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Abstract

This work presents the ML Software Tester, a system for augmenting software testing
processes with machine learning. It allows users to plug in a Git repository of the
choice, specify a few features and methods specific to that project, and create a full
machine learning pipeline. This pipeline will generate software test result predictions
that the user can easily integrate with their existing testing processes.

To do so, a novel test result collection system was built to collect the necessary data
on which the prediction models could be trained. Test data was collected for Flask, a
well-known Python open-source project. This data was then fed through SVDFeature,
a matrix prediction model, to generate new test result predictions. Several methods
for the test result prediction procedure were evaluated to demonstrate various methods
of using the system.
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Chapter 1

Introduction

Over the last few years, software engineering has become one of the fastest growing
industries in the U.S. [19]. Software has been integrated into all parts of daily life, from
devices such as phones and laptops to everyday behaviors like paying for purchases
or making commutes. It’s nearly impossible to find an interaction today that is not
mediated at some point using software.

With this boom, the software engineering industry has had to rapidly mature.
Given the ubiquitous presence of software, said software needs to be engineered to be
reliable and fault-tolerant. As a result, software engineering has adopted a set of best
practices to ensure its products can be reliably used. Among these best practices -
and perhaps the most critical - is software testing. Software projects are expected to
have a comprehensive test suite that ensures the software works correctly in every use
case. Any test failure is considered a critical error, and are rarely allowed in public
releases or production software.

This importance of software testing has necessitated the development of a suite of
tools that streamline the testing process. After all, making sure developers have the
easiest time writing and running their tests ensures extensive testing is an easy habit
to adopt. Testing frameworks are important pieces of software that aid in the test
writing process. They provide functionality that allows developers to easily create
test cases. They also often provide command line tools to run all the tests written

with the framework, and output logs that contain the results. For example, pytest
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[8] is a popular testing framework for Python based projects. Tests are written in files
named either test_*.py or *_test.py, and calling pytest from the command line

automatically finds and runs all such tests. Example usage can be seen in figure 1-1.

def inc(x):
return x + 1

def test_answer ():
assert inc(3) == 5

(a) pytest output

Figure 1-1: Example usage of pytest. At the top is an example of what a test file may
look like. In the bottom, the output of running pytest is shown. pytest first reports
some metadata about the environment it was run in, such as the version of Python
and the operating system. Next, it reports the results of running the tests. We see
here that the sample test failed, and in this case it provides a stacktrace to aid in
debugging the test failure.

Writing an extensive test suite is just one half of testing. The other is ensuring
the software continues to consistently pass these tests whenever updates are made to
it. Unfortunately, it is difficult to rely on developers consistently manually testing
their code. This is further complicated when the code is expected to run on a variety
of “platforms”. Here, we use “platforms” as a catch-all term for any variation in the
testing environment. For example, mobile applications may be tested on different
versions of i0S and Android, web applications may be tested on different browsers,
and software libraries may be tested on different versions of the language they are

built in. Just as tests should consistently pass on any single platform, they are also
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Figure 1-2: Diagram illustrating continuous integration workflow. Developers develop
code locally and add it to a centralized source, which then automatically tests through
the CI service.

expected to work across these platforms. However, setting up the full multitude of
platforms can be difficult in local development environments, and could slow down
the development process. Alternatively, in large workforces there may be special QA
teams that handle the testing process. However, as they are usually divorced from
actually building the project, they may not have the same set of knowledge as the

developers to ensure tests are fully run.

To aid in this, continuous integration (CI) services have become major parts of the
software engineering workflow. These services allow developers to setup servers whose
role is to take new code, build it, and run various jobs over it to check its functionality.
These jobs need not all be testing related, and allow developers to run a wide variety
of metrics over their code. Nevertheless, a big use case for CI services is in automated
testing, as they enable the entire test suite to be run whenever new code is uploaded
to a project. Furthermore, the servers they provide are easily configurable, allowing
developers to set up the appropriate platforms across their CI servers and ensure their
test suite is run appropriately across all supported platforms. The success of these
services has enabled projects of all forms and sizes to use them, from massive industry

software to pet projects run by individual developers.

All of these tools and services aim to make testing as simple and convenient as
possible. As a result, developers and testers are able to write many tests, as they
aim to extensively test their code. This is especially apparent when testers are not
developers, and aren’t familiar with the code, thus requiring an even greater number

of tests to ensure all parts of their software’s functionality are tested.

However, this wealth of testing comes at a cost: time. Even if tests are kept to
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simple cases, as the number of tests increases to the hundreds or even thousands,
ever-increasing amounts of time are required to run them all. For projects with only
several hundred tests, a full run-through can take several minutes; in larger projects,
test times can approach the point where they actively harm a developer’s productivity
[16]. While at first glance, taking minutes to run a test suite may not seem too
problematic, any delays in a developer’s workflow can quickly add up, especially when
running the entire test suite locally is impractical and they need to rely on their
CI’s automated testing, which adds further time. This is further exacerbated by the
growing complexity of software, the wide variety of platforms, and the greater number
of complicated possible use cases, all of which need to be simulated via increasingly
complex and longer-running tests to ensure things work in a wide variety of scenarios.
Keeping these tests running fast is thus an active area of dev-ops work, requiring
developers to ensure that the tests and testing environments they create are optimized
for maximum test efficiency. Countless guides exists for debugging slowdowns in test
runs [10], and CI tools themselves provide functionality for ensuring testing is as fast

as possible.

However, it is important to realize why fast test suites are important. After all,
while the tests are running, why can’t a developer move on to working on a new
feature? They are blocked from doing so because of the possibility of failing test
cases. Because any failure is considered unacceptable in standard software engineering
practice, developers must ensure failures are exposed for as little time as possible.
Furthermore, a test failing often points to bugs in the code which must be immediately
addressed so that so that later additions aren’t broken by a buggy initial state.
Therefore, developers are most interested in quickly finding failing test cases. If these
failures are reported early on in the testing process, developers are better able to
catch, identify, and fix their bugs, and send in new versions of their code for testing.
On the other hand, if these failures are reported near the end of the test running
procedure, the developer would have to wait a significantly longer time before being
able to become productive again and fix these issues. It is thus of great interest for

testing services to be able to develop methods to identify test cases that are most
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Case 1:

| Testing | Fail | Development | Testing |Pass|

Case 2:

| Testing | Fail | Development | Testing |Pa‘ss|
Time

Figure 1-3: Diagram illustrating example of how early detection of failures can
impact developer efficiency. If a test fails early on, the developer can iterate over the
development again sooner and reach a fully passing suite earlier, while if one fails at
the end, the development time can take significantly longer.

prone to failure, and queue these first, enabling faster feedback to their users.

1.1 Test Failure Prediction

The concept of predicting software failures is not new. Recent advancements in data
processing and machine learning have allowed predictive models to be formed in a wide
variety of domains, and software testing is no exception. Automatic bug detection
has been a large area of research, and successful models have been built that can find
bugs by combing through source code [17]. Other models are able to automatically
create tests based on existing features in a project, and maintain those tests as those
features change [4]. Finally, extensive research has been done in predicting testing
results based on the project source code [18]|. These last set of results are the most
interesting to us, as we wish to be able to directly predict what tests may fail when
new code is added to a project.

However, it is important to note that those past works have relied on source code
analysis to make predictions. Their models need to go through either the actual
code files or the compiled binaries to extract features that can then be fed into their
predictive models. The need for good features requires time spent experimenting with
different sets of features to find one that can lead to the best predictions. Then, even
if a good set is found, if predictions are to be made on another project further work
is required to re-extract those features from code that may be in a different format

or follow a different coding style. These steps are difficult and time consuming, and
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require intimate knowledge of the software project that is being used.

Platform  Platform Platform Platform

1 2 3 4

Test 1 | PASS | PASS | PASS | PASS

Test 2 | PASS | PASS | PASS | PASS

Test 3 | FAIL | FAIL | FAIL | FAIL

Test 4 FAIL | PASS | PASS | PASS

Figure 1-4: Example test result matrix. Entries in this matrix are either PASS for
passing tests or FAIL for failing tests.

Instead, we attempt to create a system for test result prediction solely from past
test results. Specifically, a single run of a test suite can be used to create a matrix of
results, where each row represents a unique test case and each column represents a
platform that is tested on. Then, each entry in the matrix represents the pass/fail
result of that test case on that platform !. The dataset thus consists of all runs of the
test suite across a project’s history (builds, releases, commits), represented as a series
of these matrices.

With this formulation, the dataset format is consistent across different projects
of any type, written in any language; no extra work is to customize the system for
varying features across projects, and instead a single interface can be used to take
the data and train a model to make predictions. Such an interface allows for easy

extensibility and thus wider adoption across projects.

1.2 Proposing ML Software Tester

In this work we propose ML Software Tester (MLT), a machine learning tool to
augment software testing. It is a system that uses test result data, as described above,
to train its predictive models for test result prediction. It needs only this data, not

requiring any other form of feature extraction from the source code.

!There can actually be other possible values for each entry besides pass/fail. See section 2.2.4 for
more details.
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Collection Model Predictions

Test Running
Process

Git

Figure 1-5: An overview of the layout of ML Software Tester. From a Git repository,
users are able to collect data on the history of test results. They can then use this
data to augment their existing test running process with a predictive model that can
make predictions on future test results.

In developing MLT, we did not just develop a predictive modeling methodology,
but also created a usable tool for the “worlds leading software development platform” -

GitHub. As a result our system can be used in two ways:

e Software projects using Git or GitHub: For git repositories, MLT is an
end-to-end tool that able to take a Git project and extract the test result data
across the history of the project. It can then feed this extracted data into
various predefined models, train them, and use them for future predictions on

new commits.

e Other projects: Users must extract the test result data themselves and format
it according to the above specification. They can then use our api to build their

own tool form making predictions on new releases, builds or commits.
Thus, MLT has 2 primary modules that:

e Collect the set of test result data from the history of a Git project

e Train and provide models that perform the test result prediction

The system is designed to be an initial framework for applying machine learning
to software test result prediction. It was built to work for a small set of selected
projects, and comes with built-in data collection and model training procedures for
those selected projects. However, it is also designed to be easily extensible to projects

beyond this initial scope. While users will need to provide some level of customization
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based on their choice of project, the scope of this customization is limited to specific
functionality that is easy to understand and work with. We were able to evaluate a
basic prediction model given data from one of these projects, and found it effective in
generating test result predictions that can aid in the testing process.

In chapters 2 and 3, we will discuss the data collection process and how it was
applied to Flask, one of the largest open-source Python projects.

In chapter 4, we discuss the prediction model portion and evaluate its effectiveness.

In chapter 5, we conclude with future work to improve the system.
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Chapter 2

Integrating with Git

In this chapter we describe the first half of MLT, integration with Git. It generates
the test result data in a standardized format that can be used in a variety of machine
learning models. The system is designed to be extensible across different software
projects, allowing the user to choose the relevant software test result data and how it
is collected. Its only limitation is the requirement that the projects be based on Git
version control. However, we do not consider this a significant limitation as Git is by
far the most popular version control, and a large majority of modern software uses it
[14]. Additionally, Github, the major platform for hosting software projects, is based

on Git, and houses nearly all major projects, hosting over 60 million repositories [11].

2.1 Git

Machine learning models require extensive data to train themselves. To do so, we
hope to have access to all (or nearly all) of the test results across the history of a
given software project. This section details the basics of Git version control, how it
allows for access to the test result data we desire, and why the data collection process

relies on Git’s functionality.

21



2.1.1 Basics of Git

Git is a version control system that allows users to easily collaborate on software
projects in a distributed manner. With it, after users make changes to a part of a
codebase, they make a commit. Each commit contains information about what parts of
the code were changed from the commit preceding it, with a pointer to that preceding
commit. Commits also contain unique hash strings that are used as identifiers. From
a software/project management perspective, these commits allow large projects with
many developers to easily keep track of code changes, and manage what parts of the

software get updated and released.

98ca9.. 34ac2.. f30ab..
commit | size commit | size commit | size
tree 92ec2 tree 184ca tree 0de24
author Scott parent 98ca9 parent 34ac2
committer | Scott +— author Scott +— author Scott
committer | Scott committer | Scott
inital commit of fixed bug #1328 - add feature #32 -
my project stack overflow under utility to add new
certain formats
Snapshot A Snapshot B Snapshot C

Figure 2-1: A graphic illustrating the basic commit structure of Git. In this example,
there are 3 commits, identified by the 3 hashes above the blocks. Each commit
points to the commit made immediately before it, so 98ca9 is the oldest commit
while £30ab is the newest. Each commit contains a few attributes, such as tree,
author, committer, and description. The tree points to a hash of the contents of
the directory the commit is on, the author and committer refer to identifiers for the
developers that wrote the changes and made the commit, and the description is a
committer-specified description of the changes made on the commit.

Git actually uses a tree model to keep track of all of a project’s commits, allowing
multiple commits to share the same preceding commit. When two commits diverge
from a single commit, they are considered on separate “branches”. In standard software
engineering practice, there is a primary master branch that represents the “realest”
version of the codebase - that is, the version that is publicly available to users. To

make changes, developers make branches off this primary master branch. When they
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have finalized their branch, they make a “pull request” to have their code merged
into the main master branch. Other developers, often the primary maintainers of the
project, can then approve or deny these requests, and if approved the changes will
be added to the master branch. Thus, the standard branches of a Git project are
this main master branch and all the pull request branches that have or haven’t been

merged into master. An example of this tree structure can be seen in figure 2-2.

J 87ab2 |+ | master |+ | HEAD
98ca9 « 34ac2 - f30ab 41

c2b%e «| testing

Figure 2-2: A graphic illustrating the tree structure of Git. Here there are two
branches: master and testing. They diverge from the commit £30ab, with master
having the commit 87ab2 and testing having the commit c2b9e.

Figure 2-2 shows not just the hash identifiers for each commit, but also 3 additional
identifiers: HEAD, master, and testing. Master and testing are identifiers for the
two branches, and point to the latest commit on each branch. HEAD is a pointer to the
commit that the user is currently viewing locally, so in the figure the user is viewing
the latest commit on master. All of these pointers are dynamically updated when
new commits are made. They act as an alternate way to refer to commits beyond the

hash strings.

2.1.2 Git History

Commits are not only for recording changes to code. Each commit also records a
“snapshot” of the entire state of the codebase. Users are able to view any such snapshot
by changing where HEAD is pointing. Because, HEAD is just a pointer, it can be updated
to point to any commit, and thus any such snapshot can be viewed.

The command to update HEAD is git checkout id, where id is an identifier for
the commit. Upon doing so, HEAD is set to point to commit id, and the user is brought
back to the state of the codebase when the commit was made. This replaces all
contents of files maintained in the project to the contents of these files at the time

the commit was made, allowing users to view and use this previous version of code.
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Because every commit keeps track of its preceding commit, the entire past history of
commits is available, so any commit that was made can be viewed. This includes both
previous states of the master branch as well as intermediate states of pull requests
other developers were working on. We thus have access to the entire history of the
software projected, segmented into discrete timestamps at each commit. These actions
are reversible, so at any point it is simple to return to the most recent state of the

codebase.

2.1.3 Git and Test Data

How does focusing on Git give us access to the test result data we want? As made
clear from the structure of Git, we can visit any previously snapshotted instance of
a given Git-based project. However, test result data is not explicitly saved at each
commit. Instead, all of the tests can be run on this old version - because all files have
been changed back to their old state, this is now testing the old version of the code.
By parsing the resulting logs from running these tests, we can thus collect the data

we want. We thus have a procedure for collecting a large amount of test result data:

Generate a list of all commits
For each commit:

Checkout the commit

Run all tests

Parse logs and accumulate data

As popular repositories will be on the order of thousands of commits, we are able

to collect plenty of data to train our models on for that repository.

2.2 Generating Test Results

We now describe the details of actually implementing the above algorithm.
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2.2.1 Getting All Commits

There are two components in finding all commits of a repository: the main master
branch and all of the side pull-request branches. It is important for us to extract
test result data from commits from both components, and not just to increase the
amount of data obtained. Because the master branch is the most public-facing and
exposed to regular users, it is critical for commits on this branch to be release quality
and contain minimal, if any, bugs. Thus, nearly all tests from these commits will
be passing, which, while still valid data, will contain minimal failing examples. In
contrast, pull request branches can have intermediate commits that are not release
quality. These commits are significantly more likely to contain failing examples, so we
make sure to visit these commits as well.

Finding all commits along the main master branch is simple. Every commit has a
pointer to its parent, and Git provides a simple syntax for finding parent commits: if
a commit’s id is id, then its parent’s id is given by id~{1}, its parent’s parent’s by
id~{2}, and so on. We can thus start from the most recent commit on master, and
iterate through parents until no parent exists.

Getting all pull request commits is more involved. We first modify the .git/config
file in the root directory of the repository to pull all branches marked with pr. Each
of these branches will have the form origin/pr/id, where id is a counter for each
pull request. For each of these branches, we then run the below command to find all

commits on this branch but not on the master branch.

git log origin/pr/id --not
$(git for-each-ref --format=\’Y,(refname)\’ refs/heads/ |

grep -v "refs/heads/origin/pr/id")

2.2.2 Why Run Tests on Every Commit?

One thing that may be concerning about the above procedure is the need to re-run
all the tests at every commit, a process that can take a very long time. Having

to explicitly run the software requires setting up the project and its dependencies
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in whatever environment is being used, which is further complicated by changing
dependencies when earlier commits are visited. Finally, further work needs to then
be done on building parsing mechanisms that can convert the output of the testing

procedure into the data format we desire.

It may be surprising that all this effort needs to be expended in the first place.
Almost all large projects use some form of continuous integration to automatically run
all tests whenever new code is added. These CI tools provide public APIs that allow
for querying over the history of a project and extracting various logs and metadata.
Given the availability of this information, it initially seems obvious that querying

whatever CI tool a project is using for test information is the ideal method.

However, upon further inspection, relying on CI tools for the data has some critical
flaws stemming from the fact that their APIs are not designed with our specific use case
in mind - easily extracting specific test result data. Instead, they are designed more
from a general dev-ops perspective, providing information about whatever processes

have been set up to run when new code is added.

As a case study, consider TravisCI, one of the most popular CI tools that is also
free to use for open-source projects. Its API is focused around queries for builds,
detailing an instance of new code being added to a project composed of of many
jobs (individual tasks that the new code is run through). These jobs will include
logging that describes what was done in the job. Of course, some of these jobs are
test-related, and we could use their logs to extract our data of interest. Unfortunately,
it is difficult to differentiate between which are test-related and which aren’t without
manual inspection of the logs, and because these APIs are rate-limited, trying to
consume all the logs is slow. Furthermore, we still confront the issue of having to
create a parser to extract the data format we want from the logs, which is compounded
by being limited to whatever command was used to generate the logs, rather than
being free to choose our own. Finally, initial testing revealed some reliability issues
in some of the API results, including returning commit IDs that were not actually

present in the repository and thus finding results that couldn’t be confirmed.

We thus choose to traverse through the Git history ourselves to generate the test
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Log 1
—» —» | Test output:

Log 2
1y —p | Test output:
Log 3
Ly —» | Coverage output:

Figure 2-3: A diagram of the objects made available in the Travis CI API. We have
access to builds, which themselves point to several jobs run on that build. Each job
has a log that contains the output of whatever code was run in that job. In this
example, we see jobs 1 and 2 were responsible for testing, and have logs we would like
to examine. However, job 3 was responsible for generating a coverage report, which
we do not care about, but would have to build functionality to differentiate it.

data. While we had to set up the software manually, we then had full knowledge of
where in the history of the project we were when running tests, the ability to control
what kind of testing we wanted to run to produce the easiest logs to work with, and

complete reliability in being able to reproduce our data.

2.2.3 Data Collection Architecture

Having explained the choice in Git, we now describe our data collection system archi-
tecture. It consists of two parts - the GithubExplorer interface and the TestRunner
interface. The GithubExplorer interface handles working with and navigating around
a Git repository. It contains various helper methods that can call out to Git commands,
extract information about a repository or its commits, and run code on a certain
commit. It is designed to be agnostic to whatever project is being worked on, requiring
only a Git repository.

The TestRunner handles the interaction with the actual test running software.
Unlike the standards of Git repositories, test running is much more variable. Even
the command that should be called to run the test can vary greatly between different
projects. Thus, any interface for working with tests needs to be be primarily extensible

by the end-user, allowing them to specify how they want tests run and how they want

27



the resulting logs to be parsed. This part of the interface then primarily handles the

process of actually running the test scripts and parsers, and logging their outputs.

GithubExplorer

The GithubExplorer is the interface for interacting with Git. It has provides several
methods to obtain information about a repository’s commits and its commit structure.

The methods that are most relevant to end users are:

e Initialization: initialize with two arguments - a path to the repository of interest
and a path to a file that will be used to cache commits. This second argument

is used for performance reasons, see section 3.1.4 for more details.

e get_all_commits: Returns a list of all commits of a repository. Refer to

section 2.2.1 for how to obtain this list.

e do_on_commit: Runs a function on a specified commit. In this use case, it is

used to run the testing functionality on each commit.

TestRunner

TestRunner is a subclass of GithubExplorer, and is the interface that users will
directly work with. It uses the Git functionality from GithubExplorer to traverse
the commit history of a repository, run the tests, and save the test result data.
Because the individual methods for running tests and parsing the logs may vary across
commits, users are expected to modify the functionality of TestRunner by creating
new subclasses of TestRunner that override specific methods. The methods that are

relevant to end users are:

e Initialization: initialize with four arguments - the first two are the same as above,
a path to a directory that will store the test result data, and a list of files that
will be run as test scripts, one for each platform to be tested on. The test scripts

are expected to be customized to each individual project.
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e test_all_commits: Runs tests on all commits and saves the test result data.
This is the function that will be run by the end user to initiate the data collection
procedure. It runs each of the scripts on each commit, saving the results as

follows:

— The test result data is pickled and stored in
data_dir/{commit_sha}_results.pickle, where commit_sha is the hash
identifier for the commit the tests were run on. We specify the form of the

test result data in section 2.2.4

— Any errors that occur in the testing procedure that are unrelated to the

tests themselves are logged and saved in data_dir/{commit_sha}_errors.

e get_test_results: Parses a testing log string and outputs a tuple of the
platform identifier string and test result data. Test result data format is specified
in section 2.2.4. This is the function that is expected to be overwritten by the

user to adapt to their repository of choice.

e clean_repo: Cleans the repository of intermediate files leftover from testing.
May be overwritten by end user if needed, though we provide a basic default for

Python projects.

There are thus 3 areas of customization: the scripts argument used for initialization,
get_test_results, and clean_repo. Each is designed to have a clear limit in scope,
so users are able to easily add in their custom features. The rest of the functionality
provided in GithubExplorer and TestRunner is designed to be agnostic to what is
done with those 3 items, so users can choose how they implement those items without
worrying about their interactions with other parts of the interfaces.

The interaction that users do have to plan for is between the scripts initialization
argument and their implementation of get_test_results. get_test_results is
meant to parse through the output of the test logs that outputted from the test scripts
the user passes in, so users have full control over what kind of logging they would

like to occur and how to parse that logging. Users are then able to choose scripting
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Figure 2-4: A diagram of the inheritance in the data collection architecture.
TestRunner inherits from GithubExplorer, and the user should write a new class
that inherits from TestRunner and overwrite the get_test_results and clean_repo
functions, and specify their own scripts argument.

options that will make logging as simple as possible. For an example of each of these

implementations, refer to section 3.

2.2.4 Output Data Format

get_test_results is expected to output a specific format for the test result data.
The data should be a dictionary that maps test name strings to string representations
of the test results. The test names should be unique identifiers for a test, which remain

the same across commits. The results should be one of the following strings:
e ’PASSED’
e *FAILED’
e ’>SKIPPED’

e ’ERRORED’, which occurs when an errors occurs while running the test that isn’t

related to the functionality of the test or source code

The resulting pickled data has slightly different format. The pickled objects are
dictionaries that map string identifiers for each platform to the test result data on
that platform, as described above. Figure 2-5 illustrates this overall format.

Thus, beyond the actual results of the tests, users are also expected to parse out

an identifier for the platform and identifiers for each test from the testing logs. The
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{ Platform 1:
{Test 1: PASSED, Test 2: FAILED, ...},
Platform 2:
{Test 1: PASSED, Test 3: ERRORED, ...},

=

Figure 2-5: Illustrates the data format of nested dictionaries. At the top level, each
platform name maps to another dictionary. In each of these dictionaries, test names
map to their results on that platform.

testing scripts they use should thus ideally be simple to parse so these items can
be extracted. The test names in particular are crucial to maintaining consistency
across commits when the data is used to train models. If the test scripts are unable
to provide detailed output with the test names, users may have to implement more
elaborate parsing schemes to extract these names from the source code files. For
details on this process, refer to section 3.2.

It is important to note that this test result data does not take the matrix form
introduced earlier. A separate module, DataHandler, handles the conversion from
these pickled objects to matrix forms. We chose to use this intermediate format for

several reasons:

e Ease of interpretability: Python dictionaries are naturally easy to work with,
allowing users to easily understand the data they have collected. Users are easily
able to query these dictionaries to see the which tests on which platforms had
which results. This also allows users to easily create scripts that can analyze the

data and generate interesting metrics, such as ratio of failures to successes.

e Checking data correctness: After generating the test result data, we want to
be able to double check the reliability of the data. Because this kind of test data
is not readily available, we have no way to automatically check the correctness
of our results. We thus want a representation where it is easy to check the
correctness of the underlying data. With a dictionary, this is simple - simply run
the test suite on the same commit, find the failing tests, and check that those

and only those tests are marked as failing in the dictionary.
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e Flexibility Tying into the ease of use, this format is extremely flexible, particu-
larly in conversions to other formats. This is especially important for our use
case, where we aim to create an flexible pipeline that is amenable to various
projects and models. We specifically are able to easily convert these dictionaries

into the matrices we use for our models - see section 77.
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Chapter 3

Running Tests and Collecting Results

In this chapter we present an example of the implementation of the TestRunner
interface defined in section 2.2.3. This example is for Python projects that use pytest
as a testing framework. As Pytest is very popular for Python, projects, this example
provides a useful starting point in demonstrating how TestRunner can be successfully
implemented. We then provide results on running this implementation with Flask, a

large open-source Python project [3].

3.1 TestRunner implementation

We detail the implementation of the three custom parts of TestRunner here.

3.1.1 scripts

Python projects are generally tested across different versions of Python. We thus need
to implement scripts to run tests across each relevant version of Python. To handle
the different versions, we use the pyenv library [7]. pyenv provides a simple method
of installing and using multiple python installations in a single local environment. For
example, if we want to use versions 2.6, 2.7, and 3.6 of Python, we can simply call
pyenv install 2.6, pyenv install 2.7, and pyenv install 3.6 to install, and

use each version with python2.6, python2.7, and python3.6. In the same vein, we
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also have access to the respective versions of pip, Python’s package manager, with
pip2.6, pip2.7, and pip3.6 [6]. We use these separate versions of pip to install the
necessary dependencies for the project we are working with for each version of Python,
and are then able to run tests on all versions.

Each individual script then takes the following form:
cd {path to Flask directory}

python3.6 -m pytest -v --continue-on-collection-errors
where the above is an example for Python 3.6. Scripts for the other versions
of Python look essentially similar, replacing only the version of Python used in the
second line.

We note two other key arguments used in the second line

1. -v enables verbose mode for pytest, providing output of the form shown in

figure 3-1, which is simple to work with and parse.

2. -continue-on-collection-errors prevents pytest from automatically error-
ing out on collection errors. Collection is the process through which pytest
identifies and prepares the test functions in a project’s test files. In testing, we
found errors in the collection process occur due to dependency issues that were
difficult to get around (see section 3.3.2) in a specific few test files. However,
we wanted to still be able to run the other tests that were collected properly to

obtain some data from these instances, which this flag allowed us to do.

3.1.2 get_test_results

By using the -v flag, we have a simple way of collecting all of the test names and their
associated results. The example output in figure 3-1, shows the associated test file is
also displayed with the test name, but we ignore the file as we want our data to be
agnostic to the specific files the tests are located in. We can easily go line-by-line and
extract the appropriate test names and associated test results, as well as the Python

version from the first line.
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platform darwin -- Python 3.6.5, pytest-3.2.5, py-1.5.2, pluggy-0.4.0 --
cachedir: .cache

rootdir: /Users/tonycaol/flask, inifile: setup.cfg

collected 401 items

tests/test_appctx.py: :test_basic_url_generation FAILED
tests/test_appctx.py::test_url_generation_requires_server_name PASSED
tests/test_appctx.py::test_url_generation_without_context_fails PASSED
tests/test_appctx.py::test_request_context_means_app_context PASSED
tests/test_appctx.py: :test_app_context_provides_current_app PASSED
tests/test_appctx.py: :test_app_tearing_down PASSED

Figure 3-1: Example output from running pytest -v. In the first line, versioning
information about the environment can be seen. Following that, each test name and
its result can be seen. Along with the shown FAILED and PASSED results, there can
also be ERRORED and SKIPPED results.

3.1.3 clean_repo

After running the test suite, we delete all *.pyc files, so subsequent test runs do not
run into errors with these leftover files. This is provided as the default functionality

of clean_repo, and should be sufficient for most Python projects.

3.1.4 Performance

Our implementation is not designed to optimize performance. The time to run all
the tests depends on the number of tests, commits and platforms to run across, the
complexity of the tests, and the choice of testing script. These factors can all vary
greatly across different projects, and is out of our control.

Some steps were taken to ensure quickly iterating on the collection process
and testing that it was functional was efficient. After getting all commits with
get_all_commits, we write the commits to a file to skip having to re-find these com-
mits on later runs, which is a costly operation when there are thousands of commits.
Additionally, before running tests on a commit, we can optionally check if data for
that commit has already been collected; if so, we can choose to skip rerunning the

test suite on that commit. These steps help make repeating the procedure quicker,
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which is useful when testing different scripting and parsing procedures to ensure they
work. However, they don’t help in speeding up the procedure when all the data needs
to be collected.

One potential avenue for performance improvements is parallelism. Our system
runs tests in a sequential fashion, running the entire test suite on each platform
one-by-one before continuing to the next commit. Because each run of a test suite is
independent from any other run, running them in parallel appears like a straightforward
approach to increasing performance. However, there are several issues that prevent a

straightforward concurrent approach:

1. Inability to parallelize across commits: Viewing different commits changes
the state of the filesystem. Thus, two processes cannot run tests on different
commits for a single repository at the same time. One way to get around this
would be cloning the repository multiple times, with each process running the

test in its own clone.

2. Uncertainty in parallelizing across platforms: The ability to parallelize
across platforms is uncertain, and may not be possible for certain applications.
Different platforms may require running different test environments concurrently,
which may not interact well together. If any intermediate files are created, there
may also be filesystem-level issues if multiple processes try to access them at

the same time.

3. Difficulty in implementing distributed approaches: A solution to both
of the above listed problems would be a distributed approach that could run
parts of the test suites across different machines. However, such an approach
would require work in building a distributed system to handle task allocation
and result accumulation, as well as the infrastructure around setting up and

using several machines.

We decided to stick with a sequential approach for its simplicity of implementation.
Nevertheless, parallel approaches that could speed up the rate of test collection would

greatly aid in the ease of usage of our system.
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3.2 Alternative Implementation

Above, we used the -v flag to allow for simple parsing of test names. However, a flag

with similar behavior may not be present in all testing frameworks, so we present an

alternative method of implementing get_test_results in this section that does not

rely on this flag. Without this flag we may not get detailed information as was shown

in Figure 3-1 where the result showed exactly which one of the tests with in a .py

failed and which passed. If the flag is not present the results may look like:
tests/test_appctx.py ...F......

To successfully parse these cases, we present mechanisms to extract the correct
information information. Test results usually return a status of FAILED, PASSED or
SKIPPED or ERRORED. Below we explain how we handle each in our new implementation.
Extracting Failed or Errored results: When a test fails, testing frameworks by
default provide information about that failing test case. This information includes a
snippet of the code that failed, an error message, and, most relevant to us, the name
of the test. As shown in figure 3-2, this test name is easy to extract. Similar output
is given when tests are in the ERRORED state, so those cases are similarly simple to

handle.

Figure 3-2: Example output from pytest when a test fails. The test name appears in
the second line, and is easy to extract.

Extracting Passed and Skipped and results: However, the same cannot be said
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for the two other possible test results: PASSED and SKIPPED. Output for these test
results can be seen in figure 3-3. The log no longer provides the test names associated
with each result; however, we need these associations to be able to correctly create

our data matrices.

tests/test_instance_config.py ........... s

Figure 3-3: Example output from pytest when run without -v flag. Only the test
filename appears, so we cannot associate any test names with particular results. Here,
the dots signal tests passing, and the s signals a skipped test. However, we do not
know which dot corresponds to which test, and which test the s coressponds to.

Because we have access to the repository’s files, we can instead parse the test files
to find the appropriate test names. From the output shown in figure 3-3, we know
the names of the files that contained tests, so we know to parse those files to identify
the test functions. Even if the log did not contain these names, identifying test files
would still be straightforward. In almost all cases, test files are contained in a certain
directory and are named a certain way. For example, in Python the convention is
; similar

-

to have a directory named tests, and each test file is prefixed by test
conventions hold in other languages [1] [13].

Once we identified the test files, we needed to parse out the test functions themselves.
This is also straightforward: test functions have similar naming conventions as test
files, usually being prefixed by test_ or Test. Additionally, many libraries exist that
can convert code files in a variety of languages into abstract syntax trees (ASTs), which
simplify parsing. For example, in Python there is an ast library that can convert any
Python file into an AST [2]. From this AST, it is simple to identify functions and
check if the name of those functions match the format of a test function. We can thus
collect all of the test functions in a test file in this manner.

If all of the tests in a file pass, we can then simply assign all the test names found
from that file a passing result. However, things are complicated when tests are skipped.
We must then identify which of the tests that were parsed from the file were skipped
instead of passed. This is further complicated by the fact that there is more than one

method of marking if a test should be skipped. Figure 3-5 shows two different ways
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Figure 3-4: Diagram for how to parse Python file for test names. From the input Python
file, we use ast to convert it to an AST representation. It is then straightforward to
extract the list of functions in the file, and run a regex over their names to identify
which are tests.

tests were skipped in the Flask codebase. Having to handle multiple cases requires
a more complex parsing scheme, especially with regards to cases like the bottom
example in the figure, where we then need to check all variables instantiated in the

file to see if they are related to a skip marker.

@pytest.mark.skipif (not PY2, reason='This only works under Python <>
2.")
def test_meta_path_loader_without_is_package (request, <>
modules_tmpdir):

need_dotenv = pytest.mark.skipif (
dotenv is None, reason='dotenv is not installed'
)

Gneed_dotenv
def test_load_dotenv (monkeypatch):

Figure 3-5: Two examples of methods to cause a test to be skipped. In the top, a
simple flag is set directly above the test. In the second, a separate variable is used as
the flag.

Overall, the parsing scheme is relatively simple except for when we need to handle
skipped tests. However, having to handle these skips causes a significant rise in the
complexity of the implementation and the amount of knowledge about the underlying
codebase needed. These issues are in direct conflict with our goals of allowing our
system to be easily used across projects. Thus, if one is forced to rely on direct parsing
of test files, we recommend ignoring these complicated cases; instead, we recommend a
simple solution that is able to capture most of the test results. In our tests, to handle

skips we simply searched for cases similar to the top half of figure 3-5, where the
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skip marker appears directly above the test function. In the other cases, we simply
discarded all the results from the test file, as we couldn’t differentiate between which
tests passed and which were skipped. This allowed us to still collect the results of
90% of all tests, a significant majority. However, when we could, we still used the
implementation described in section 3.1, as it was significantly more reliable and easier

to implement.

3.3 Collecting Test Results from Flask

We now present the result of running the data collection process with Flask. Flask
is a popular Python web framework. As with many open-source projects, it is hosted
on Github, with thousands of commits and hundreds of contributors. It was the first
project we tested with our system, and guided many of the decisions made in designing
the system. It was chosen as the first project to test with for several reasons. It
had good documentation, specifically with regards to setting it up and running tests.
Running the test suite was relatively quick, taking about a minute, allowing quick
iteration. At the same time, it had a fair number of tests, at around 400, as well as
commits, with over 3000, providing a good initial quantity of data to use with our
models. Finally, as with most Python projects, its platforms were different versions of
Python, which were easy to work across with its testing procedure.

We implemented the components of TestRunner with the implementations de-
scribed in section 3.1, and then ran test_all_commits. This process was run on an

AWS t2.large instance [12], and took approximately 12 hours to find all results.

3.3.1 Test Data Metrics

Raw Counts: In total, Flask had 3112 commits. However, as described in sec-
tion 3.3.2, not all commits had their tests successfully run. We show our statistics for
the number of test results we were able to collect in table 3.1.

It is important to note that Flask did not support all versions of Python from its

inception. It supported only Python 2.6 when it was first released, later adding Python
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Python version Number of commits with tests Total number of tests

2.6 2177 299317
2.7 1930 298781
3.3 1200 297316
3.4 1200 297316
3.5 1200 297316
3.6 1200 297316

Table 3.1: Statistic on tests collected for each version of Python.

2.7 and then Python 3.x support. In particular, all Python 3.x versions were added at
the same time, explaining why all of them have the exact same number of commits and
tests. This staggered support thus explains the later versions having fewer commits.
However, as we can see in the original Python 2.6, almost 1000 commits still did not
have any tests, arising from difficulties in collecting all test results that we describe in
section 3.3.2.

While Python 2.6 had almost double the number of commits as the 3.x versions,
this is a significantly smaller relative fraction of tests. The same holds for comparisons
between Python 2.7 and the 3.x versions. To investigate this, we plotted histograms
of the number of commits versus number of tests for three of the versions, which are
shown in figure 3-6. From it, we can see a significant number of commits in Python
2.6 and 2.7 have only one or two tests. When we ignore those commits, the remaining
histograms are identical. Thus, those early commits did not actually contribute a

significant number of tests.

Test Failure Occurrences

We also measured the rate of occurrences of test failures. This metric is particularly
important to us as it provides a rough signal of the quality of our data in training
models. If test failures are extremely rare, and an overwhelming percentage of the

data is just tests passing, it would become significantly harder for a model to learn to

41



Complete Python2.6 Complete Python2.7 Complete Python3.6

B 600 600 | 600 -
€
€
(o]
O 400 400 | 400 |
-
(o]
NS
2
2 200 200 | 200 |
3
= .l‘-__l #
0 0 : ‘ 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Number of tests Number of tests Number of tests
Partial Python2.6 Partial Python2.7 Partial Python3.6
100 100 100
(%]
2
£ 80| 80 | 80 |
€
S 60 60 60 |
-
o
5 40| 40 40 |
E
S 2 20 | 20 |
=
0 0 0
250 300 350 400 250 300 350 400 250 300 350 400
Number of tests Number of tests Number of tests

Figure 3-6: Histograms of number of tests and number of commits with that number
of tests. The spikes on the left edges of the histograms in the top row are due to a
large number of early commits with only 1 or 2 tests. After ignoring those cases, we
see a much more balanced distribution.

identify failures.

We found a total of 825 commits had at least one failure, and 1534 test suite runs
had at least one failure, where a test suite run is a single execution of the test suite on
a single version. Table 3.2 shows a more detailed breakdown of the occurrences of test
failures across the various versions. In it, we see in most versions of the commits have
no failures. Interestingly, versions 3.3 and 3.6 have a significantly larger number of
commits with some failures, with the number actually being larger than the number

of commits without failures for 3.6.

We show a breakdown of failure occurrences in percentages in table 3.3. We see
that test failure rate is at least .004% across versions, with commit failure rates of at
least .03%. These rates were high enough to be comfortable to use this data to test

potential prediction models.
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Number of failures

Python version 0 1 2-10 11-100 >100
2.6 2099 30 29 7 5
2.7 1851 31 29 7 5
3.3 857 283 34 12 5
3.4 1040 40 98 8 5t
3.5 1110 42 26 8 5
3.6 366 680 138 ) 2

Table 3.2: Statistics on number of commits with certain numbers of failures.

Python Total number of Percentage of tests Percentage of
version failures that failed commits with failures

2.6 1352 .0045% .033%

2.7 1352 .0045% 037%

3.3 1705 .0057% 278%

3.4 1733 .0062% 126%

3.5 1368 .0046% .068%

3.6 1682 .0057% .688%

Table 3.3: Percentages of tests that failed and commits with failures.

3.3.2 Challenges with the Flask Repository

We ran into some challenges and some edge cases while collecting our test result data,
which we document here.

Manual implementation: First, ideally any initial setup for a repository would be
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handled automatically by our system. However, setup can vary wildly among projects,
and the steps for setup may not be easily scriptable. In this case, even though setting
up and using pyenv was simple, it was not easily scriptable, thus requiring manually
running commands on the command line. This extended to installing the required
dependencies to run the test suite. We were thus unable to build a system to handle

this part of the procedure automatically or through user-provided scripts.

Need to refresh after a running tests on a commit: We ran into issues in the
process of collecting the tests. On our first attempt, more than half of the commits had
no test results. On further investigation, we discovered this was due to leftover *.pyc
files from previous runs creating compatibility issues. This prompted the creation of

the clean_repo function.

Need to re-install older versions of the dependencies: Once this was fixed, we
still found a significant number of commits had no test results. These commits were
the older commits in the project, with the errors occurring because the code relied on
importing old versions of the dependencies. Because these versions of the dependencies
were incompatible with the versions we installed in the initial setup, and we had no
re-installation process, the tests were unable to run. A re-installation process could
have fixed these errors, but implementing one would have required complicated scripts
to remove and update the dependencies. Additionally, without explicitly checking
the dependencies, we would have had to rerun this re-installation process at every
commit, which would’ve caused the collection process to take significantly longer. We
decided we had collected a sufficient amount of data without having this extra level of

sophistication, and did not implement such a process.

Older commits did not use pytest: Finally, upon manual inspection of some of
the older commits, we found the testing procedure actually differed. In these older
commits, running pytest did not work; instead, other commands, such as make test,
were the correct approach. Because this information was not available beyond manually
inspection of the commits and their documentation, handling this automatically did
not appear feasible. These commits were among the earliest 1000 commits on the

project, and had very few to no tests, so we did not lose much data from not properly
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collecting results from these commits.

3.4 Working with Other Projects

This chapter has focused on Flask to outline the general test collection process on a
real project. While our test collection procedure was designed to be easily extensible,
some of the choices we made for collecting tests across Flask were specific to its test
running process and don’t carry over well to other projects. To handle this, our
collaborators extended the test collection process to several new projects. They were
also able to address various issues outlined in section 3.3.2. Their contributions are

described in appendix A.
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Chapter 4

Predicting test results

After collecting the test result data, we now wish to build models to solve the test
result prediction problem. In this section, we detail the models we use, how we convert
the data we saved previously into a format appropriate for the models, our evaluation

algorithm for these models, and the results.

4.1 Prediction Problem and Possible Solutions

What is the prediction problem?: Before we begin, we define the prediction

problem in a concrete manner:

Given commits C; ,,, and matrices for test results for each of those commits

T...m predict the test results T}, for C,, 41

where 7, j entry in the matrix 7" has results for test ¢+ when executed on platform j. In
order to build a general purpose system we cannot use any source code analysis from
Cyny1 Or previous commits.

Using past history only: On first thought, one might guess given a new commit
and a past history of test results, we could predict which tests fail using their past
history. However, in this setup we wouldn’t have any information about the current
commit, as we are not using any source code analysis. If we only rely on our past

history, as seen in section 3.3.1, most of the past history consists of commits with no
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failures. Then, the best guess for any commit would be that there are no failures -

clearly, not an interesting result.

Formulation as a matrix completion problem: Instead, we posit the prediction
problem as a matrix completion problem. Specifically, we propose the following: for a
new commit, we choose some subset of tests to initially have the results of. Based off
the results of this subset, we then make predictions of the results for the remaining
tests. In terms of the matrix formulation, we will initially fill in part of the test matrix
with its true values. We then use our model to create predictions for the values of the
remaining entries of the matrix. The core intuition behind this is that there are tests
that share attributes with each other, such that if any one test passes or fails it gives
information on if other tests are more likely to pass or fail. Hence, from the result of

one test we have information from which we can predict the results of the other tests.

Given that we posit this problem as a matrix completion problem we can then

approach making predictions in two ways:

1. One-shot: After filling in the initial portion of the matrix, we make predictions

on all other entries of the matrix.

2. Iterative: We fill in a small initial portion of the matrix, then make predictions.
From those predictions, we select those that have the highest level of confidence,
and find the real values to compare the predictions. We then fill in those real

values into the matrix and repeat.

Both approaches are discussed in the following sections. We also have two choices

for how to incorporate the history of test results:

e Computing features using historical data for tests and platforms and using those

features to do feature based matrix completion (used in the following sections).

e Appending the matrix 7},; with results from 77 _,, (left as future work).
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Figure 4-1: Comparison of approaches to matrix completion. In the one-shot approach,
after filling in an initial portion of the matrix, we make predictions on all other entries.
In contrast, in the iterative approach, after one round of predictions we compare the
highest confidence predictions to the real values, replace errors with the real values,
and repeat.

4.2 Data Format

Regardless of which approach is taken, both have the same goal - predicting the
unfilled entries of a partially filled matrix. We specify the exact form of this matrix
here.

The matrices we use have one row for every unique test and one column for every
platform that is tested on. Each entry in the matrix is then the result of the test
specified by the entry’s row on the platform specified by the entry’s column. If the test
passed on the platform, the entry’s value is 0, and if it failed it is 1. These values were
chosen because our goal is failure detection, so we consider passing as the default state
and failures as notable events. Any other result has value NaN. We roll together all

other results into the same value as other representations have significant drawbacks:

e If there are n possible results, representing each with an integer between 1 and
n: this introduces a concept of ordering that doesn’t make sense in the context

of test results.
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e One-hot encoding: matrix completion algorithms expect numbers as entries of

the input matrices, not vectors.

NaN is thus the simplest way of handling these other results, and our models simply

ignore entries with these values.

4.2.1 Converting Data from Data Collection

In section 2.2.4, we specified the format that we saved the test result data in as nested
dictionaries, where keys to the first layer were platform names, and keys to the second
layer were test names, with the final layer being the test results. From this format, it

is simple to create the corresponding data matrices:

Iterate over all dictionaries to collect all n test names and
all m platform names
Associate each test name with an index in 1..n
Associate each platform name with an index in 1..m
For each dictionary:
Create a new matrix X with n rows and m columns
Initialize every entry in X to NaN
For each platform name in the dictionary:
1 = index associated with platform name
For each test name on that platform:
j = index associated with test name
if test result is PASSED:
X[i, jl =0
else if test result is FAILED:

X[i, j1 = 1
From this procedure, the value NaN occurs in 3 cases:

1. A test had result SKIPPED
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2. A test had result ERRORED
3. The test did not exist on that commit

By handling the third case by using NaN, we are thus able to standardize the sizes of
all matrices that are generated from a project, allowing the models we use to expect

the same size matrix for any data that we feed into it.

4.2.2 Matrix Ordering

From the above procedure, we are thus able to generate a matrix for every commit.
When we use these matrices in our prediction model, we also want to specify which
matrices are considered the "past" for a given matrix of interest, so we can use these
"past" matrices to train our models. To do so, we generate an ordering of commits
based off the timestamp that they were committed. We can then sort our list of
matrices corresponding to this commit ordering, so that the matrices corresponding

to commits with earlier timestamps appear before commits with later timestamps.

4.3 Matrix Completion

Now that we have our data and the problem we wish to solve, we turn our attention
to how we can solve the matrix completion problem.

We first note that our problem is very similar to another matrix completion problem
- the Netflix prize [5]. In the Netflix prize, the dataset consists of a single large matrix,
where each row represents a user and each column represents a movie. An entry in a
matrix represents the rating a user gives to a movie. Many entries in the matrix are
empty, and the goal is to predict the values of these empty entries to recommend new
movies to users.

Parallels between the Netflix prize and our problem are clear. The Netflix users

map to individual tests, and the movies map to the different platforms!. On a new

'The choice in this mapping is arbitrary, and the reverse can also be taken
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commit, we will have some of the entries already filled in, and we want to predict

values in the other entries to recommend what tests to run that might cause failures.

4.3.1 Collaborative Filtering and SVD

Many of the most successful approaches to solving the Netflix prize involved collabo-
rative filtering and SVD [20]. Collaborative filtering is a method that uses preferences
of other users to help make recommendations for a specific user. SVD is one such
approach to collaborative filtering that factorizes an input matrix and uses this fac-
torization to help make predictions on unfilled entries of the matrix. A detailed

description of SVD can be found in figure 4-2.

u: user "
X: rating Matrix = features x S:scaling factor x V: movie features
O o S1
entry - — line i S,
ij,is is fecture -

S.

rating user = vector of X & X
i gave user i - I
movie | column j is feature

vector of movie j

Dimensions: (m, n)  (m, s) (s, 8) (s, n)

Figure 4-2: An illustration of how SVD decomposes a matrix, in the context of the
Netflix prize. Given an input ratings matrix X of dimension (m, n), it factorizes it into
3 components: U of dimension (m, s), S of dimension (s, s), and V of dimension (s,
n), where s < m, s < n. Urepresents the feature vectors of each user, V represents
the feature vectors of each move, and S is a scaling factor. Reducing the dimensionality
of the feature vectors to s leads to the approximation. If we multiply U, S, and V, we
create a new ratings matrix that will have predictions where X was initially empty.

Approaches based on SVD are easily applicable to the Netflix problem, as they are
able to factorize the single giant input matrix into smaller feature matrices, and use
these to fill in the empty entries. However, in our test result prediction problem we
also want to integrate information from past commits’ matrices to make predictions
on our commit’s matrix. SVD is meant to only be applied to a single matrix, so it
is not clear how to integrate the past commit matrices into predictions for a current

commit’s matrix.
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4.3.2 SVDFeature

SVDFeature is an extension of SVD that has been found to very successful in rec-
ommendation problems [15]. It is used to recommend items to users by taking in a
sparse matrix whose rows represent users and whose columns represent columns. On
top of using the filled-in entries of the matrix, SVDFeature also allows users to specify

additional features to learn from. These features take one of 3 forms:
1. Features on the users
2. Features on the items
3. Global features that are shared among all users and items

From this combination of the input matrix and user-specified features, SVDFeature
trains a model to minimize the loss between the predicted entries and the true ratings

of the input matrix. It can then use this model to make predictions for new matrices.

4.3.3 Feature Selection

To use SVDFeature, we must decide what features to use. In the context of our
problem, we want our features to reflect the past history of matrices before the current

commit we are making predictions on. We decided on the following features:
1. User [test] features: fraction of times a test failed in all of its past appearances

2. Item [platform] features: fraction of tests that failed on that platform in all

previous test suites

3. Global features: none.

4.4 Omne-shot Approach

We start with the one-shot approach, as it is the simpler option. In this approach,

after filling in some initial portion of our current commit’s matrix, we use this initial
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portion and the features as described above as input to SVDFeature. After fully
training the model from SVDFeature, we then evaluate how well it does on predicting

the full test result matrix of the current commit.

4.4.1 Algorithm

Our algorithm takes three arguments: matrix, the matrix to be filled out, history,
all previous commit matrices, and fraction, the fraction of the matrix that is initially
filled-in. It then trains a model and makes predictions for the values in matrix. It

goes as follows:
MakePredictions(matrix, history, fraction):

current = matrices[i]
From history, find the rates of failures of all tests and all platforms
Generate SVDFeature input files:

Fill in some random fraction of current with its real values

Use the full current matrix as the test file

Feed SVDFeature file into SVDFeature, and generate predictions

4.4.2 Matrix Bucketing

We first split up our data matrices into buckets according to how many failures occured
on that commit. We had 5 buckets: 1 failure, 2 failures, 3-10 failures, 11-100 failures,

and >100 failures. The distribution of commits in these buckets is shown in table 4.1.

Number of failures

1 2 3-10 11-100 =100

418 250 107 37 10

Table 4.1: Number of matrices in each bucket of failure counts..

We note that we ignore commits with no test failures. Because we are using and

SVD-based approach, any matrix with no failures (i.e. all values are 0) will factorize

54



into features that are identically 0, and thus all predictions will still be 0. We are thus

only interested in matrices with some failures in them.

4.4.3 FEvaluation

We then ran our one-shot algorithm on all matrices in the >100 failures bucket. We
only consider these matrices because of the random nature of our initial filling of
the matrix. We rely on finding some failures in the initial fraction of the matrix to
make accurate predictions, and thus we need a significant probability of finding some
failures in the initial filling for our algorithm to successfully make predictions.

To evaluate our algorithm, we ran it at various values for fraction. For each
value of fraction, we plotted what fraction of failures were detected in the top k
predictions made by our algorithm - the predictions with the k highest probability of
failure. We show these plots for a few of the commits in figure 4-3.

From figure 4-3, we can see that with initial fractions, our model is able to easily
determine failures with its top predictions, as shown by all green lines being near
constant at 1. Even with low initial fractions, such as .1, we are still able to identify a
significant number of failures with low values of k, and the number steadily increases
as we allow our model to make more suggestions. For example, in the case of the
commit with 168 failures and 1338 total tests and we fill in an initial 10% of the
matrix, we are able to predict 45% of all failures with our top 168 predictions, with

those failures consisting of less than 15% of all tests.

4.4.4 Positives and Drawbacks

The one-shot approach is very simple to implement, and allows for easy evaluation of
the effectiveness of SVDFeature. With it, we are able to verify that using SVDFeature
will be effective in making useful predictions.

However, this approach is also not well-suited to the task of actively recommending
tests for users to run. Because it only makes predictions once, users are only given

one set of tests that could become failures. After making its initial prediction, this

95



3 168 failures, 1338 total tests 190 failures, 1457 total tests

D 1.0 1.0

3 —0.1 —0.1

35 —0.25 —0.25

808 05 | 98 0.5

=

o

=06 0.6

©

G

(@]

g 0.4 0.4

5

g 200 400 600 800 1,0001,2001,400 200 400 600 800 1,0001,2001,400
k k

844 failures, 1739 total tests

1.0

0.9

0.8 1

0.7 1

0.6

800 900 1,0001,1001,2001,3001,4001,500
k

fraction of all failures detected

Figure 4-3: Plots of the number of predictions considered vs. the fraction of failures
detected for 3 different commits. Each of the commits had a different number of
failures, with the 3rd having significantly more. k is initialized to the number of
failures present on that commit, and increases by intervals of 50. We do not initialize
k lower as we would then have fewer predicted tests than there are failures.

approach is fixed to this single set of predictions, and is not amenable to feedback if a

user is able to actively run the tests and send the results back to the model.

4.5 Iterative Approach

To fix the above problems, we have also designed an iterative approach. This approach
extends the algorithm laid out by the one-shot approach to be able to iteratively

make predictions on the entries of the matrix. To do so, we have designed an API for
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interacting with SVDFeature. This API allows the user to easily work with SVDFeature
to gradually fill out the test matrix, and decide what tests to run and when. It also
designed to be agnostic to the model that is used - while we use it specifially with
SVDFeature, it can be extended to any prediction model that provides a common set

of functions we specify below.

4.5.1 SVDFeature Wrapper

We first specify a wrapper we designed around SVDFeature. This wrapper provides
the standardized list of functions that our API expects. Similar wrappers can be

designed for other prediction models. The methods the wrapper provides are:

e initialize: Takes a list of past test matrices and the matrix to fill in. Initializes

the model with these parameters.

e update: Takes an updated version of the current test matrix. Updates the model

with this new matrix.

e predict: Takes a configuration specifying model parameters. Returns the
predictions made by the model with this set of parameters, where each prediction
is the percentage that the test will fail and the location in the matrix of that
test, sorted such that the most likely to fail tests occur first.

past matrices,

. matrix
> ( initialize ) «————
wrapper new matrix

— update —

configuration

. “«—

N
predictions

Figure 4-4: A diagram of the wrapper the API expects around any model. While we
use SVDFeature, it can be replaced with any prediction model, so long as the external
methods are implemented.

From this general wrapper specification, here is each method when using SVDFeature:
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e initialize: Writes out the proper configuration file and calculates all features
as specified in section 4.3.3 from the history of test matrices. Saves the provided

matrix as features_matrix.
e update: Updates features_matrix, and writes out the SVDFeature input files.

e predict: Calls SVDFeature to train the model from the input files and generate

predictions. Returns the predictions in the specified format.

We note a special case for predict: if features_matrix is still empty, a SVDFeature
model trained on it will have nothing to learn from, and thus can’t make any real

predictions. In this case, we can instead do one of 3 things:

1. Return random tests
2. Return tests sorted by which have failed the most in the past

3. Return a mix of the two options

We chose to use option 3. While option 2 seems like it would return the most
salient tests, we chose to add some element of randomness in the initial test selection.
This provides a more diverse initial seed for the model to make predictions off of than
just the most likely to fail tests. In particular, if all of the the initial seed fails, the
model will predict that all tests will fail without any level of distinction, and this

randomness can help prevent this case from occurring.

4.5.2 Iterative API

The API expects the models it interacts with to have the functionality as specified

above. It then provides the following methods:

e Initialization: Takes a model with methods specified above and the past history
of commits. Initializes the empty test matrix and calls the model’s initialize

method.
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e add: Takes a list of new results, with each result consisting of the location in
the matrix to fill and the value to fill with. Updates the test matrix accordingly

and calls the model’s update method with the updated matrix.

e propose: Takes the number of tests to be proposed and a configuration. Calls
the model’s predict method with the configuration and returns the tests most
likely to fail as predicted by the model. Tests are returned as locations in the

matrix. Ensures no repeat tests are proposed.

This API thus specifies an add-propose protocol for test prediction. The user will
alternate between calling propose to ask the model for suggestions for what tests are
most likely to fail, and calling add to update the model based off what results they do
have. What the user chooses to do with the predictions from the model and how they

want to update the matrix is left up to them.

I History, Current Matrix
@ Initialize > Model
Test Results
Add ﬁ’
@ User Number, Number, Model
Config Config
i Propose
Filtered Predictions
predictions

Figure 4-5: A figure of the iterative API. After initialization, the user process that
calls add and propose can be anything, and in particular can be a test running process
that is actively running the tests and using the model for test recommendations.

This thus provides flexibility in how the API can be used. It can be used in static
environments, where all test results are already known and users are just testing if
their model of choice is able to successfully make predictions. In particular, this API
is able to completely recreate the one-shot approach described earlier: they first call
add with their choice of a random fraction of the matrix. They then call propose and
ask for all remaining entries of the matrix. They can then evaluate their model in the

same way we have above.
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Beyond this, our API also allows for more dynamic approaches. In particular, it
can be used in realtime settings, where test results are not already known. We can
then easily plug our system into any existing testing process, have it call to our API
to make predictions, then use the actual test running process to fill out the real values

of the matrix.

4.5.3 Usage

Typical usage of our API is as follows:
Initialize API and model with history and matrix to predict on

Loop:
proposal = propose(config)
Generate results based on proposal

add(results)

4.5.4 FEvaluation

To evaluate this iterative procedure, we use the same buckets described in section 4.4.2.
For each bucket, we selected 3 random commits and ran a slightly modified version of
the above algorithm for the commits. In our modified version, we loop a fixed number
of times, and in each iteration ask for a fixed number of proposals. We chose to loop
5 times, each time asking for proposals of size 60, allowing for a total of 300 tests to
be considered. For each commit we ran this procedure on, we determined the fraction
of all failures that were proposed by our model. Our results are shown in table 4.2.
Our results demonstrate that while our model struggled to find failures for commits
with 1 or 2 failures, it did very well on commits with more failures. We expected
the poor performance on commits with very few failures, as it would have very little
information from which to base its predictions off. On the other hand, we see that
even with a very low threshold on the number of failures we need, we are able to
identify a significant fraction of the tests after testing less than 25% of all tests. This
method thus provides an encouraging start for developing efficient methods for quickly

identify failures during live testing procedures.
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Index in history Number of tests Number of failures Fraction of failures found

2623 1738 1 0.0
2644 1738 1 0.0
2776 1834 1 0.0
2206 1422 2 0.5
2374 1475 2 0.5
2403 1631 2 0.5
2308 1475 8 0.86
2473 1643 8 0.25
3008 2257 10 0.4
2171 1394 o4 0.94
2189 1406 36 0.89
2290 1469 14 0.85
2287 1457 190 0.89
2288 1457 190 0.85
2791 1809 126 0.75

Table 4.2: Statistics on how well the iterative approach did in finding failures for
commits in each bucket.
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Chapter 5

Conclusion

In this paper we have presented ML Software Tester, a system for augmenting the
software testing process with machine learning. ML Software Tester is designed to be
easily extensible to any underlying software project, allowing it to be plugged into a
wide variety of use cases. It consists of two primary modules, data collection and test
prediction, that are conceptually simple to understand and practically easy to work
with. Users are able to easily specify a few unique features for their project, and with
them instantiate an entire machine learning pipeline to predict future test results. We
have demonstrated that using the SVDFeature model, we are able to make predictions

for Flask, one of Python’s most prominent open-source projects.

5.1 Future Work

We have previously listed many potential avenues of improvement for ML Software
Tester. Many of them are currently being worked on by our collaborators, and we list

them again here.

e Test Collection Reliability: Going back very far into a project’s history
and successfully running its code is difficult, as dependencies fluctuate and
expectations for how the code should be run changes. We currently address

this very naively, changing very little as we go back in time. More sophisticated
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approaches could adjust the system environment and testing procedure as

commits get older to try to maximize the number of commits that provide data.

e Test Collection Extensibility: Flask is just one of countless open-source
projects available for testing this software. We want to ensure our software
is easily applicable no matter what the project is. In particular, we have
not considered the challenges that may occur when working with projects in
languages besides Python, or where cross-platform testing is not as simple, such

as mobile applications.

e Test Collection Performance: Test collection is currently done in a serial fash-
ion that, while simple, can take a long time, especially for the large open-source
projects we imagine the software would prove most useful for. Parallelization of
the process appears to be a clear approach for greatly improving the performance
of the process. Faster performance allows for faster adoption, making it even

easier for new users to get onboard with using the software.

e Prediction Model Variation: We have only used SVDFeature to create
predictions, and only with one set of features. There is ample room for further
exploration of the feature space in SVDFeature. In particular, our choice of
features did not take advantage of using explicit cross-test correlations that seem
like they could play important roles in predicting new test results. Additionally,
there are countless other recommender models that have proven successful in

making progress on the Netflix prize that would warrant future consideration.

Some of these issues have began to be addressed by our collaborators; see section A.
Others have not, and are areas where exciting progress can be made to further
improve the effectiveness of ML Software Tester and push it further as a potentially

transformative technology in the software development workflow.
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Appendix A

Data Collection for New Repositories

In this section we discuss the extensions to the test collection process described in
chapter 3.3 made by our collaborators, Manuel Campo and Carles Sala. With these
extensions they were able to apply the test collection procedure on several of the

largest Python projects, including Django, Tornado, and requests.

A.1 Python Environments

On each commit, a new virtual environment is set up for each version of Python that is
tested on. The relevant Python versions are specified by the user, and can be adjusted
depending on the project. On each virtual environment, the project’s dependencies on
that commit are installed, then all tests are run. A new virtual environment is created
for each unique (commit, Python version) pair. This ensures we do not encounter the
dependency issues we previously encountered, and allows a greater number of commits
to have their tests properly run and their result collected. A diagram of this process

can be seen in figure A-1.

A.2 Test Scripts

We had previously used the default pytest command to run tests. This is modified

to use pytest-json-report [9]. This testing library outputs tests results in JSON
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( Python Env #1 ) - (Insmll d()p(}nd()ncio:») - (R,un tests)

{ ( Python Env #2 ) - CInstaH dependencies) - (R,un tests)

Figure A-1: A diagram of the test running process on each new commit. At each
commit, we install dependencies and run tests on newly created virtual environments
for each relevant Python version.

file format, allowing for easy parsing that is standardized regardless of the original

project that is tested.

A.3 Commit Ordering

The commit ordering described to create the history of past test results for a given
matrix was based solely on the timestamp that commits were made. However, a
commit that was made before another shouldn’t always be determined to be part of
the succeeding commit’s history. This is due to the branching structure of the Git
tree - if the two commits occur on separate concurrent branches, they shouldn’t have
any temporal relation. To account for this, ‘~topo-order‘ can be used in calls with ‘git
log® to determine the topological order of commits and properly obtain the correct

historical commits.
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