file as malicious. This plot shows the malicious variants in
pink and benign variants in blue. The KDE plot was generated with a Gaussian
kernel of width 0.1.

2.4.6 Hybrid systems

Hybrid classification systems have been developed to attempt to achieve increased

accuracy without the time constraints of dynamic systems. The ALDOCX system

uses active learning combined with human analysts to provide an accurate DOCX

classification framework [23]. Other systems such as MDScan combine static docu-

ment analysis and dynamic code execution on PDFs, however these systems can be

expensive or time consuming if the require multiple types if they expensive classifiers

every time[36].
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2.5 Conclusions

From the data analysis, we observe that neither the initial PDFrate or Cuckoo clas-

sifiers perform well on adversarial data. This suggests combining information from

classifiers and using the Virus Total classifier at least some point in training is neces-

sary to obtain accurate classification results.
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Chapter 3

Active defender system

In this project, we aim to not only provide a method of PDF Malware detection

system, but also to provide general purpose framework for building decision systems

that perform well in the presence of adversaries and a changing dataset. To this

effort, we propose the SMDA framework. The goal of this framework is to separate

the algorithms used to deploy a decision system into separate logical models.

Separating the process into distinct modules enables researchers and developers to

more easily pursue their targeted interests and interface with each other. Researcher

scientists can more easily develop and evaluate proposed algorithms for specific com-

ponents. Developers can more easily combine these modules and choose algorithms

that perform best for their use case.

Through studying PDF Malware detection, we found evaluating and deploying

classification systems in an adversarial environment can be broken down into the

following four logical modules Synthesize, Model, Decide, and Adapt (SMDA). Syn-

thesize corresponds to algorithms to create (adversarial) data. Model corresponds to

methods for modeling the data. Decide corresponds to the decision function turn-

ing an internal representation and features of a sample into a prediction. Adapt

corresponds to functions used to update learned models and decision function.

By providing these abstractions and general purpose framework, we hope to fa-

cilitate easy integration of state of the art algorithms deployed for a variety of use

cases.
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Name Description
nv Desired number of files to generate
y desired label to generate data
Sm set of malicious samples
Sb set of benign samples
o() oracle function that indicates if malicious functionality in tact
Smutants set of mutant files
Sm
mutant set of malicious mutant files
Sevade set of malicious samples
cutoff cutoff specifying the minimum fitness function score for “evasive” files
fmutate(Sm, Sb) function that creates mutations using a set maliciuos and benign files
C Classifier
p Individual probabilistic score
C1 PDFRate (primary) classifier
p1 Output of C1

C2 Cuckoo (primary) classifier
p2 Output of C2

C3 Virus Total (primary) classifier
p3 Output of C3

C4 Secondary classifier using p1 and p2 as inputs
p4 Output of C4

C5 Secondary classifier using p1, p2, and p3 as inputs
p5 Output of C5

P1 set of p1 scores
P3 set of p3 scores
S Samples
|S| Number of samples
s Individual sample
C Classifier
Y True Labels

Ŷ Predicted Labels
P Set of probabilities
p Individual probabilistic score
plast Output of the last classifier used in making a decisino
Di Decision function
t1i Lower threshold for probability score i
t2i Upper threshold for probability score i
tlast Last threshold used in making a decision
Npc used Number of primary classifiers used in classifying a file
Npc total Number of total classifiers used
γ value of accuracy score vs. time

Table 3.1: Notation and Definitions used in the SMDA algorithms table (1/2)
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Name Description∑
i ri Total time taken to make decision per file

1
|S|

∑
i ri Average time taken to make decision per file

recall() Recall
precision() Precision
f1 function that computes the f1 score
β precision recall weight – weight of precision vs recall
g(.) Function describing accuracy of a system
g1 Specific evaluation function maximizing f1 score.
g2 Specific evaluation function maximizing recall given precision above 0.9
c Cost function
e() Enumeration function that generates initial threshold sets to evaluate
ε Difference in successive g() scores after which to stop optimizing thresholds
niterations maximum number of iterations to run in each tuning step
`t1 list of threshold combinations for (t11,t

2
1)

`t2 list of threshold combinations for (t12,t
2
2)

`t3 list of threshold combinations for (t13,t
2
3)

`t4 list of threshold combinations for (t14,t
2
4)

`t5 list of threshold combinations for (t5)
T set of thresholds {t11,t21,t12,t22,t13,t23,t14,t24,t5}
`T list of threshold sets
e1() simple enumeration function
α Minimum probability used in selecting data
λ weight between data used for training and tuning
Sreceived Samples received by decision system
Preceived predicted probability for received samples produced by decision function
Yreceived predicted labels for received samples produced by decision function
Sselected Samples selected for updated the system
STrain Samples selected for updated the system
Sselected Samples selected for updated the system
STrain Samples used to train classifiers
STrainPrimary Samples used to train primary classifiers
STrainSecondary Samples used to train secondary classifiers
STune Samples used to tune the decision function

Table 3.2: Notation and Definitions used in the SMDA algorithms table (2/2)
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3.1 Active Defender System

As shown in Figure 3-1, Active Defender utilizes the SMDA framework to maintain

high accuracy while reducing classification time and resource usage. In subsequent

chapters, we describe the SMDA abstractions in detail and how they are used in

active defender.

Figure 3-1: Active Defender Sytem Design: The Active Defender system uses the
SMDA framework design and deploy a system to build and deploy a decision system.
First the system is initialized by Synthesizing training data, learning a probabilistic
model, and tuning the decision function. After the system is deployed it is used to
decide on new data including evasive data generated by the attacker. After a decision
is made on newly received data, the system adapts to update the model and decision
function
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Chapter 4

Synthesizing training data

To develop a adaptive machine learning solution, we need labeled training examples

from past. For any given malware type - PDF or others - one may start with some

examples made available from the past. Some are either available publicly or pro-

vided privately by security teams. Additionally, security teams can create malware

directly to test their own defenses. In recent years, machine learning has been used to

automatically create malware samples. In this chapter we describe multiple methods

used to create malware samples and devise a strategy of our own. Our focus is still

on PDFs.

4.1 Machine learning to create malicious samples

Beyond the direct methods used to inject malicious code and create PDF files, at-

tackers can mutate of existing PDF malware in order to avoid detection. Automatic

creation of malicious samples can be approached in two ways (i)supervised and (ii)

unsupervised. In the supervised method the focus is on creating samples that are able

to evade a detector - typically a machine learning classifier itself. A second approach,

is unsupervised which attempts to create samples that are distant in feature space

but are still malicious. In the next subsection, we present the supervised methods.

In the case of PDF Malware, attackers can create malware by either building

malicious seeds through injecting javascript into a PDF file, or automated generation

41



Name Description
nv Desired number of files to generate
y desired label to generate data
Sm set of malicious samples
Sb set of benign samples
o() oracle function that indicates if malicious functionality in tact
Smutants set of mutant files
Sm
mutant set of malicious mutant files
Sevade set of malicious samples
p1 output of C1

p3 output of C3

P1 set of p1 scores
P3 set of p3 scores
cutoff cutoff specifying the minimum fitness function score for “evasive” files
fmutate(Sm, Sb) function that creates mutations using a set malicious and benign files

Table 4.1: Notation and Definitions used in the Synthesize algorithms.

of mutants from existing malicious seeds. Many features in PDF malware are used

used manipulate the presented features of a file without modifying the underlying

functionality.

In this case, there are two types of Synthesize functions used. The first type Initial

Sample Synthesis. This could be done by loading a folder of files and generating labels.

4.1.1 Methods to evade classifiers

Many recent studies have focused on methods for generating adversarial PDF files to

evade machine learning classifiers. In almost all cases, these methods rely on feedback

from the classifier - that they are trying to evade - to create new variants. Hence we

categorize them as supervised methods.

The mimicus framework presents a method to manipulate PDF classification using

mimicry attack through modifying mutable features and through gradient descent

methods using attributes of the model [6, 19]. The EvadeML framework presents a

blackbox genetic programming approach to evade a classifier when the classification

score is known [39]. The EvadeHC method, evades machine learning classifiers that

evades classifiers without knowledge of the model or classification score [14]. The
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SeedExploreExploit framework presents another evasion method for deceiving black

box classifiers by allowing adversaries to prioritize level diversity and accuracy to

generate samples [28].

Other methods operate on the feature space and generate evasive features that

could confuse classifiers, however it often unclear how to convert evasive features back

into a malicious file [17].

Many other methods have been presented to deceive machine learning classifiers

based on the stationarity assumption not holding in an adversarial environment [13,

27, 14, 25, 16, 35, 13, 9, 8, 18, 7]

These attacks often focus on complex classifiers like deep learning systems, where

classifiers can be over fit to rely on features that are correlated with malware rather

than those necessary for malware. In [38], Wang et al showed that complex classifiers

are able to be evaded with the presence of even one unnecessary feature.

EvadeML

Of all the methods under this paradigm of creating evasive variants, we focus on

EvadeML. The authors of EvadeML have made their software open source. EvadeML

uses a genetic programming method to produce tree-structure variants of malicious

seeds - to evade static classifiers such as Hidost and PDFRate. These variants are

then tested against the Cuckoo sandbox to ensure maintained malicious activity then

scored using static classification scores [39]. With these parameters, EvadeML was

able to achieve was able find variants that recieved classification scores of < 0 with

PDFRate classification scores in range -1 (benign) to 1 (malicious) for all 500 mali-

cious seeds. This indicates it was successfully able to confuse the PDFRate classifier.

The algorithm works as follows:

Step 0 : Start with an empty set Sevade = {}

Step 1 : Create a set of mutant files using fm using the set of Sm. Call this set Smutants.

Step 2 : Check which among the mutants are malicious using the oracle function o().

In our case this is the Cuckoo classifier. Call this set Sm
mutant
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Step 3 : Apply PDFRate classifier to the set Sm
mutant and generate classification scores.

Step 4 : Select the mutants that have classification scores greater than the cutoff. Add

these to the set Sevade. These files represent the ones that are able to evade the

PDFrate classifier.

Step 5 : Repeat steps 1 -4 until |Sevade| ≥ nv.

Max-Diff algorithm

We propose the Max-Diff algorithm as an alternative way to generate malicious

files. The Max-Diff algorithm is similar to the EvadeML algorithm in that it uses a

malicious and benign pool of variants, scores the malicious variants, mutates mutates

the best scoing variants, adds them to the pool of malicious files and continues.

However, unlike the Evade-ML algorithm, it does not seek to find files that receives

a classification score less than the cutoff for a single classifier. Instead, it selects for

files that receive different classification scores with different classifiers in the system.

In the case of Active Defender system, Max-Diff targets files that evade PDFRate or

Virus Total.

The algorithm works are follows:

Step 0 : Start with an empty set Sevade = {}

Step 1 : Create a set of mutant files using fm using the set of Sm. Call this set Smutants.

Step 2 : Check which among the mutants are malicious using the oracle function o().

In our case this is the Cuckoo classifier. Call this set Sm
mutant

Step 3 : Apply PDFRate classifier to the set Sm
mutant and generate classification scores.

Collect these scores in P1

Step 4: Upload the set to the Virus Total website and generate virus total classifier

scores for Sm
mutant and generate classification scores. Collect these scores in P3
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Step 5 : Select the mutants that have (p1 − p3) greater than a threshold specified by

cutoff. Add these to the set Sevade. These files represent files that different scores

between PDFRate and Virus Total and could confuse a classification system.

Step 6 : Repeat steps 1 -4 until |Sevade| ≥ nv.

4.1.2 fmutate()

Evasive algorithms require a mutation function, fmutate(), that creates variants of

malicious files. The mutation function requires a pool malicious files Sm and a pool

of benign files. The malicious files are mutated using components from the pool of

benign files Sb.

The mutation function implemented using a modified version of the PDFRW

software package1, works as follows:

Step 1 : Load all PDF files are loaded into a tree structure.

Step 2 : Mutate each malicious PDF by randomly selecting one of the following meth-

ods:

– Insert randomly selected sub-tree from a randomly selected sub-tree from

the benign file.

– Swap a randomly selected sub element with randomly selected sub-tree

from benign file.

– Delete a randomly selected element in the malicious tree representation.

Step 3 : Write tree representation of mutated malicious files to PDF files.

4.1.3 Evasive Performance

In analyzing these algorithms, we characterize their performance on PDFRate – the

fastest classifier and Virus Total the most accurate classifier. As we see in Figure 4-1

in this case malicious files generated using the Evade-ML, are effective in evading

1https://github.com/mzweilin/pdfrwructure
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classification. As shown in Figure 4-2, we observe that evasive files generated using

the Max-Diff algorithm are especially effective at evading the Virus Total classifier

and achieve the same scores as benign files. In comparing these results we see that

the more time consuming classifier, Virus Total, does achieve higher accuracy against

evasive variants than the PDFRate classifier. However, even Virus Total is not fool-

proof which motivates the need for use of human analysts.

Figure 4-1: KDE approximation of Probability Density for the PDFRate scores. This
plot shows the classification scores for different types of files. The Benign files are
shown as pink, the Contagio malware samples are shown in purple, the EvadeML
variants are shown in blue and the Max-Diff variants are shown in green. The KDE
plot was generated with Gaussian kernel of width 0.15, and 0.15 , 0.17,.17, for the
Benign, Contagio, EvadeML, and Max-Diff files respectively. In this case the Evade-
ML, Max-Diff, and Benign files had very similar probability densities. In order to
differentiate them, differing width kernels were used.
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Figure 4-2: KDE approximation of Probability Density for percent of Virus Total-
Engines classifiers that classify a file as malicious. This plot shows the classification
scores for different types of files. The Benign files are shown as pink, the Contagio
malware samples are shown in purple, the EvadeML variants are shown in blue and
the Max-Diff variants are shown in green. The KDE plot was generated with Gaus-
sian kernel of width 0.15, and 0.15 , 0.17,.17, for the Benign, Contagio, EvadeML,
and Max-Diff files respectively.
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Chapter 5

Learning models from training data

In our active defender system, we use the training data provided to us in the form of

Sm and Sb files to train multiple models. We divide the classifiers into two types pri-

mary and secondary. Primary classifiers/models take the files as input and produce

a probabilistic score p. Secondary classifiers/models take output of the primary clas-

sifiers and deliver a probabilistic score. All secondary models are machine learning

models, whereas not all primary models are. These models enable us to develop an

incremental decision system as we will describe in Chapter 6 that in turn allows us

to trade off between accuracy and resources used.

5.1 Primary classifiers

The active defender system uses the the Model framework to call the PDFRate,

Cuckoo, and Virus Total classifiers. For simplicity we describe samples as an array

of file paths and labels as array of 1 for malicious and 0 for benign.

5.1.1 PDFRate (C1)

The PDFRate classifier takes labeled filenames as inputs and extracts static features

of the file as discussed in Chapter 2 and Appendix A. A random forest machine

learning model is then trained on the set of features and labels.
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Figure 5-1: Active Defender Classifiers: In active primary classifiers (C1,C2,C3) re-
ceive samples and produce probabilistic scores (p1,p2,p3). Secondary classifiers oper-
ate off of probabilistic scores as inputs. Secondary classifier C4 uses inputs (p1,p2) to
produce the probabilistic score p4. Secondary classifier C4 uses inputs (p1,p2,p3) to
produce the probabilistic score p5.

5.1.2 Cuckoo (C2)

The Cuckoo classifier (C2) does not require feature extraction or training. When the

Cuckoo model is used, it sends files to a running Cuckoo server that accepts files and

returns scores p2 indicating if known behavioural signatures of malicious files were

detected .

5.1.3 Virus Total (C3)

Similarly, Virus Total (C3) does not require feature extraction or training. When the

Virus Total model is used, it uploads files to the Virus Total API and outputs the

percent Virus Total classifiers that classify the file as malicious (p5) as described in

Chapter 2 and Appendix B

5.2 Secondary Classifiers

Secondary classifiers are designed taking in output score from the primary classifiers

and learning a machine learning model. Two secondary classifiers are developed in

our active defender system. They are:

– C4 uses the outputs of PDFRate (C1) and Cuckoo (C2) as inputs and produces

a probabilistic score (p4).
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Name Description
S Samples
Sm Malicious samples
Sb Benign samples
C Classifier
p Individual probabilistic score
C1 PDFRate (primary) classifier
p1 Output of C1

C2 Cuckoo (primary) classifier
p2 Output of C2

C3 Virus Total (primary) classifier
p3 Output of C3

C4 Secondary classifier using p1 and p2 as inputs
p4 Output of C4

C5 Secondary classifier using p1, p2, and p3 as inputs
p5 Output of C5

Table 5.1: Notation and Definitions used in the Model algorithms.

– C5 uses the outputs of PDFRate (C1), Cuckoo (C2), and Virus Total (C3) as

inputs and produces a probabilistic score (p5).
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Chapter 6

The decision system

In the previous chapter, we presented multiple classifiers that we can train using

the data available to us. In real time, in order to determine whether or not a new

input file s is malicious, we apply a hierarchical decision system that makes use of

multiple classifiers. In this system, we use three primary classifiers. Classifier C1,

PDFRate, is the cheapest of all in terms of the computational time required to make

a decision, but is also the most inaccurate and could be evaded easily. The Cuckoo

classifier, C2, requires the dynamic analysis of the file, and thus needs more time than

C1. VirusTotal, C3, requires us to use their API, and it takes about 2 minutes on an

average to receive the scores back. Among the three, Virus Total is the most accurate.

For these reasons, in developing a decision system, we considered the following goals:

– Increase throughput: We would like to make decisions for PDFs as fast as

possible. Because PDFRate is the fastest and Virus Total is the slowest in

giving us the prediction, we would like to use PDFRate to make a decision for

as many cases as possible.

– Maintain accuracy: While it is easiest to increase throughput by choosing to

use the PDFRate classifier every time, this will lead to a lot of false positives if

we have to maintain a high recall for detection of malware (see Chapter 2). To

maintain a recall of 90% or higher, we would have to augment and use Cuckoo

or VirusTotal.
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To achieve the goals above, we propose the following:

– a bi-level decision function for classifiers described in section 6.1,

– a hierarchical, tunable decision system, described in section 6.2,

– A cost function that evaluates the efficacy of a given decision system, described

in section 6.3,

– a tuning algorithm that produces a decision system that can be used, described

in section 6.4.

6.1 Bi-level decision function

Given a classifier Ci and its output score pi, a bi-level decision function allows us

to make a decision, Di based on two decision thresholds, t1i and t2i ,as depicted in

Figure 6-1 and more formally given by:

Di


Benign if pi < t1i

Uncertain, output pi if pi ≥ t1i and pi < t2i

Malicious if pi ≥ t2i

(6.1)

This allows us to make a decision when we are absolutely confident, and enables us

to postpone the decision in a region where we are uncertain.

Malicious

Benignpi

ti
2ti

1

Figure 6-1: Bi-level decision function. Using an input score of pi, the bi-level decision
returns a result if it is certain of the classification. It classifies an input as benign if
pi < t1i and malicious if pi ≥ t2i

. If t1i < pi < t2i the decision function returns pi as it is uncertain of the result.
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6.2 Hierarchical tunable decision system

The hierarchical decision system is shown in Figure 6-2 and formally in Algorithm 1.

This system determines a final classification result (y) and a probabilistic score (Pfinal)

for each input sample using layers of bi− level classifiers.

The Pfinal score is calculated using the output of the last classifier (plast), the

threshold used in the last decision (tlast) , the number of primary classifiers used

(Npc used), and the total available primary classifiers (Npc total) classifiers as shown

below:

Pfinal =
Npc used

Npc total

∗ (plast − tlast) (6.2)

6.3 Cost function

The cost function expresses the two objectives we specified above – whether the

desired accuracy is achieved and the throughput. Given a fully specified decision

system, with classifiers C1...5, decision thresholds t11, t
2
1, t

1
4, t

2
4, t5, and a set of files S,

the cost,c incurred by the system is evaluated as:

c = −γ ∗ g(Ŷ , Y ) + (1− γ) ∗ 1

|S|
∑
i

ri (6.3)

where Ŷ is the predicted labels, Y are the corresponding true labels, g(.) measures

the accuracy of the predicted labels, and 1
|S|

∑
i ri is the average classification time

taken to make these decisions based on the subset of models used for each file in the

set per sample, and γ is a weight associated with each of the factors.

6.3.1 g(.) function

The g(.) function describes the accuracy of a system. We provide two methods of

characterizing system accuracy.
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Algorithm 1 ActiveDefender.Decide(S,t11, t
2
1, t

1
2, t

2
2, t

1
3, t

2
3, t

1
4, t

2
4, t5, C1, C2, C3, C4, C5)

Ŷ ← {}
Pfinal ← {}
for s ∈ S do

1. p1 ← C1(s)
if p1 < t11 then
Pfinal ← (t11 − p1) ∗ 1

3

Ŷ ← {Ŷ |False}
else if p1 > t21 then
Pfinal ← (p1 − t21) ∗ 1

3

Ŷ ← {Ŷ |True}
else

2. p2 ← C2(s)
3. p4 ← C4(p1, p2)
if p4 < t14 then
Pfinal ← (t14 − p4) ∗ 2

3

Ŷ ← {Ŷ |False}
else if p4 > t24 then
Pfinal ← (p4 − t24) ∗ 2

3

Ŷ ← {Ŷ |True}
else

4. p3 ← C3(s)
5. p5 ← C5(p1, p2, p3)
if p5 < t15 then
Pfinal ← (p5 − t5) ∗ 3

3

Ŷ ← {Ŷ |False}
else
Pfinal ← (p5 − t5) ∗ 3

3

Ŷ ← {Ŷ |True}
end if

end if
end if

end for
return < Ŷ , Pfinal >
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(C1)

C4

C5
Virus total

Cuckoo
(C2)
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Figure 6-2: Active Defender Hierarchical Decision Algorithm: A PDF is first sent
to the PDFRate classifier (C1). Based on the output of PDFrate, p1, a decision is
made whether to return a result or send the file to the Cuckoo classifier (C2). If
the file is sent to the Cuckoo classifier, the results from PDFRate (p1), and Cuckoo
(p2) are sent to the secondary classifier C4 and a decision is made as to whether to
return a result or sent the file to VirusTotal (C3). If the file is sent to the VirusTotal
classifier, classification scores from the PDFRate (p1), Cuckoo (p2), and VirusTotal
(p3) classifiers are sent to the C5 secondary classifier and a final decision is made.

In g1(.) the f1 score is optimized to improve precision and recall equally.

g1(.) = f1(predicted, true labels) (6.4)

In g2(.) the function requires a minimal threshold of precision and then optimizes

for recall. This function is especially applicable for malware detection as allowing an

additional malicious file to enter the system can be very costly, but is required to
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keep false rejection of benign files below a certain specified rate for user happiness.

g2 =

recall(Ŷ , Y ) if precision(Ŷ , Y ) ≥ 0.9

0 otherwise

(6.5)

6.4 Tuning algorithm

The tuning algorithm uses additional data to optimize the decision function using

a cost function. Since the active defender system utilizes a set of thresholds to

determine the decision for an input sample as shown in Algorithm 1, tune optimizes

these thresholds based on their effect on a cost function.

Tune comprises two main steps. First, the tune algorithm enumerates an initial

set of classifier thresholds using an enumeration function e() to generate a set of

thresholds T , and scores them with the cost function c. Enumerating a large threshold

set is important in systems with complex costs functions such as g2(.) which are not

monotonic. If too few initial thresholds are enumerated, optimization can result in

thresholds that find a local rather than global minimum cost function value.

Second, tune uses a maximum of niterations of Bayesian hyper-parameter tuning to

propose an additional candidate threshold, evaluate it using c, add it to the thresh-

old set T , and find the thresholds that minimize the cost function c. In iterative

tuning, ε specifies the minimum distance between successive minimum scores to stop

optimization [33, 10].

Bayesian optimization allows for the optimization of a black-box cost function

using a set of tunable parameters. In our system, the tunable parameters for the

decision system are the lower thresholds in each set and the difference between the

lower and upper thresholds (which is fixed to 0 for the last threshold set).

6.4.1 e()

The enumeration function e() produces a list of threshold sets necessary to minimize

the cost function. This is done in two steps.
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- First, we produce a 4 list of possible threshold pairs for each pair of thresholds:

`t1 ,`t2 ,`t3 ,`t4 (t11,t
2
1),(t

1
2,t

2
2),(t

1
3,t

2
3), and (t14,t

2
4) respectively.

- For the last threshold t5 we produce a single list of possible thresholds `t5 .

- Finally, we create `T using all possible combinations of threshold pairs across

lists `t1 ,`t2 ,`t3 ,`t4 and `t5 .

We propose a simple enumeration function e1(). The enumeration function e1()

produces threshold pairs using the 0%, 20%, 40%, 60%, 80%, and 100% percentile

values of previous classification scores for that classifier. For example, if previous

PDFRate classification scores p1 were observed between 0.0 and 0.5, then:

`t1 ≡ {(0.0, 0.1), (0.1, 0.2), (0.3, 0.4), (0.4, 0.5)}. The last threshold list is (`t5) a list of

the 0% , 20%, 40%, 60%, 80%, and 100% percentiles for respective score p5.

More complex enumeration functions can be developed to capture a more expres-

sive range of thresholds.
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Name Description
S Samples
|S| Number of samples
s Individual sample
C Classifier
Y True Labels

Ŷ Predicted Labels
P Set of probabilities
p Individual probabilistic score
C1 PDFRate (primary) classifier
p1 Output of C1

C2 Cuckoo (primary) classifier
p2 Output of C2

C3 Virus Total (primary) classifier
p4 Output of C3

C4 Secondary classifier using p1 and p2 as inputs
p4 Output of C4

C5 Secondary classifier using p1, p2, and p3 as inputs
p5 Output of C5

plast Output of the last classifier used in making a decision
Di Decision function
t1i Lower threshold for probability score i
t2i Upper threshold for probability score i
Pfinal Output probability score of active defender system
tlast Last threshold used in making a decision
Npc used Number of primary classifiers used in classifying a file
Npc total Number of total classifiers used
γ value of accuracy score vs. time∑

i ri Total time taken to make decision per file
1
|S|

∑
i ri Average time taken to make decision per file

recall() Recall
precision() Precision
f1 function that computes the f1 score
β precision recall weight – weight of precision vs recall
g(.) Function describing accuracy of a system
g1 Specific evaluation function maximizing f1 score.
g2 Specific evaluation function maximizing recall given precision above 0.9
c Cost function
e() Enumeration function that generates initial threshold sets to evaluate
ε Small value specifying distance in successive g() scores after which

to stop optimizing thresholds
niterations maximum number of iterations to run in each tuning step

Table 6.1: Notation and Definitions used in the Decide algorithms (1/2)
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Name Description
niterations maximum number of iterations to run in each tuning step
`t1 list of threshold combinations for (t11,t

2
1)

`t2 list of threshold combinations for (t12,t
2
2)

`t3 list of threshold combinations for (t13,t
2
3)

`t4 list of threshold combinations for (t14,t
2
4)

`t5 list of threshold combinations for (t5)
T set of thresholds {t11,t21,t12,t22,t13,t23,t14,t24,t5}
`T list of threshold sets
e1() simple enumeration function

Table 6.2: Notation and Definitions used in the Decide algorithms (2/2)
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Chapter 7

Adapting over time

In the active defender system one of the important aspects is to incorporate adap-

tation of the entire system over time. A lot of work has been done to show how

motivated attackers can build evasive variants. It is natural to ask how would the de-

fense mechanisms adapt as new variants are produced. Known as active learning, this

adaptation can happen over time by simply adding training examples whose labels

are verified.

In [37], Veeramachaneni and Arnaldo study the use of Active Learning in a human

in the loop detection system. Using multiple outlier detection systems to send suspi-

cious data to analysts the system is able to improve the machine learning model - over

time. Building on the idea of sending data that is classified with some uncertainty

by a faster more cost-effective model to a more expensive, but accurate analyst, we

expand this method to use a variety of possible ways to generate more training data.

Our new training examples come from the following ways:

– higher accuracy classifiers: we can incorporate predictions from Virus Total as

possible source of truth and incorporate them as training examples.

– human analysts: we can send some examples to humans to get their analysis.

This is an expensive mechanism but still doable.

– synthetically generated evasive variants: From time to time, we can create

evasive variants using the machine learning methods we described in Chapter 4.
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For these evasive variants we know the ground truth and they can provide

training examples for our system.

Figure 7-1: Diagram of the adapt system. 1) Input data Sreceived sent through the
decision system to produce predicted labels Yreceived and probabilities probablities .
2) Samples are selected in using probabilities Preceived 3) The selected data Sselected

is split into Strain and Stune 4) The training data Strain is split into Sprimary used to
train the update the primary classifiers and Ssecondary used to update the secondary
classifiers 5) The tuning data Stune is used to Tune the decision system

7.1 Adapt in Active Defender

In the active experiment, we use additional data to update the models and tune the

decision system. The system can be adapted using synthetic data or unlabeled data.

In the case of unlabeled data, the system generates labels and final probabilities using

the predictions from the previous learned models and the decision system. The adapt

algorithm uses the following steps as shown in Figure 7-1.

– Select: chooses the data that is is above a set minimum probability threshold

(α) to be used to update the system

– Update: uses a fraction of the selected data specified by (λ) to learned model.

This data is split again into data used to train the primary and secondary clas-

sifiers, specified by parameter µ. In the active defender system, the PDFRate

classifier (C1) is the only one of the primary classifiers that can be retrained to

utilize additional data.
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The secondary training data is appended to additional secondary training data

and the secondary classifiers, C4, C5 are updated using the new predictions of

PDFRate for the labeled data.

– Tune: uses the remaining data to tune the decision function according to

a specified enumeration function,e(), maximum number of tuning iterations

(niterations), and difference between successive minimum scores ε.
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Name Description
α Minimum probability used in selecting data
λ weight between data used for training and tuning
µ weight between training data used for primary and secondary classifiers
Sreceived Samples received by decision system
Preceived predicted probability for received samples produced by decision function
Yreceived predicted labels for received samples produced by decision function
Sselected Samples selected for updated the system
STrain Samples selected for updated the system
Sselected Samples selected for updated the system
STrain Samples used to train classifiers
STrainPrimary Samples used to train primary classifiers
STrainSecondary Samples used to train secondary classifiers
STune Samples used to tune the decision function
C Classifier
p Individual probabilistic score
C1 PDFRate (primary) classifier
p1 Output of C1

C2 Cuckoo (primary) classifier
p2 Output of C2

C3 Virus Total (primary) classifier
p3 Output of C3

C4 Secondary classifier using p1 and p2 as inputs
p4 Output of C4

C5 Secondary classifier using p1, p2, and p3 as inputs
c Cost function
e() Enumeration function that generates initial threshold sets to evaluate
ε Difference in successive g() scores after which to stop optimizing thresholds
niterations maximum number of iterations to run in each tuning step

Table 7.1: Notation and Definitions used in the Adapt algorithms.
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Chapter 8

Experimental Results

In order to understand the performance of the active defender system, we analyze its

accuracy and resource usage as it adapts.

In the experimental design, we first split the data into two data sets, as shown in

Figure 8-1. D1 corresponds to data used to train the system, and D2 is data received

by the system after it is deployed.

Training Data:

D1 is the training data available to the system before it is deployed. In our exper-

imental setup, D1 consists of the 10,597 Contagio malware files and 10,597 benign

PDFs randomly selected from the 44,680 benign files discussed in Section 2.3. This

training data consists of malicious files collected by security analysts and a corpus of

collected benign PDF files.

Adaptation Data:

The adaptation data, D2, consists of the evasively generated malware and remaining

benign PDF files Figure 8-1. As shown in Figure 8-1, this data is split into subsets

q1 through q5 and is sent to the decision system across 5 stages or time periods.

8.1 Experimental setup

In setting up the experiment, we perform 25 random trials. For both D1 and D2, the

order of the files is randomized across trials, so splitting gives different subsets q1 ...
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Figure 8-1: Splitting Experimental Data. In the following experiment the data is
split into data sets D1 and D2. D1 is used to initialize the decision system. D2

represents data received by the system after it is deployed. D2 is split into subsets
qi, representing the files received in each successive stage.

Figure 8-2: Updating the decision system. In the experiment, training data D1 is used
to initialize the decision system. After the system is deployed, it received additional
data. After each additional received dataset qi, the decision system adapts.
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q5.

In setting up the decision system, we set the following tuning parameters, as

described in Chapter 6 and in Chapter 7.

The cost function is set up as described in Chapter 6, using the g1() function and

a γ value of 0.9 to prioritize accuracy over resource constraints.

The tuning parameters use e1() as the threshold enumeration function and an

epsilon value of ε ≡ 0.1 specifying successive minimum cost scores.

8.2 Experimental Results

Overall, we see that the system is able to adapt to achieve high accuracy in the

presence of evasive adversaries, and to reduce resource usage over time.

Accuracy

As shown in Figure 8-3 and Table 8.1, we observe the performance of the decision

system on classifying successive sets of received files. We characterize accuracy by

observing the f1 score, comparing truth versus labeled data. As evasive variants are

introduced in stage 1, we observe a low f1 score. However, as stages progress, we

observe that the system is able to adapt to improve accuracy over time.

Resource Usage

In this experiment, we characterize the resource usage by studying the average time

used to classify each file. As shown in Figure 8-4 and Table 8.1, when the system

is initialized, classification time is relatively low, at around 1(s) per file. However,

we observe that the classification time continues to decrease over time, indicating

that the PDFRate static classifier is improving and being utilized. In calculating

the estimated classification time, we model the PDFRate as taking 1 second, Cuckoo

as taking 25 seconds and VirusTotal as taking 90 seconds. Notably, the standard

deviation in classification time is to small to observe using four decimals of precision.

This is likely due to the majority of files being classified by the static classifier and

our estimation function limiting the variability in time.
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Figure 8-3: Active Defender Accuracy over Adaptation. In this figure, we observe the
f1 score vs. the experimental stage over time. We plot the mean f1 score as points
and show the standard deviation in the surrounding band. In this experiment, we
observe the experiment achieving poor results in Stage 1 when evasive samples are
introduced. Over time, we observe that the f1 score increase over time as the system
adapts to evasive samples.

Stage µf1 σf1 µT imeperF ile σT imeperF ile

1 0.17535 0.01003 1.16908 <0.0001
2 0.19852 0.01459 1.16908 <0.0001
3 0.44201 0.01804 1.10766 <0.0001
4 0.45301 0.01829 1.10208 <0.0001
5 0.4562 0.02082 1.09649 <0.0001

Table 8.1: Experimental data 25 trials the Active Defender System performance over
5 stages. Column µF1 corresponds to the average f1 score across all trials. Column σf1
corresponds to the standard deviation in f1 score across all trials. Column µT imeperF ile

corresponds to the average estimated classification time per file. Column σT imeperF ile

corresponds to the standard deviation in approximated average classification time per
file.
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Figure 8-4: Active Defender Average Classification Time over Adaptation. In this
figure we observe the estimated average classification time per file at each stage. We
plot the mean time score as points and show the standard deviation in the surrounding
band. Here we see that the average classification time is pretty low – around 1 second
– throughout the course of the experiment, and decreases over time. In addition, the
deviation in time is small across successive stages, and is not observable due to the
estimation function.
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Chapter 9

Discussion and Future Work

Through this project, we were able to make four contributions. First, we developed

a method to use machine learning in cybersecurity in a resource-constrained environ-

ment

Second, we developed algorithms that use active learning to improve fast classifiers

in the presence of adversaries.

Third, we provide an extensible framework to facilitate building, evaluating and

deploying decision systems in an adversarial and resource-constrained environment.

Fourth, we provide a simple evasive algorithm that was shown to confuse auto-

mated classifiers.

Through studying the adversarial and resource-constrained problem of detecting

evasive PDF malware and building these solutions, we identified a few takeaways that

motivate future work.

9.1 Evasion

In studying the available classifiers, it was surprising to see that max-diff algorithm

was effective in causing confusion in the Virus Total classifier. Virus Total is a

powerful classification system that has been acquired by Google and was considered
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to be one of the best products of 20071. If this genetic programming-based algorithm

can cause confusion in malicious and benign files, it suggests that adversaries are more

than capable of deploying their own evasive algorithms to evade automated classifiers.

This motivates the need for human-in-the-loop systems and systems that adapt over

time.

9.2 Active Defender

9.2.1 Decision System

In studying the behaviour of the active defender decision system, we identified in-

teresting aspects of the threshold decision method that impact performance, and

identified areas of the decision system that future work could explore.

We saw that the choice of both the evaluation function and the number of classi-

fiers used affect modeling performance.

In the choice of the decision function, we observed that non-continuous or complex

evaluation functions need more initial thresholds to be enumerated, and thus require

more time to adapt the decision system. When deploying these systems, defenders

should explore tradeoffs between choice in evaluation function and tuning time.

Threshold / Adaptation scaling:

In the current implementation of the decision system, for n primary classifiers, there

are 2n -1 thresholds. However, in tuning the thresholds, we enumerate the initial

threshold set combinatorially before turning with Bayesian optimization. Future work

could focus on reducing the set of initial thresholds necessary to tune in proportion

to the number of classifiers used.

Using additional primary classifiers:

In analyzing methods to improve this system, we started with the primary classifiers

used. In this thesis we focused on three primary methods of classification: static,

dynamic, and API-based. Studying the integration of additional primary classifiers

1https://www.google.com/search?q=best+products+2007+virus+totaloq=best+products+2007
+virus+totalaqs=chrome..69i57j69i64.3734j0j4sourceid=chromeie=UTF-8
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(such as humans) or unsupervised methods would be an interesting next step. Al-

ternatively, unsupervised anomaly detection could provide valuable insight into a

changing dataset, and thus further improve the system.

Another possibility for improving the decision systems lies with randomization.

Randomly selecting a small number of files to be sent to the most accurate classifiers

can strengthen the system against files that can completely evade simple classifiers.

9.2.2 Adaptation

In this thesis, we discussed simple adaptation methods. However, additional methods

can be used to improve adaptation. First, as the system adapts and identifies files

that confuse fast classifiers and require the use of expensive ones, it could synthesize

variants similar to these files, using automated evasive algorithms to retrain and

improve static models. Alternatively, in adaptation a system could use optimization

methods more targeted to specific use cases in an effort to improve performance.

9.2.3 Resource-Constrained Classification Systems

Thanks to the increasing amounts of data collected by enterprises, machine learning

can be an asset to cybersecurity. However, each company or institution looking to

defend their system will have different limitations on the amount of resources they

can devote to analyzing data. The active defender system can be tailored to different

resource limitations and different environments, using a variety of evaluation or cost

functions.

9.2.4 Using Active Learning to Improve Against Evasive Sam-

ples

In adversarial environments that require cybersecurity, it is essential to be able to

update to a changing data distribution. We showed how the Active Defender system

provides a mechanism for updating results using higher accuracy as the adversaries

evolve over time.
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9.3 SMDA Framework

The SMDA framework provides a platform for bringing together innovative algo-

rithms made by research scientists with developers who have the data to deploy these

algorithms. Future work directions include improving the SMDA framework to gen-

eralize to adversarial use in the cybersecurity space as well as in other areas, such as

detecting malicious bots on social media.

9.4 Conclusion

As motivated attackers use more and more computational resources and state-of-the-

art algorithms to persistently attack smaller corporations, it is necessary to figure

out how to automate detection in a resource-constrained environment. In this thesis,

we built the SMDA framwork and the Active Defender classification system which

perform well when faced with the hard problem of detecting evasive malware. Further-

more, we believe that this software framework and algorithms can generalize beyond

PDF malware detection, enabling researchers and corporations to work together to

secure systems against powerful and evolving adversaries.
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Appendix A

PDFRate Classifier Features

Feature Name

pdfrate 0 author dot

pdfrate 1 author lc

pdfrate 2 author len

pdfrate 3 author mismatch

pdfrate 4 author num

pdfrate 5 author oth

pdfrate 6 author uc

pdfrate 7 box nonother types

pdfrate 8 box other only

pdfrate 9 company mismatch

pdfrate 10 count acroform

pdfrate 11 count acroform obs

pdfrate 12 count action

pdfrate 13 count action obs

pdfrate 14 count box a4

pdfrate 15 count box legal

pdfrate 16 count box letter

pdfrate 17 count box other

Feature Name

pdfrate 18 count box overlap

pdfrate 19 count endobj

pdfrate 20 count endstream

pdfrate 21 count eof

pdfrate 22 count font

pdfrate 23 count font obs

pdfrate 24 count image large

pdfrate 25 count image med

pdfrate 26 count image small

pdfrate 27 count image total

pdfrate 28 count image xlarge

pdfrate 29 count image xsmall

pdfrate 30 count javascript

pdfrate 31 count javascript obs

pdfrate 32 count js

pdfrate 33 count js obs

pdfrate 34 count obj

pdfrate 35 count objstm
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Feature Name

pdfrate 36 count objstm obs

pdfrate 37 count page

pdfrate 38 count page obs

pdfrate 39 count startxref

pdfrate 40 count stream

pdfrate 41 count stream diff

pdfrate 42 count trailer

pdfrate 43 count xref

pdfrate 44 createdate dot

pdfrate 45 createdate mismatch

pdfrate 46 createdate ts

pdfrate 47 createdate tz

pdfrate 48 createdate version ratio

pdfrate 49 creator dot

pdfrate 50 creator lc

pdfrate 51 creator len

pdfrate 52 creator mismatch

pdfrate 53 creator num

pdfrate 54 creator oth

pdfrate 55 creator uc

pdfrate 56 delta ts

pdfrate 57 delta tz

pdfrate 58 image mismatch

pdfrate 59 image totalpx

pdfrate 60 keywords dot

pdfrate 61 keywords lc

pdfrate 62 keywords len

pdfrate 63 keywords mismatch

Feature Name

pdfrate 64 keywords num

pdfrate 65 keywords oth

pdfrate 66 keywords uc

pdfrate 67 len obj avg

pdfrate 68 len obj max

pdfrate 69 len obj min

pdfrate 70 len stream avg

pdfrate 71 len stream max

pdfrate 72 len stream min

pdfrate 73 moddate dot

pdfrate 74 moddate mismatch

pdfrate 75 moddate ts

pdfrate 76 moddate tz

pdfrate 77 moddate version ratio

pdfrate 78 pdfid0 dot

pdfrate 79 pdfid0 lc

pdfrate 80 pdfid0 len

pdfrate 81 pdfid0 mismatch

pdfrate 82 pdfid0 num

pdfrate 83 pdfid0 oth

pdfrate 84 pdfid0 uc

pdfrate 85 pdfid1 dot

pdfrate 86 pdfid1 lc

pdfrate 87 pdfid1 len

pdfrate 88 pdfid1 mismatch

pdfrate 89 pdfid1 num

pdfrate 90 pdfid1 oth

pdfrate 91 pdfid1 uc
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Feature Name

pdfrate 92 pdfid mismatch

pdfrate 93 pos acroform avg

pdfrate 94 pos acroform max

pdfrate 95 pos acroform min

pdfrate 96 pos box avg

pdfrate 97 pos box max

pdfrate 98 pos box min

pdfrate 99 pos eof avg

pdfrate 100 pos eof max

pdfrate 101 pos eof min

pdfrate 102 pos image avg

pdfrate 103 pos image max

pdfrate 104 pos image min

pdfrate 105 pos page avg

pdfrate 106 pos page max

pdfrate 107 pos page min

pdfrate 108 producer dot

pdfrate 109 producer lc

pdfrate 110 producer len

pdfrate 111 producer mismatch

pdfrate 112 producer num

pdfrate 113 producer oth

Feature Name

pdfrate 114 producer uc

pdfrate 115 ratio imagepx size

pdfrate 116 ratio size obj

pdfrate 117 ratio size page

pdfrate 118 ratio size stream

pdfrate 119 size

pdfrate 120 subject dot

pdfrate 121 subject lc

pdfrate 122 subject len

pdfrate 123 subject mismatch

pdfrate 124 subject num

pdfrate 125 subject oth

pdfrate 126 subject uc

pdfrate 127 title dot

pdfrate 128 title lc

pdfrate 129 title len

pdfrate 130 title mismatch

pdfrate 131 title num

pdfrate 132 title oth

pdfrate 133 title uc

pdfrate 134 version
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Appendix B

Virus Total Classifiers

The following classifiers and information used in Virus Total to analyze a submitted

file1.

• AegisLab (AegisLab)

• Agnitum

• AhnLab (AhnLab V3)

• Antiy Labs (Antiy-AVL)

• Androguard

• Aladdin (eSafe)

• ALWIL (Avast! Antivirus)

• AVG Technologies (AVG)

• Avira

• BluePex (AVware)

• Baidu (Baidu-International)

• BitDefender GmbH (BitDefender)

1https://www.virustotal.com/en/about/credits/
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• Bkav Corporation (Bkav)

• ByteHero Information Security Technology Team (ByteHero)

• Cat Computer Services (Quick Heal)

• CarbonBlack

• Cuckoo Sandbox

• CMC InfoSec (CMC Antivirus)

• CYREN

• ClamAV

• Comodo (Comodo)

• CrowdStrike

• Doctor Web Ltd. (Dr.Web)

• Emsi Software GmbH (Emsisoft)

• Endgame

• Eset Software (ESET NOD32)

• Exif Tool

• Fortinet

• FRISK Software (F-Prot)

• F-Secure

• G Data Software (G Data)

• Hacksoft (The Hacker)

• Hauri (ViRobot)
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• IKARUS Security Software (IKARUS)

• INCA Internet (nProtect)

• Invincea (Invincea, acquired by Sophos)

• Intel Security (McAfee)

• Jiangmin

• K7 Computing (K7AntiVirus, K7GW)

• Kaspersky Lab (Kaspersky Anti-Virus)

• Kingsoft

• Malwarebytes Corporation (Malwarebytes’ Anti-Malware)

• Magic Descriptor

• Microsoft (Malware Protection)

• Microworld (eScan)

• Nano Security (Nano Antivirus)

• Norman (Norman Antivirus)

• NSRL

• Panda Security (Panda Platinum)

• PDFiD

• Pefile

• PEiD

• Qihoo 360

• Rising Antivirus (Rising)
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• Sigcheck

• Snort

• Sophos (SAV)

• SUPERAntiSpyware

• Suricata

• ssdeep

• Symantec Corporation (Symantec)

• Taggant packer information tool

• TrID

• Tencent

• ThreatTrack Security (VIPRE Antivirus)

• TotalDefense

• Trend Micro (TrendMicro, TrendMicro-HouseCall)

• UEFI Firmware parser

• VirusBlokAda (VBA32)

• Webroot

• Wireshark

• WhiteArmor

• Zemana behaviour

• Zillya! (Zillya)

• Zoner Software (Zoner Antivirus)
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Appendix C

SMDA Software

C.1 Overview

In previous chapters we discussed the logical abstractions and classes of algorithms

in the SMDA framework. Our goal in developing the software is to create an open

source platform that can generalize building decision systems in a variety of adver-

sarial environments. We aim to make it easy for developers to improve upon existing

algorithms and easy for developers to deploy a detection system. By providing this

software system we can connect algorithms researchers with end-users and provide a

system for building an evaluating detection systems for developers.

In this chapter, we discuss the design goals in implementing the software frame-

work, the current implementation, and future directions.

C.2 Design Goals

In this section we discuss our primary design goals in software system design. In

priority order, they are Usability, Extensibility, and Scalability.

Usability

Our first goal in designing the system is make the software easy to use by developers

trying to deploy a detection system in an adversarial environment. To this effort, we

want it to be as easy as possible for developers to input their data, select their system
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configuration, and evaluate system performance.

Extensibility

Our second goal is to make the system easily extendable. While we’ve developed

algorithms that perform well for PDF malware detection in a resource constrained

environment, we recognize other researches may have developed new algorithms to

synthesize data, model data, deploy decision functions, or adapt systems. We hope

to make a collaborative environment so researchers can benchmark their algorithms

against existing algorithms and data sets and facilitate algorithms to be deployed by

end users.

To accomplish the goal of enabling extensible we utilize a highly modular design.

Making modules independent as possible and automating testing allows for compo-

nents to be improved independents of the rest of the system.

Scalability

We aim to implement the SMDA framework so that it can scale to adding additional

classes. Using a hierarchical model, we limit scale of testing.

C.3 Modules

The initial version of the system has the following modules. This may be subject to

change as we deploy with beta-testers and gain a better understanding of the best

interface for developers and researchers.

For each of the four classes of algorithms we have corresponding abstract class.

Synthesize is done in the SampleGenerator, and corresponds to the generating data.

Learn is implemented in the Model class. Decide and Adapt are implemented in the

PredictionPipeline class as they can have dependencies on the models used.

In addition to the three core abstract classes and corresponding packages, we

implement packages for the necessary static functions needed to deploy the model.

The static function packages are FeatureExtraction and Evaluation.
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C.3.1 Sample Generator

SampleGenerator creates labeled data to be used in model training, experimental eval-

uation, or adaptation. The abstract class requires the generate(n samples) method

to be implemented to return a tuple of an array of nsamples and nlabels.

Creating subclasses of SampleGenerator enables specifc dataset creation. For

example, in the simple case samples can be created from a CSV file. More advanced

implementations would be to use evasive algorithms to create evasive files from a set

of known malicious and benign files.

C.3.2 Model

Model allows for fitting the labeled data to a known distribution. The abstract model

class requires that the sample type be set to indicate the acceptable inputs for a file.

Model.fit() operates on extracted features from samples and the corresponding labels

to model the data. Model.predict() returns a tuple of categorical predictions and

corresponding confidence.

C.3.3 PredictionPipeline

PredicitonPipleine is the class used to facilitate deploying a detection model. Pre-

dictionPipelines requires an input model or models, feature extraction functions, and

initial thresholds and hyper parameters used for training and tuning.

This abstract skeleton for a PredictionPipeline contains the following methods:

• init

• extract features : feature extraction function

• train : train the model(s) used in the system

• @public: predict

• tune: optimize decision system
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• @public: adapt

• adapt unlabled

This simple skeleton where the required public methods are predict and adapt.

Other functions follow the suggested logical breakdown for system models and may

be very simple depending on model(s) used and requirements.

MultiModelThresholdPredictionPipeline is an implementation of pipeline that im-

plements the threshold decision making necessary for a system with multiple classifiers

in a resource constrained environment using bayesian hyper parameter tuning to opt-

mize decision thresholds. This can generalize for any set of samples and classifiers

where the following parameters are set:

• primary models : base classifiers

• primary model names : name for base classifiers

• secondary models : machine learning models to use to model output of base

classifiers

• training data : initial training daata for primary classifiers

• feature fns : functions to extract features for each base classifier

• thresholds : initial system thresholds

• eval fn : function to maximize when tuning system.

E.g. (1-pct of maximum time taken) + precision when recall is ≥ 90

• split train tune fn : function to split data between training model and tuning

decision function

• split train primary secondary fn : function to split data between training pri-

mary and secondary classifiers

• max tune iterations : maximum number of iterations to run per round of tuning
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• tune eps : acceptable difference between best evaluation function scores to de-

termine end of tuning

• enumerate options fn : Enumerate initial threshold options

• conf threshold : Value that specifies minimum confidence in data / labels used

to adapt system

C.3.4 FeatureExtraction

FeatureExtraction corresponds to the package of static functions used to extract fea-

tures from a sample. Examples of feature extraction include selecting columns from

a dataframe or extracting the PDFrate features from the path to a PDF file.

C.3.5 Evaluation

Correctly specifying function is essential to providing a good system. The evaluation

function is a negative cost function which is maximized as the system is tuned. A

simple evaluation function could be the f1 score for the aggregate decision system.

However in some cases, there are other meta information of the method of classifica-

tion that impact the score. In the case of the active defender system the evaluation as

the negative of the cost functions described in Chapter 7. This requires the predicted

value, the true value, and classifier used as meta data.

Other evaluation functions could maximize accuracy as long as average classifying

time is less than a specified threshold.

C.4 Testing

We designed the system to be as module are possible to enable independent testing

and evaluation of system modules. We implemented unit tests usint the Nose python

testing framework and enabled continuous integration using Circle.ci.
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C.5 Documentation

To facilitate ease of understanding we use function, class, and package level docu-

mentation using the Sphinx documentation package.

94


